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Abstract

The Framework of Achievement Bests provides an explanatory account into the process 
of optimization, which details how a person reaches from one level of best practice to 
that of a more optimal level. This framework, we contend, is significant in its explana-
tory account of personal growth, an internal state of flourishing, and the achievement 
of exceptionality. This chapter conceptualizes the applicability of the Framework of 
Achievement Bests to the context of instructional designs. We highlight the tenet of ele-
ment interactivity, which is integral to the design of a particular mathematics instruc-
tion and its potential effectiveness. Element interactivity entails the interaction between 
elements within a learning material. Owing to the limited working memory capacity, 
an instruction that incurs high level of element interactivity would impose high cog-
nitive load leading to reduced learning. Our conceptualization postulates the possible 
alignment between suboptimal and optimal instructional designs with realistic and opti-
mal levels of best practice, respectively. This postulation (e.g., suboptimal instructional 
design → realistic level of best practice), which recognizes the importance of cognitive 
load imposition, is significant from a practical point of view. By focusing on instructional 
designs, it is possible to assist individuals to achieve optimal best practice in learning.

Keywords: achievement best frameworks, cognitive load theory, appropriate instructional 
design, element interactivity, equation solving

1. Introduction

Effective learning in school contexts is an important notion to consider. By all account, effec-

tive learning entails personal experience of deep, mastery learning, improvement in cogni-

tive skills (e.g., problem solving), and the stimulation of interest and intellectual curiosity. 

The product of effective learning, in this sense, may include an improvement in academic 
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performance at the end of the school term. Ineffective learning, by contrast, may result in loss 
of interest, engagement in maladaptive outcomes, and superficial learning. This recognition 

places emphasis on a need for educators and researchers, alike, to focus on motivational ini-

tiatives, pedagogical strategies, and educational programs that could foster engagement of and 

preference for effective learning.

Our postulated positioning, based on previous research undertakings in the area of math-

ematics [1, 2], is that appropriate instructional designs may serve to facilitate and promote 

effective learning. Instructional designs, an important element of pedagogical practices in 
the teaching and learning processes, are central to the achievement of effective learning. We 
contend that, in this case, a particular instructional design is efficient when it imposes mini-
mal cognitive load on an individual’s processing of information. Instructional designs that impose 

high levels of cognitive load, by contrast, are ineffective and inefficient for implementation 
and practice. This line of research development, in general, has notable implications for us 

to consider, especially in relation to Teacher Education Pre-service preparation and training.

This chapter then, in accordance with the scope of the edited book, explores the importance 

of comparative instructional designs in the context of mathematics learning. Drawing from 

our previous work, we focus on the development of a conceptualization that emphasizes on 

the choosing of an appropriate instructional design for implementation. This conceptualiza-

tion, in particular, focuses on the achievement of optimal best in mathematics [3, 4], taking into 

consideration the negative impact of cognitive load imposition [5, 6]. Furthermore, arising from 

this discussion, we consider methodological and theoretical issues for continuing research 

development into the area of instructional designs.

2. Achieving optimal functioning

Achieving optimal best in different subject matters is a central feat of human agency. This per-

sonal attribute emphasizes an internal state of determination and resilience to achieve optimal 
functioning. Optimal functioning, in contrast to the experience of stagnation, places emphasis 

on an individual’s quest to fulfill his/her personal and psychological needs. Importantly, per-

haps, the accomplishment of optimal best indicates the maximization in capability that an 

individual may demonstrate [4]. In the context of schooling, for example, optimal best for a 

Year 8 student may involve his/her understanding of mathematics equations involving special 
features (e.g., 10%x = 20, solve for x) (Appendix A). This level of exceptionality of mathematics 

learning, as mentioned, reflects the student’s fullest potential for the stipulated time point.

Optimal best, in essence, coincides with the theoretical tenets of positive psychology [7, 8], 

which emphasize the importance of human proactivity, personal fulfillment, and the aspiration to 

lead fruitful and meaningful lives. Optimal best, consequently, indicates the development and 

manifestation of virtues, inner strengths, and resilience, and the achievement of exceptional-

ity. These attributes and/or characteristics are positive, in nature. In recent years, researchers 
have advanced the study of optimal best, theoretically, methodologically, and empirically. 

Phan and colleagues [3, 4], for example, have developed the Framework of Achievement Bests, 
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detailing an underlying internal mechanism that could explain how an individual reaches a 

state of optimal functioning. This framework is significant as it contributes to existing work 
[7–9], and advances the inquiry into the tenets of optimal best.

2.1. The Framework of Achievement Bests

The Framework of Achievement Bests, developed by Phan and colleagues [3, 4, 10], explores 

the personal experience of optimal functioning. Optimal functioning, according to the authors, 

is defined as an internal state of experience and accomplishment that reflects maximization 
in capability (e.g., a Year 8 student’s indication to learn and understand linear equations that 

involve multiple solution steps (e.g., 4/x = 11, solve for x). “What is the best that I can accom-

plish?”, in this instance, is a question that indicates an individual’s self-awareness of his/her 
potential best practice.

The Framework of Achievement Bests draws comparison with Fraillon’s [27] theorization 

of optimization, which is a psychological process that focuses on an individual’s optimal best 

from some point of self-reference. Phan and colleagues’ [3, 4, 10] conceptualization of achieve-

ment bests depicts two major levels of best practice: (i) realistic level of best practice (i.e., denoted 

as RL), which entails what an individual is realistically capable of accomplishing, at pres-

ent (e.g., what can I actually do, at present, in Algebra?; how much do I know…..?), and (ii) 

optimal level of best practice (i.e., denoted as OL), which is defined as an individual’s accurate 
indication of projected accomplishment that is exceptional, in nature (i.e., as of today, what is 
the best that I can do for this topical theme, realistically?). Reaching an optimal level of best 

practice from a realistic level of best practice reflects, in this case, a state of flourishing or opti-
mal experience. Figure 1 illustrates the Framework of Achievement Bests, in its totality [4, 11].

A state of personal flourishing

Process of Optimization

V
o
lu
m
e
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Intensity of optimizatoion

o
p
tim
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a
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n

Current Level of Best Subscale Previous Track Record

Proxy-CL

Proxy-EL

Exceptional Level of Best Subscale Accomplishment in a domain

Psychological Mechanism Psychosocial Mechanism

Educational Mechanism

Current Level of Best Practice Exceptional Level of
Best Practice

Historical Level of Best Practice

Figure 1. The Framework of Achievement Bests. Source: Adapted from Ref. [1].

Achievement Bests Framework, Cognitive Load Theory, and Equation Solving
http://dx.doi.org/10.5772/intechopen.70568

289



The Framework of Achievement Bests is unique for its attempts to explain the “achievement” 
of optimal functioning. That is, from Figure 1, an individual’s point of reference is his/her 
realistic level of best practice (note: as time progresses, an individual’s realistic level of best 
practice becomes his/her historical level of best practice, which is defined as previous record of 

accomplishment in a subject matter). This level of best practice, consequently, serves as a source 
and/or a reference point by which an individual would use to formulate his/her optimal level 
of best practice. The zone of optimization, which refers to the “difference” or “range” between 
the realistic level and the optimal level of best practice (i.e., OL-RL), in essence, delves into 

the process of optimization. In other words, as Phan and colleagues explain, optimization is 
a psychological process that serves to optimize an individual’s internal state of functioning to 

“progress” from one level to that of another level.

The psychological process of optimization, recently updated in terms of theorization [10], 

varies in terms of intensity and scope (or volume). The intensity of optimization emphasizes 

the extent and amount of resources (e.g., appropriate instructional design) needed to optimize an 

individual’s state of functioning. The scope (or volume) of optimization, by contrast, focuses 

on the amount of effort and time (e.g., the extent to which a student is motivated to invest effort 
and time) needed to optimize an individual’s state of functioning. Optimizing a small zone 

of optimization in mathematics learning (e.g., knowing how to solve one-step equations such 

as x + 3 = 5, to knowing how to solve one-step equations such as x + 4 = −7), for instance, may 
require only a small amount of effort and time, and/or the amount of resource (e.g., limited 
scaffolding from a teacher). Both equations (i.e., x + 3 = 5 and x + 4 = −7) share identical prob-

lem structure except that the latter equation has a negative number (i.e., −7), and thus may 
pose a difficulty for students [12]. By contrast, it will require more resources (e.g., effective 
instructional design), effort, and time to optimize a large zone of optimization in mathematics 
learning (e.g., knowing how to solve one-step equations such as y + 3 = 7 (Figure 2(a), to know-

ing how to solve one-step equations such as    4 
__

 a   = 2  (Figure 2(b)). This is because the one-step 

equation such as    4 
__

 a   = 2  has more solution steps than the one-step equation such as y + 3 = 7,  

irrespective of the methods (i.e., balance or inverse). The differential efficiency between 
the balance and inverse methods will be discussed later. Similarly, in physical education, 

Figure 2. (a) One-step equation involving one operational and two relational lines. (b) One-step equation involving two 

operational lines and three relational lines.

Balance method (a) 

Line 1 

Line 2  – 5  – 5

Line 3  

y + 5 = 13      (– 5) on both sides 

y =  8

Line 1 

 Inverse method 

y + 5 = 13 

Line 2  

   (+ 5 becomes – 5) 

Line 3  

y = 13 – 5 

y = 8 

Balance method 

Line 1 

(b) 

Line 2  

       (× a) on both sides 

Line 3  

 × a    × a 

Line 4  

Line 5   2 = a 

 Inverse method 

Line 1 

     4 = 2a      (÷ 2) on both sides 

 ÷ 2  ÷ 2 

Line 2  

         (÷ a becomes × a) 

Line 3  

Line 4   2 = a 

         4 = 2 

= 2 

× a    (× 2 becomes ÷ 2) 

   4 ÷ 2 = a 
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 optimizing an individual’s functioning in a physical activity (e.g., running from 500 m to 5 km)  

may require much more effort, time, and resources. On this basis, the “quantitative” differ-

ence between the realistic level of best practice and the optimal level of best practice, which 

in this case reflects its complex nature, determines the intensity and scope of optimization.

In essence, the psychological process of optimization encompasses the utilization of resources, 

and the expenditure of time and effort in order to optimize an individual’s internal state of 
functioning. Optimization, based on existing theorizations, involves more than just personal 
scaffolding from a capable authority figure [13]. According to Phan and colleagues’ represen-

tation, there are three types of “mechanisms” [4] that operate to optimize a person’s state of 

functioning. The sequencing of this psychological process is as follows:

i. The initiation and execution of optimizing agents (i.e., psychological mechanisms, educational 

practices, and/or psychosocial mechanisms) that operate to influence the internal person-

al processes for learning and performance. There are three types of optimizing agents, 

namely (i) psychological mechanisms, such as a person’s self-efficacy beliefs for learning 
[14, 15], hope [16, 17], and motivation, in general [18], (ii) educational practices, such as 

instructional efficiency and appropriate pedagogical approach that enable better com-

prehension and understanding of the instructional materials [1, 4], and (iii) psychosocial 

factors, such as the impact of the home social environment that may shape a student’s 

state of functioning [19].

ii. Upon the positive influences of optimizing agents, internal personal processes of persis-

tence [20–22], effort expenditure [20, 23, 24], and effective functioning [25–27] are activated. 

This activation, in turn, plays a central role in motivating an organism to reach an optimal 

level of functioning.

Research development emphasizing the operational nature of optimization is in its early stage 

of evolution. In terms of empirical research, for example, a few researchers have used quan-

titative methodological designs to study the explanatory functioning of the three mentioned 

mechanisms [11, 28]. Phan and colleagues have used the Optimal Outcome Questionnaire 
(OOQ) [29] to explore the importance of “profiling of best practice” [4, 11], and the predic-

tive and explanatory effects of the different types of optimizing mechanisms [28]. Aside from 

empirical research, it is also possible to explore optimal best practice and the operational 

nature of optimization from the perspective of conceptualization, using authentic contexts. In 

this section of the book chapter, we provide an in-depth discussion of a conceptualization of 

optimal best in the area of mathematics learning.

3. The importance of algebra

Mathematics educators acknowledge the prominent role of algebra in mathematics learn-

ing and curriculum development [30, 31]. They regard algebraic skills as a “gatekeeper” that 

facilitates the engagement of higher-order mathematical thinking skills [32]. Algebraic skills 

are useful not only for solving real-life problems (e.g., “If your father wants to increase your 
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weekly allowance of $20 by 5%, what is your new allowance?” [33] but also enable effective 
learning in comparable subject areas, such as Physics and Chemistry (e.g., “A solution con-

tains 1.1 g of sodium nitrate, NaNO
3
 in 250 ml of solution, what is the molarity of this solu-

tion?”) [34–36].

Regarding the use of algebra to solve real-life problems, successful problem solvers differ 
from unsuccessful problem solvers in their use of schematic knowledge to set up an equation that 

could then generate a solution [36, 37]. However, unless the problem solvers possess adequate 

equation-solving skills, they are unlikely to obtain the solution even if they have succeeded in 

setting up an equation pertaining to the schematic knowledge. Since equation solving is an 
integral component of the algebra problem-solving process [38], it is timely that we propose 

appropriate instructions that could facilitate optimal learning experiences of equation solving. 

On this basis, reflecting the Framework of Achievement Bests, we contend that appropriate 
instructional designs could serve to optimize students’ understanding of equation solving.

Referring to our previous mention, a conceptualization that involves a focus on instruc-

tional designs could in effect provide evidence that attests to the explanatory power of the 
Framework of Achievement Bests. In this analysis, we contend that appropriate instructional 

designs could serve as educational mechanisms to optimize students’ learning experiences 

in mathematics. Appropriateness of an instructional design is determined, in part, from its 

inverse association with the negative impact of cognitive load imposition [5, 6]. In our recent stud-

ies, for example, we proposed a theoretical position, which posits that optimal instructions 

that impose low cognitive load may generate positive emotions, resulting in an increase in 

motivation to learn equation solving. By contrast, however, suboptimal instructions are more 

likely to result in high cognitive load imposition, which may then generate negative emotions 

and a decline in motivation to learn equation solving.

4. Cognitive load theory: a theoretical overview

Human cognitive architecture, compromising of both working and long-term memory, is central 

to the importance of cognitive load theory [5]. The working memory is severely limited in its 

capacity to process unfamiliar information [39]; however, this limitation disappears when 

familiar information is retrieved from the long-term memory for processing. By contrast, 

long-term memory has an unlimited capacity, which enables it to store a large amount of 

information for an infinite period. Cognitive load theory, proposed by Sweller [5, 40], is an 

instructional theory that attempts to explain why a specific instruction will or will not work.

Three types of cognitive load affect the design of a specific instruction:

i. Extraneous cognitive load, which is imposed by an inappropriate instruction. We can 

change the design of inappropriate instruction to reduce extraneous cognitive load.

ii. Intrinsic cognitive load, which is imposed by the inherent complexity of a learning unit (or 

a material). We can change either the design of the instruction [33, 41] or the knowledge 

base of a learner to reduce intrinsic cognitive load.
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iii. Germane cognitive load, which entails an investment of cognitive resources to assist in the 

learning of relevant aspects of the instructional material. We can change the design of 

an instruction in order to increase germane cognitive load. For example, one way to im-

prove problem-solving skills is to provide learners with variability practice, involving the 

identification of a category of problems that share a similar problem structure but have 
different contexts [42].

Recent research development on cognitive load theory has highlighted an important concept, 

known as element interactivity, that exists across the three types of cognitive load [43]. Element 
interactivity, in this case, emphasizes the interaction that exists between elements within a learning 

material. An element refers to anything that requires learning (e.g., a number, a symbol, a con-

cept, a procedure, etc.) [44]. Under this conceptualization of cognitive load theory, the level 

of element interactivity determines the extent to which a particular type of cognitive load 

would exert its influence on the design of an instruction. Why is this the case? There are three 
possible reasons as to why this is the case: (i) the level of element interactivity determines the 
intrinsic nature of the material and, thus, the intrinsic cognitive load, (ii) the level of element 

interactivity determines, in part, the appropriateness and/or inappropriateness of an instruc-

tion and its extraneous cognitive load, and (iii) the level of element interactivity determines 

the beneficial design feature of an instruction and, thus, its corresponding germane cognitive 
load. Because cognitive resources, in the case of germane cognitive load, facilitate in the learn-

ing of relevant aspects of instructional material, germane cognitive load is not an independent 

source of cognitive load; rather, it is incorporated in the intrinsic cognitive load.

5. Element interactivity, learning, and understanding

Learning material reflects low-element interactivity knowledge if we can learn each element 
independently of another element [1]. In mathematical numeracy, a student can learn to 

recognize a number (e.g., 5) independently of another number (e.g., 9). Learning individual 

numbers therefore constitutes low-element interactivity knowledge, as each number is inde-

pendent and may be learned in isolation. Moreover, because a student can learn to recognize 

individual numbers sequentially (e.g., “5” and then “6”), minimal working memory resources 

are involved when a student learns to recognize each number. Manipulation of multiple inter-

active elements simultaneously, by contrast, reflects high-element interactivity knowledge. 
In the case of learning how to solve a simple one-step equation, such as x − 7 = 13, a student 
would need to understand the role of the variable x, and the quantitative relationship between 

the elements, by which the left-hand side of the equation is equaled to the right-hand side. 

Manipulating multiple interactive elements simultaneously in order to solve an equation 

would impose a heavy cognitive load.

Because there is limited association between individual numbers, a student can learn to recog-

nize a vast number of numerals individually, via memorization (e.g., rote learning). However, 

since multiple elements within a linear equation interact, a student must learn these elements 

simultaneously rather than individually. On this basis, learning to solve an equation may 

pose a challenge for a student because it requires him/her to understand the relation between 
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the multiple interactive elements. In essence, understanding applies only to high-element 

interactivity material, but not to low-element interactivity material. Mathematics learning 

normally involves students learning multiple mathematical concepts simultaneously, which 

consequently imposes high-element interactivity and high cognitive load [45]. Thus, for opti-

mal learning experience, it is important that we design appropriate instructions that could 

minimize the burden of the working memory, which in turn would help students learn math-

ematical concepts.

6. Balance method, inverse method, and element interactivity

Based on the Framework of Achievement Bests [4], it is plausible to postulate that appropri-

ate instructional designs and pedagogical practices could serve to optimize students’ learning 

experiences in mathematics. This postulation reflects, in part, our previous research undertak-

ings that involved secondary school students in Australia and Malaysia. We contend that ped-

agogical practices (i.e., instructional designs) used by teachers are comparative, resulting in 

perceived differences in terms of effectiveness. Cognitive load imposition [5, 43], as explained, 

may assist and/or determine the effectiveness of a particular pedagogical approach. In math-

ematics learning, the two popular methods that facilitate the acquisition of equation-solving 

skills are the balance and inverse methods (Figure 2(a)). The balance method is popular among 

Western countries [46], whereas some Asian countries (e.g., Singapore, Korea, and Japan) 

have introduced and preferred the inverse method in primary mathematics curriculum [47].

In this section of the book chapter, we discuss the characteristics of the balance and inverse 

methods for effective learning in mathematics. Differentiation between the two methods 

involves clarity and explanation of the solution procedure of one-step equations, which may 

involve understanding of the difference between relational and operational lines [2]. A relational 

line indicates the relationship between the elements on the left side of the equation, which is 

equaled to the right side of the equation (e.g., Lines 1 and 3 in Figure 2(a)). By contrast, an 

operational line refers to the application of a mathematical operation that changes the state 

of the equation, and yet at the same time preserves its equality (e.g., Line 2 in Figure 2(a)).

6.1. Balance method

In accordance with Figure 2(a), Line 1 is a relational line and it involves six elements, con-

sisting of y, 5, 13, and three concepts. These three concepts are as follows: (i) y represents an 

unknown number, (ii) the “=” sign describes a quantitative relation between elements, with 

the left side of the equation equals to the right side, and (iii) to find y, the learner needs to per-

form the same operation on both sides in order to balance the equation. A learner is required 

to coordinate the interaction between the six elements simultaneously. By contrast, Line 2 is 

an operational line that involves three elements and consists of a number (i.e., −5) and two 
concepts. The two concepts require the learner to cancel +5 with −5 on the left side of the equa-

tion, and to perform 13 − 5 on the right side of the equation in order to maintain the equality 
of the equation. Interaction between elements occurs on both sides of the equation when the 
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learner performs +5 with −5 on the left side of the equation as well as 13 − 5 on the right side 
of the equation. Lastly, Line 3 is regarded as a relational line; it consists of three elements such 

as y, 8, and one concept. The concept requires the learner to be able to process Lines 1 and 2 

successfully so that he or she would then know that y equals to 8 is the solution.

6.2. Inverse method

The inverse method differs from the balance method for Line 2, but not for Line 1 and/or 
Line 3. Line 2 is an operational line and it involves four elements, consisting of y, 13, −5, and 
one concept. This concept requires the use of an inverse operation: move +5 from the left side 
of Line 1 to become −5 on the right side of Line 2 in order to balance the equation. Element 
interactivity occurs on one right side of the equation, where −5 interacts with 13. Overall, then, 
the inverse method incurs only half of the interactive elements as the balance method for the 

operational line (i.e., Line 2). Consequently, the inverse method imposes lower element inter-

activity and therefore lower cognitive load than the balance method.

6.3. Differential element interactivity between the balance and inverse methods

For both the balance and inverse methods of mathematics learning, understanding can only 

occur when learners simultaneously assimilate multiple interactive elements that arise within 

each line, and across the three lines of the solution procedure. For each relational line, the level 

of element interactivity arises from the interaction of elements within and between the left 

side and right side of the equation. Because the level of element interactivity is caused by the 

intrinsic nature of the equation, there is no differential element interactivity between the bal-
ance and inverse methods. By contrast, differential element interactivity between the balance 
and inverse methods favors the inverse method for the operational line. Interaction between 

elements occurs on both sides of the equation for the balance method, but only on one side of 

the equation for the inverse method. In other words, the balance method incurs twice as many 

interactive elements as the inverse method for each operational line. Nevertheless, for a sim-

ple one-step equation (e.g., y + 3 = 7) that consists of one operational line and two relational 

lines (Figure 2(a)), the total cognitive load required to process the level of element interactiv-

ity would expect to be low for both the balance and inverse methods. Indeed, research has 

shown that the inverse method is not better than the balance method for one-step equations 
that consist of one operational and two relational lines in the solution procedure [1, 48, 49].

The inverse method, as shown, is comparable with the balance method for simple one-step 

equations that involve one operational line and two relational lines (e.g., y + 3 = 7). The inverse 

method, however, is more advantageous when complex one-step equations consisting of two 

operational lines and three relational lines are involved (e.g., Figure 2(b) [48]. Compared with 
simple one-step equations, the level of element interactivity of the complex one-step equa-

tions for both the balance and inverse methods has increased because of an increase in both 

operational lines (2 vs. 1) and relational lines (3 vs. 2). Nonetheless, the ratio of the interactive 

elements between the balance and inverse methods remains the same (i.e., 2:1), irrespective of 
the number of operational line. Having said this, the total number of interactive elements for 

two operational lines is twice the total number of interactive elements for one operational line, 
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irrespective of whether it is the balance method or inverse method. Consequently, as revealed 
by prior studies, differential element interactivity between the balance and inverse methods 
favors the inverse method for complex one-step equations that involve two operational lines 

and three relational lines [1, 48, 49].

7. Special features

Aside from operational and relational lines, the presence of special features that involve com-

plex elements also increases the complexity of one-step equations (see Appendix A). Operating 

with negative numbers is an integral component of middle-school mathematics curriculum. 

Having said this, operating with negative numbers continually poses challenges for school-

age students [50, 51]. For example, in relation to multiplication, many students struggle with 

problems that have two negative numbers in algebraic expression problems (e.g., − 4(5x − 2) 
[50]. Furthermore, aside from negative numbers, students also commit errors when operating 

with fractions [52]. Finally, to compound this difficulty, many students also fail to engage in 
mathematical reasoning that emphasizes the connection between fraction, percentage, and 

decimal [53].

On this basis, when the number of operational lines and relational lines is kept constant in 

one-step equations, operations with special features (see Appendix A) pose an additional chal-

lenge for students. For example, the equation 2x = 6 shares a similar structural feature with 

that of the equation 10%x = 20 and, consequently, both have the same level of element inter-

activity. However, 10%x = 20 poses a greater challenge than 2x = 6, owing to the fact that the 

latter equation has a percentage (i.e., 10%). The percentage (i.e., 10%) is regarded as a complex 
element because it comprises not only a number (i.e., 10) but also a percentage sign (i.e., %).

In summary, from the discussion so far, what can we say about the two pedagogical 

approaches: inverse versus balance? We argue that the inverse method, preferred by many 
Asian countries, is more effective than the balance method for two major attributes: (i) the 
number of operational lines and relational lines that exist and (ii) the presence of special fea-

tures in the equations. Indeed, our previous research undertakings have provided evidence 

that the inverse method is better than the balance method for complex one-step equations 
that involve two operational lines and three relational lines. The inverse method, though, is 

comparable to the balance method for simple one-step equations that involve one operational 

line and two relational lines [48]. Furthermore, as our research showed, the presence of spe-

cial features favored the inverse method when the number of operational and relational lines 

is kept constant [54].

8. Mathematical equivalence

Mathematics education researchers have regarded conceptual and procedural knowledge as 

essential components of mathematics proficiency [55, 56]. According to Rittle-Johnson, Siegler [57],  
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conceptual knowledge refers to the principle that governs a domain, and procedural  knowledge 

refers to a sequence of actions to obtain a solution. The extent to which students have acquired 

procedural knowledge of one-step equations is reflected in their ability to solve one-step equa-

tions [1]. However, the acquisition of conceptual knowledge for one-step equations is con-

cerned with students’ understanding of the mathematical equivalence (i.e., “=” sign concept) 

with respect to both relational and operational lines [1]. Apparently, the relational under-

standing of the equal sign (“=”) is critical to a student’s success in solving equations [58].

We recently explored the issue of equal sign with reference to the two comparative peda-

gogical approaches, balance versus inverse. Using a two-group pretest-posttest experimen-

tal design, we found that the inverse group had no advantage over the balance group with 

regard to students’ understanding of the equal sign for the relational line [1]. For example, 

presented with an equation such as x + 6 = 11, students could justify that the “=” sign indicated 
“balance, equal, etc.” There are two ways of presenting the “=” sign concept with respect to 

the operational line: (i) balance method: x + 3 = 5, x + 3 − 3 = 5 − 3 and (ii) inverse method: x + 3 

= 5, x = 5 − 3. When students were asked to judge whether a pair of equations was equivalent 
(e.g., balance method: x + 3 = 5, x + 3 − 3 = 5 − 3), both the balance and inverse groups per-

formed better when the pair of equations was presented using the inverse method [1]. This 

evidence suggests that, in general, the differential element interactivity favors the inverse 
method for the operational line.

9. Achieving optimal best for one-step equations

Experience of optimal best in mathematics learning, according to Phan et al. [4], may involve 

demonstration of competence for not only the simple percentage problems but also percent-

age problems that are more complex. A realistic level of best practice, by contrast, reflects the 
demonstration of competence for simple percentage problems only. This conceptualization 

of achievement bests is significant and highlights variations in personal functioning in dif-
ferent subject domains of academia. A realistic level of best practice serves as a point of self-
reference for determination and/or aspiration of an optimal level of best practice. A student’s 
determination of his/her level of optimal best, in part, depends on what he/she is capable of, 
at present. In the context of mathematics learning, we postulate pedagogical practices (e.g., 

an appropriate instructional design), involving the impact of element interactivity and cogni-

tive load imposition, that could associate with differing levels of best practice. For example, 
in relation to our discussion so far, we conceptualize that an optimal instructional design 

devised to assist in the achievement of optimal best in complex percentage problems would 

impose a lower level of element interactivity. Suboptimal instructional designs devised for 

a realistic level of best practice in simple percentage problems, by contrast, would impose a 

higher level of element interactivity. Furthermore, as noted, the level of element interactivity 

is directly proportionate to the degree of cognitive imposition [5, 6].

As discussed, the balance method imposes twice as many interactive elements as the inverse 

method for each operational. In regard to the acquisition of procedural knowledge in equation 
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solving, prior studies have revealed the superiority of the inverse method over the balance 

method for solving complex one-step equations, but not for simple one-step equations [48]. 

This testament has credence, given that the complex one-step equations have more opera-

tional lines (2 vs. 1) and relational lines (2 vs. 3) than the simple one-step equations. Moreover, 

the superiority of the inverse method over the balance method also extends to one-step equa-

tions involving special features (e.g., 12%x = 28).

In relation to the acquisition of conceptual knowledge in equation solving, we also found that 

the inverse method is better than the balance method when the “=” sign concept is applied 
to the operational line, but not to the relational line [1]. Thus, the inverse method is better 
than the balance method in facilitating the acquisition of both procedural and conceptual 

knowledge of one-step equations. This evidence provides empirical support for our proposi-

tion, regarding the alignment between optimal instructions (i.e., the inverse method) and the 

demonstration of competence not only for simple one-step equations (i.e., a realistic level of best 

practice) but also for complex one-step equations (i.e., an optimal level of best practice). At the 

same time, we propose an analogous alignment between suboptimal instructions (i.e., the balance 

method) and the demonstration of competence for simple one-step equations (i.e., realistic level of 

best practice).

An important question, certainly, entails the constructive application of the Framework of 

Achievement Bests in the context of academic learning. The Framework of Achievement Bests 

may provide grounding to assist educators in their teaching practices. This application may 

take into consideration the impact of cognitive load theory [5, 43], and its subsequent influ-

ence on the development of appropriate instructional designs. For example, the use of the 

inverse method is likely to assist middle-school students to achieve an optimal level of best 

practice to solve complex one-step equations. Consequently, competence in solving complex 
one-step equations may enable middle-school students to apply such skills to solve real-life 

problems. Consider a problem that reflects a real-life situation, for example: “Sally wants to 
invite her friends to her birthday party. She has 15 lollies and she wants to give three lollies 

for each friend. How many friends should Sally invite for her birthday?” A student, in this 

case, could use algebra to “set up” the equation – for instance: 15/x = 3, solve for x. Because 

this equation involves two operational lines and three relational lines, it is obvious then that 

the balance method would reflect high cognitive load imposition, and subsequently hinder 
students’ learning. The inverse method, by contrast, would associate with low cognitive load 

imposition, enabling students to solve such equation.

10. Cognitive load and motivation

Worked example is one of the popular instructional designs that has extensively been researched 

[59]. The merit of worked example depends largely on its design. For example, we could 

use illustrations (e.g., a diagram) to represent the problem situation of the specific problem, 
which in turn would increase germane cognitive load and hence improve students’ problem-

solving skills [33, 41]. Aside from worked example, other pedagogical strategies to increase 

germane cognitive load include the incorporation of self-explanation [60], and high contextual 
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inference problem contexts [61]. Investing germane cognitive load to assist learning is in accor-

dance with deliberate practice, whereby engagement in practice activities serves to assist learn-

ers to develop expertise in the domain [62]. Having said this, difficulties may arise, as van Gog, 
Ericsson [62] argued, whereby learners’ lack of motivation may deter their willingness to 

invest germane cognitive load, and/or to engage in deliberate practice activities with a view 
to improve learning.

A review of the empirical literature indicates that, to date, research development into the 

relationship between germane cognitive load and students’ motivational beliefs is inconclu-

sive. The Goal-based Scenarios (GBS) technique used in multimedia instructional designs, for 
example, is advantageous by motivating learners to study the instructional material, which 

then leads to improved understanding of the material, in total [63]. Nevertheless, despite 

this pedagogical initiative, there is little, if any, association between students’ motivational 
beliefs and their perceived increase in germane cognitive load. In another study, however, 

Rey and Buchwald [64] found that the probability of success, a subdimension of motivation, was 

partially associated with the investment of cognitive load in learning. On this basis, evidence 

pertaining to the relationship between motivational beliefs and investment of germane cogni-

tive load is inconclusive and requires further research development. For example, in a recent 

development, we proposed a theoretical model that conceptualized the relationships between 

optimal and suboptimal instructional designs (e.g., varying levels of element interactivity), 

and levels of best practice (varying levels of motivation) in the domain of percentage prob-

lems. Our theorization, as shown in Figure 3, is holistic and seeks to illuminate the combined 

effects of cognitive (e.g., cognitive load imposition), affective (e.g., a heightened state of anxi-
ety), and motivational (e.g., personal self-efficacy beliefs) dimensions of effective learning to 
facilitate optimal best in the percentage problems.

Note:
+ve = positive association, or predictive effect
ve = negative association, or predictive effect
Single arrow = predictive effect
Double arrow = association

Instructional
Design

Unitary

Unitary
Pictorial

Equation

Equation
Pictorial

Internal Personal
Processes

Persistence Effort
Effective
Function

Achievement Bests

Competence

Realistic Optimal

+

+

+

Cognitive Load
Imposition

IntrinsicExtraneous Germaine

+

Test Scale

Figure 3. Proposed relationships between instructional designs, cognitive load, motivational processes, and achievement 
bests. Source: Adapted from Ref. [4].
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11. Cognitive load imposition, internal personal processes, and 

achievement bests

An important focus of inquiry for development entails the potential associations between 

cognitive load impositions, internal personal processes of learning, and levels of best prac-

tice. This development, reflected in our recent conceptualization [4], indicates a concerted 

effort to integrate three major strands of research, namely cognitive processes, motivational 
beliefs and affective dimensions, and achievement bests. We urge researchers and educa-

tors to consider this theoretical model for research development. This empirical validation 

is worth noting and may indicate significance regarding the impact of an integration of 
different strands of inquiries. For example, in relation to affective responses, Ashcraft and 
Kirk [65] found that heightened anxiety levels negatively influenced the working memory 
capacity to process different types of mathematic-learning tasks. It is plausible to assume 
that a proportion of the work memory resources is used to “counter” the heightened state 

of anxiety, and on this basis, very little is left for processing of information. Similar evi-
dence has been reported in a simulation training study in the area of Medical Education 
[66]. In this study by Fraser et al. [66], the authors found that negative affective responses 
(e.g., anxiety) increased extraneous cognitive load imposition, which then led to a decrease 

in the working memory capacity for learning. However, from the results, the relation-

ship between cognitive load imposition, positive emotions, and learning outcomes was 

less predictable.

Our theorization, as shown in Figure 3, has a number of proposed associations for consid-

eration. Central to our conceptual model is the recognition and inclusion of the two major 
theories: cognitive load imposition [5, 43] and achievement bests [4, 11]. Importantly, 

of course, a focus of inquiry may involve the use of both theories to inform the devel-

opment of appropriate pedagogical practices (e.g., an instructional design) to promote 

effective learning experiences. For example, suboptimal instructional designs (e.g., the 
balance method), which directly associate with negative cognitive load imposition, could 

have adverse effects on motivational beliefs and achievement of optimal best (e.g., the 
achievement of realistic best practice only, which, in this case, may involve simple one-

step equations).

In relation to what we have discussed so far, it is evident that in the context of mathemat-

ics learning, comparative instructional designs may have differing effects on students’ 
understanding. Future research undertakings may pursue this inquiry, delving into the 

relationships between comparative instructional designs (e.g., balance vs. inverse) and 

levels of best practice. This postulation, emphasizing two contrasting associations (i.e., 

balance method ↔ simple one-step equations vs. inverse method ↔ complex one-step 

equation, where ↔ = closely aligned association), is of value for testament, especially 

when we consider its potentials to influence motivational beliefs and affective responses. 
Our argument, overall, based on previous research development, is that the inverse method 

is superior to the balance method for effective learning. This conviction, we contend, draws 

to the fact that the inverse method (i) imposes low cognitive load imposition, enabling 

a learner to  understand both simple and complex one-step equations, (ii) elicits positive 
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affective responses (e.g., happiness), consequently as a result of a learner’s ability to under-

stand and to demonstrate the mastery of complex one-step equations, and (iii) reflects, 
correspondingly, a high score on the Optimal Best Subscale of the Optimal Outcomes 

Questionnaire (e.g., I feel positive when I am asked to solve complex one-step equations).

We recently developed, as mentioned, the Optimal Outcomes Questionnaire [29], which has 

two subscales, the Realistic Best Subscale (i.e., consists of eight items) and the Optimal Best 

Subscale (i.e., consists of eight items). Aside from focusing on the importance of “profiling” of 
best practice [11, 28], we contend that this questionnaire could measure and assess students’ 

motivational levels and affective responses as a result of their exposures to different instruc-

tional designs. This recognition, which we recommend for further research advancement, 

indicates the importance of diagnostic assessment of motivational levels and achievement bests 

that arise from varying levels of cognitive load imposition.

Appendix

Solution procedure for one-step equations that have special features in the test items

Equation type Balance method

Negative numbers

  
a–2 = 3

  +2   + 2  
a = − 1

   

A decimal number

  

  x ___ 
0.5

   = 5

  × 0.5   × 0.5  

x = 2.5

   

A percentage

  
10 % x = 20

  ÷10 %    ÷ 10%   
x = 200

   

A fraction or a decimal as a solution

  
3m = 2

  ÷3   ÷ 3  
m = 2 / 3

  

Pronumeral on the right side

  

1 = 2p

  ÷2   ÷ 2  
0.5 = p

  

*Negative pronumeral

  

6 − q = 10

  

− 6   − 6

  − q = 4  

÷  (  − 1 )      ÷   (  − 1 )   

   

q = − 4

   

*Pronumeral as a denominator

  

  4 __ a   = 2

  
× a   × a

  4 = 2a  

÷2   ÷ 2

  

2 = a

   

Note: The solution procedure of those equations marked by * has two operational lines (e.g., −6 on both sides, and ÷(−1) 
on both sides) and thus impose higher element interactivity than other equations that have one operational line (e.g., +2 

on both sides).
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