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Abstract

This chapter will give an introduction to linear and nonlinear oscillators and will propose
literature to this topic. Most importantly, hands on examples with numerical simulations
are illustrating oscillations and resonance phenomena and where useful, also analytical
methods to treat nonlinear behavior are given.

Keywords: parametric resonance, autoparametric resonance, nonlinear vibration,
Mathieu equation, Hopf bifurcation, Strutt diagram, nonlinear natural frequency,
instability domain, basepoint excited primary and secondary system

1. Introduction

When a mechanical system has at least two vibrating components, the vibration of one of the

components may influence the other component. This influence effect which might stabilize

or destabilize the system is called autoparametric resonance. This chapter will introduce auto-

parametric resonance by examining hands on examples for such systems. In particular,

basepoint excited systems are analyzed. Beside purely mechanical systems, also examples of

an electrical system with two coupled resonators are investigated.

There are three main types of oscillation: (1) free oscillation, (2) forced excited oscillation and

(3) self-excited oscillation.

Free oscillation is defined as temporal fluctuations of the state variables of a system. Such

temporal fluctuations can be defined as deviations from a mean value. Vibrations are present

in many mechanical systems and occur always in feedback systems. The concept of free

oscillation is misleading since nearly all physical systems are subject to attenuation. However,

it depends on the size (and thus the time). Exceptions could be, for example, orbit oscillations

of planets (macroscopic) or oscillations of electrons (microscopic). The two systems mentioned
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are also subjected to a type of damping, since both systems cannot remain stable indefinitely,

but for an extremely long time.

A forced excited spring mass systemmight be a mechanically forced oscillator. Such systems of

translational motions are discussed in Sections 2 and 3. Beside translatory oscillations, rotatory

oscillations and resonance is of vital interest to design engineers of aircraft turbines, etc.

Unbalanced rotating machine parts are sources of unwanted vibrations and might resonate

when excited accordingly.

Self-excited oscillation, also called as self-oscillation, self-induced, maintained or autonomous

oscillation is known in electronics as parasitic oscillation and in mechanical engineering liter-

ature as hunting. Such systems are discussed in Section 3.

Table 1 depicts relevant parameters for characterization motion in translational and rotational

structures. The parameters for displacement, velocity and acceleration have been written as

absolute values – knowing that depending on the application, they might be vectors, depe-

nding on the chosen frame of reference. In the most general case, they form a four vector. The

force is written as mass times acceleration (Newton’s second law) and therefore force is also a

vector. That brings us to Newton's first law, which states that an object that is at rest will stay at

rest unless a force acts upon it or inversely an object will not change its velocity unless a force

acts upon it. For completeness, also Newton’s third law shall be given: Actio et Reactio – all

forces between two objects exist in equal magnitude and opposite direction. A treaty to

Newton's laws of dynamics can be found, for example in chapter 9 of volume I [1].

D'Alembert’s principle is a statement of the fundamental classical laws of motion. It is the

dynamic analogue to the principle of virtual work for applied forces in a static system and in

fact is more general than Hamilton's principle, avoiding restriction to holonomic systems1.

Translational Rotational

Symbol Description SI Unit Symbol Description SI Unit

s Displacement m ϕ Angle rad

v ¼
ds
dt

Velocity m
s ω ¼ ϕ d

dt
Angular velocity rad

s

a ¼ dv
dt

m
s2 α ¼ ω d

dt
Angular acceleration rad

s2

m Mass kg J Inertia kg m2

F = m a Force N T = J α Torque Nm

I = m v Momentum Ns L = J ω Angular momentum Nms

T ¼
1
2m v2 Kinetic energy Nm T ¼

1
2 J ω

2 Kinetic Energy Nm

U ¼
1
2 k y

2 Potential energy Nm U ¼
1
2 c ϕ

2 Potential energy Nm

W =
Ð
Fds Work J W =

Ð
Tdϕ Work J

P = F v Power W P = J ω Angular power W

Table 1. Comparison of translational and rotational motion parameter characteristics.

1A holonomic constraint depends only on the coordinates and time and does not depend on velocities.
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If the negative terms in accelerations are recognized as inertial forces, the statement of

d'Alembert's principle becomes “the total virtual work of the impressed forces plus the inertial

forces vanishes for reversible displacements”. The principle does not apply for irreversible

displacements, such as sliding friction, and more general specification of the irreversibility is

required. A derivation of the Lagrangian equation of motion is well explained in Chapter 1 of

[2] or [3]. In (1), the non-conservative energy term defined as the Lagrangian (L) is, composed

of the kinetic energy T and the potential energy U.

L ¼ T �U (1)

In (2) the Lagrangian equation is given with generalized coordinates qi of a dynamic system

and dissipative generalized forces Qi.

d

dt

∂L

∂ _qi

� �

�
∂L

∂qi
¼ Qi (2)

The sum of all kinetic energies T in the system, whether translational or rotational character

(see also Table 1) needs to be included. The sum of all potential energies U in the system,

whether it stems from the gravitation or energy from linear or nonlinear springs or whatever

scalar field. Elastic potential energy from any linear or nonlinear spring can be obtained

calculating its potential energy. The Lagrangian formalism can also be used for mechanical

systems with mass explicitly dependent on position, see for example [4]. In the following

chapters, all analyzed dynamical systems are derived using this elegant and powerful method.

Looking at translational (classic) mechanical springs, the displacement dependent force F(qt)

can be written as shown in (3) using spring stiffness k1
N
m

� �

, the generalized translational

coordinates qt and having also introduced a nonlinear spring term kn and an exponent n for

setting nonlinearity of spring. For linear springs, where the force is proportional to the dis-

placement (Hooke's law), this nonlinear spring term will be zero.

F qt
� �

¼ k1 qt þ kn qt
n (3)

The elastic energy Eelastic of the spring is obtained by integrating the exerted force over its

covered path s.

Eelastic sð Þ ¼

ðs

0

F qt
� �

dqt ¼

ðs

0

k1 qt þ kn qt
n ¼

1

2
k1 þ

kn
1þ n

qt
1þn s

0

�

�

�

�

�

Eelastic sð Þ ¼
1

2
k1 s

2 þ
kn

1þ n
s1þn with n > �1 (4)

The elastic energy Eelastic (a potential U) for a linear translational spring is given also in Table 1.

For (rotational) torsion springs, the procedure is the same and a given spring torque can be

expressed as shown in (5) with torsion coefficient D1
Nm
rad

� �

, the generalized translational coor-

dinates qr and having also introduced a nonlinear torsion spring term Dn.
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T qr
� �

¼ D1 qr þDn qr
n (5)

The elastic rotational energy can be expressed as follows (6):

Eelastic ϕð Þ ¼

ð

ϕ

0

T qr
� �

dqr ¼

ð

ϕ

0

D1 qr þDn qr
n dqr ¼

1

2
D1 qr

2 þ
kn

1þ n
Dn qr

1þn ϕ

0

�

�

�

�

�

Eelastic ϕð Þ ¼
1

2
D1 ϕ

2 þ
1

1þ n
Dnϕ

1þn with n > �1 (6)

In Figure 1, sketches on the top show translational springs (from left to right linear, nonlinear and

nonlinear unsymmetrical) and sketches on the bottom depict rotational springs (from left to right

linear, nonlinear and nonlinear unsymmetrical). The origin is depicted with an O and the spring

displacement is depicted as y and ϕ, respectively. For the translational magnetic spring systems,

the lower and upper magnets are fixed to the reference frame with origin O. The nonlinear

symmetric magnetic spring uses three identical block or diskmagnets. Suchmagnetic springs have

a nonlinear term kn > 0 – forming so called hardening springs if kn < 0 in literature referred to

softening springs, see for example [5]). The nonlinear unsymmetrical translational magnetic spring

is also shown in the neutral position and the displacement around the origin is unsymmetrical.

The rotational magnetic spring systems have a ferromagnetic stator fixed to the reference

frame and a rotating hollow shaft carrying two permanent magnets, in this scenario also made

of ferromagnetic material. The spring is drawn in the unstable equilibrium position. Exemplarily

spring characteristics for such translational and rotational spring systems are depicted in Figure 2.

Figure 1. Sketches of translational and rotational spring systems.
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Note that integrating the force or torque response will add up to zero for rotational and

translational spring systems. The given exemplarily spring characteristics of drawn spring

systems in Figure 1 are shown in Figure 2. On the left-hand side, exemplarily translational

spring characteristics are shown and on the right-hand side rotational spring characteristics are

depicted. The linear case where the force and torque are proportional to the displacement is

shown in blue. In red, symmetric nonlinear – here for translational and rotational systems a

permanent magnet system is shown, but also mechanical spring systems could be envisaged.

The curves of the nonlinear asymmetric cases are depicted in orange. In the appendix A.1,

more simulations have been depicted for translational symmetric spring systems using ring

magnets.

Equivalence of electrical and mechanical systems are shown in Table 2. On the left-hand side, a

mechanical system with only one degree of freedom in y direction is shown and its equivalent

electrical structure with charge q and current i on the right-hand side. Kinetic energies are

denoted with TT (translational kinetic energy) and TL (inductive kinetic energy), potentials are

written as US (spring potential) and UC (capacitive potential) and the gravitational potential

denoted as UG and the DC battery voltage is UB. Non-conservative components are in the

mechanical system the viscous damping force and in the electrical system the electrical resistor.

The Lagrange energy function is shown for the mechanical system in (7) and its equivalent

electrical system in (8).

Lmech ¼ TT � US þUGð Þ ¼
1

2
m y0

2
þ
1

2
k y2 �m ɡ y (7)

Lel ¼ TL � UC þUBð Þ ¼
1

2
L q0

2
þ
1

2

1

C
q2 �U0 q (8)

Applying the Lagrangian formalism (1) and (2) to these SDoF systems, will lead to the

resulting DE's as shown in (9) and (10). Note that the sign of the (viscous) damping must be

introduced always with a negative sign using the generalized coordinates – as its velocity is

Figure 2. Exemplarily displacement-force signals (l) and angular displacement-torque signals (r) of the shown spring

systems of Figure 1.
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always opposing the system velocity. In the electrical circuit, having the flowing charge veloc-

ity q’ for example, current i defined in clockwise direction, the battery voltage, as it is a source,

must act in the opposite direction and therefore this potential energy must be introduced with

a negative sign.

m y
0 0

þ d y0 þ k y ¼ ɡ m (9)

L q
0 0

þ R q0 þ
1

C
q ¼ U0 (10)

Both systems (9) a force DE, (10) a voltage DE, belong to the same class of ordinary linear

second-order DE. Resonance frequency for the mechanical system (9) is ωmech
2
¼

k
m and for the

electrical system (10) ωel
2
¼

1
L C.

2. Linear resonance systems

2.1. Linear single degree of freedom systems

In this section, a linear basepoint excited single degree of freedom systems is discussed. The

lumped parameter model for the examined system (Figure 3) consists of a linear oscillator with

Mechanical kinetic energy: Electrical kinetic energy:

TT ¼
1
2m y02 TL ¼

1
2L q02

Mechanical potential energies: Electrical potential energies:

US ¼
1
2 k y

2 UC ¼
1
2
1
C q2

UG = m ɡ y UB = U0 q

Mechanical damping force: Electrical damping voltage:

Fd = d y0 Vd = R q0

Table 2. Equivalence of electrical and mechanical systems.
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mass m damping factor d, a linear spring with a spring rate k1 and an external basepoint

excited harmonic force with amplitude y0(t). System coordinate origin is placed at the

basepoint excitation.

The kinetic energy (11) of this system and the potential energy (12) form the non-dissipative

energy of this system. The dissipative force Fd of this system –we consider only viscous friction

– is shown in (13) and the driving force F0 (14) assuming a harmonic basepoint excitation with

amplitude A and driving frequency ω.

T ¼
1

2
m y0

2
(11)

U ¼ m ɡ yþ
1

2
k1 y

2 (12)

Fd ¼ d y0 (13)

F0 ¼ m
d2

dt2
A cos ωtð Þ ¼ �mAω2 cos ωt (14)

Applying the Lagrangian formalism (1) and (2), we deal with SDoF system, will lead to the

resulting DE shown in (15). Note that the sign of the viscous damping must be introduced with

a negative sign using the generalized coordinates. The driving force F0, as it is a harmonic

signal, can be introduced with a positive or a negative sign, resulting in a phase shift of 180�.

m y
0 0

� �mɡ� k1yð Þ ¼ �Fd � F0 (15)

m y
0 0

þ d y0 þ k1yþmɡ ¼ mAω2 cos ωt (16)

Introducing dimensionless notation, by using a dimensionless time τ, a dimensionless system

resonance frequencyΩ, the damping factor ξ1 and the gravity offset term ϱ (17) and setting the

dimensionless displacement u (18).

τ ¼ t ω1;Ω ¼
ω

ω1
;ω1

2 ¼
k1
m

; ξ1 ¼
d

2 m ω1
; ϱ ¼

ɡ

A ω1
2

(17)

Figure 3. Linear single degree of freedom (SDoF) spring mass damper model of a resonant harmonic basepoint excited

oscillator.
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path u τð Þ ¼
y tð Þ

A
(18)

By replacing parameters of (16) with (17, 18), we obtain (19). We can drop the gravity offset

term ϱ, as it will only add a non-time dependent offset to the solution u (20).

u
0 0

þ 2ξ1u
0 þ uþ ϱ ¼ Ω2 cos Ωτð Þ (19)

u
0 0

þ 2ξ1u
0 þ u ¼ Ω2 cos Ωτð Þ (20)

Frequency domain behavior is obtained by applying the Laplace Transformation (21–24) and

by replacing s = jΩ we obtain the frequency response (25).

U sð Þ ¼ L u τð Þf g ¼

ð

∞

0

u τð Þe�sτdτ (21)

L u
0 0

þ 2ξ1u
0 þ u

n o

¼ �
d2

dt2
cos Ωτð Þ (22)

U sð Þs2 þ 2ξ1U sð ÞsþU sð Þ ¼ s2Y0 sð Þ (23)

G sð Þ ¼
U sð Þ

Y0 sð Þ
¼

s2

1þ 2ξ1sþ s2
(24)

G ξ1;Ωð Þ ¼
U jΩð Þ

Y0 jΩð Þ
¼

Ω2

1þΩ2 þ j2ξ1Ω

�

�

�

�

�

�

�

�

�

�

(25)

G represents the relative motion of the oscillation. As long as the excitation frequency can be

represented by a Fourier series of harmonic functions, this obtained solution is valid and a very

powerful result. (24) and (25) are represented in Figure 4. The advantage of the Bode Plot

Figure 4. Representation of frequency response of a linear SDoF system using (24) Bode diagram (left) and absolute value

representation of (25) (right).
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representation is to have also the phase shown. As smaller the dimensionless damping ξ1

become, as larger becomes the scaled resonance at the dimensionless frequency ration Ω.

2.2. Linear two degree of freedom systems (2DoF systems)

In this section, a linear basepoint excited two degree of freedom systems is discussed. The

lumped parameter model for the examined system (Figure 5) consists of two linear oscillators

with mass m1 and m2, damping factors d1 and d2, linear springs with spring rates k1 and k2 and

an external basepoint excited harmonic force with amplitude y0(t). System coordinate origin is

placed at the basepoint excitation.

T ¼
1

2
m1 y1

02 þ
1

2
m2y2

02 (26)

U ¼ m1 ɡ y1 þm2 ɡ y2 þ
1

2
k1 y1

2 þ
1

2
k2 y2 � y1

� �2
(27)

Fd ¼ d1 y1
0 þ d2 y2

0 (28)

F0 ¼ m1 þm2ð Þ
d2

dt2
A cos ωtð Þ ¼ � m1 þm2ð ÞAω2 cos ωt (29)

Applying the Lagrangian formalism (1) and (2) to this 2DoF problem, we obtain the coupled

DE system shown in (30) and (31).

m1 y1
0 0

þ d1y
0
1 þ k1y1 � k2 y2 � y1

� �

þm1g ¼ m1 þm2ð ÞAω2 cos ωt (30)

m2 y2
0 0

þ d2y
0
2 þ k2 y2 � y1

� �

þm2ɡ ¼ 0 (31)

DE system shown in (30), (31) is represented dimensionless in equation DE system (32), (33)

using the dimensionless parameters of (34), (35).

Figure 5. Linear 2DoF spring mass damper model of a resonant harmonic basepoint excited oscillator.
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u
0 0

τð Þ þ 2ξ1u
0 τð Þ þ u τð Þ þ λmΩ0

2u τð Þ � λmΩ0
2v τð Þ þ ϱ ¼ Ω

2 cos τΩð Þ (32)

v
0 0

τð Þ þ 2ξ2Ω0v
0 τð Þ þΩ0

2v τð Þ �Ω0
2u τð Þ þ ϱ ¼ 0 (33)

Similar to dimensionless parameters of (17), (18), the dimensionless time τ, a dimensionless

system resonance frequency Ω, damping factors ξ1 and ξ2, a gravity offset term ϱ, system

resonance frequencies of each oscillator ω1 and ω2 plus a mass ratio λ_m and an oscillator

frequency ratio Ω0 plus dimensionless displacements u and v.

τ ¼ t ω1;Ω ¼
ω

ω1
;ω1

2 ¼
k1
m1

;ω2
2 ¼

k2
m2

; ξ1 ¼
d1

2 m1 ω1
; ξ2 ¼

d2
2 m2 ω2

;Ω0 ¼
ω2

ω1
;λm ¼

m2

m1
; ϱ ¼

ɡ

A ω1
2

(34)

path u τð Þ ¼
y1 tð Þ

A
and path v τð Þ ¼

y2 tð Þ

A
(35)

The frequency response of this coupled oscillator system can again be obtained using the

Laplace transformation introduced in (21). The system in the frequency domain is shown in

(36) and (37) using the same steps as shown in the SDoF system (22)–(25).

U sð Þs2 þ 2ξ1U sð ÞsþU sð Þ 1þ λmΩ0
2

� �

� λmΩ0
2V sð Þ þ ϱ ¼ s2Y0 sð Þ (36)

V sð Þs2 þ 2ξ2Ω0 V sð Þsþ V sð ÞΩ0
2 �U sð ÞΩ0

2 þ ϱ ¼ 0 (37)

As (36) and (37) represent two algebraic equations, U(s) and V(s) can be separated, resulting in

(38) and (39). Note that the gravity term ϱ in the numerator will introduce an additional

damping of the transfer function.

U sð Þ ¼ �
�ρλmΩ0

2 þ s2 þ 2sξ2Ω0 þΩ0
2

� �

�ρþ s2Y0 sð Þ
� �

λmΩ0
4 � s2 þ 2sξ2Ω0 þΩ0

2
� �

1þ s2 þ 2sξ1 þ λmΩ0
2

� � (38)

V sð Þ ¼
�ρ 1þ s2 þ 2sξ1 þ 1þ λmð ÞΩ0

2
� �

þ s2Ω0
2Y0 sð Þ

s4 þΩ0
2 þ 2s3 ξ1 þ ξ2Ω0ð Þ þ 2sΩ0 ξ2 þ ξ1Ω0 þ λmξ2Ω0

2
� �

þ s2 1þΩ0 4ξ1ξ2 þΩ0 þ λmΩ0ð Þð Þ
(39)

Figure 6 depicts the relative oscillation response in the frequency (left) and time domain (right) of

the derived 2DoF system. The frequency response is given as a dimensionless ratio Ω, see also

(34). The dimensionless simulation parameters have been set exemplarily to ξ1 = ξ2 = 0.021, λm =

0.42 andΩ0 = 1. As we have two resonators with same system frequencies ω1 ¼ ω2 ¼ 169 rad
s , two

resonances will occur.This system reaches resonances at 0.71 Ω (19Hz) and at 1.41 Ω (38Hz) for

Ω0 = 1 and 0.82 Ω and at 6.1Ω forΩ0 = 5 (dashed lines).

The time-domain response from this coupled DE system with lumped parameter model

Figure 5 and (32) and (33) is shown in Figure 7. On the left-hand side, the ^dimensionless

basepoint acceleration signal is given and its dimensionless response signals of first (blue) and

second (red) DoF, simulating 50 periods and starting with settled initial conditions (amplitude
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of by1start < 1μm and by2start < 1μm). The main simulation parameters are shown in the heading,

a variant of this setup using nonlinear springs is given in the appendix A.3.

3. Nonlinear resonance systems

In the introduction, Section 1, we distinguished three cases of vibration. The class forced

excitation will be further investigated in this section. In Figure 8 five systems are depicted that

can potentially exhibit parametric resonance effects. The term parametric means that of cases

where the external excitation appears as a time varying modification of a system parameter. A

“normal” forced excitation system whether linear or nonlinear, will respond to the excitation

Figure 6. Bode diagram of a linear 2DoF system represented by (38) and (39) (left); first oscillator with mass m1 in blue

and second with m2 in red with Ω0 = 1 and Ω0 = 5 (dashed lines) and constructed frequency response using time domain

signals (right).

Figure 7. Numerical simulation results of the linear basepoint excited 2DoF system shown in (32) and (33) using a

constant acceleration of 0.5g and a basepoint excitation of ω = 25 Hz.
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with or without resonance using the energy fed into it and no time varying modification of a

system parameter might excite additionally the system.

The five depicted systems in Figure 8 might show an exponential amplitude growth when

excited externally in presence of a system damping factor. In the two electrical systems on the

right-hand side, any of the three components R (here not drawn), L or C that is parametrically

excited will respond with an exponential amplitude growth, if the mathematical physical

system model has at least one degree of freedom of the Mathieu DE (40) or the Hill DE (41).

q
0 0

þ q aþ b cos Ωtð Þ ¼ 0 (40)

The Hill differential equation is a generalized form of (40), in which the harmonic function is

replaced with any periodic function, shown in (41).

q
0 0

þ q aþ f p tð Þ
� �

¼ 0 (41)

It is most interestingly that any system parameter including also damping factors with time

varying influence of a system parameter will result in an exponential growth of the response

amplitude. To give a concrete example of this behavior, we consider here the example from

Section 3.2 and inspect the resulting (dimensioned) DE system with (62) as primary system

and (63) as secondary system of such a behavior.

The primary system has no such configuration, but the secondary system (63) is of Mathieu

type. To simplify the treated system, we use instead of the basepoint excitation y0 the primary

system y, compare also the lumped parameter model in Figure 12 (in an experiment we would

simply make the stiffness k of the system very large, for example, replacing the spring with a

fixed stiff rod). Now the new induced basepoint excitation y will excite the secondary system

directly. As y is appearing in (63) as acceleration, we adjust this basepoint excitation simply in

form of an acceleration (42).

y ¼ A cos ωtð Þ ! y
0 0

¼ A ω2 cos ωtð Þ (42)

Writing (63) as an acceleration DE (dividing by m2 l) and inserting it the acceleration of (42), it

is read (43).

Figure 8. Examples of physical systems exhibiting potential parametric resonance effects, adapted after [2].
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l ϕ
0 0

þ
D

m2 l
ϕ
0 þ ɡ sin ϕþ A ω

2 cos ωtð Þ sin ϕ ¼ 0 (43)

Rearranging the terms and setting sinϕ ffi ϕ, we get (44), which is a Mathieu type DE with

parameters a ¼ g
l and b ¼ � A ω2

l .

ϕ
0 0

þ
D

m2
ϕ
0 þ sin ϕ

ɡ

l
þ
A ω2

l
cos ωtð Þ

� �

¼ 0 (44)

For generating parametric resonances, the (natural) system frequency needs to be coupled with

the excitation frequency ω. Using the same nomenclature as in (64),we define the pendulum

system frequency ω2
2 ¼ g

l. For generating parametric resonances for which the angle ϕ(t) is

growing exponentially, a frequency ratio ω : ω2 = 1 : 1 is sufficient (as well as the ratio

ω : ω2 = 2 : 1), see also left-hand side of Figure 9. In case of letting the displacement term be

Figure 10. Response signals of a parametrically excited pendulum examining DE (47) with keeping damping term D = 0,

l = 108.1 mm, A = 100 mm and ω1 = 10 rad.

Figure 9. Nonlinear single degree of freedom (SDoF) spring mass damper model of a resonant harmonic basepoint excited

oscillator.
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harmonic (left-and right-hand side of Figures 9), the frequency ratio must be very close to a 2:1

ratio to have a large amplitude response. The ratio tolerance for having a large growth has a

band width of ca. 1 rad to keep a large amplitude growth going.

Note that the response signal in orange on the left-hand side of Figure 10 is using an approx-

imated linear displacement function sin(ϕ(t)) ! ϕ(t) and is scaled down by factor 10�4.The

generated beat frequency signal is obtained using the exact harmonic displacement function.

3.1. Nonlinear single degree of freedom systems

Similar to the case in Section 2.1, also a SDoF system will be discussed, but this time a linear

and a nonlinear spring will be present. The nonlinearity of this spring shall have the form

shown in (3) having a nonlinear exponent n = 2 and k3 > 0 , a parameterization like that is

generally used for a magnetic spring (see also top middle sketch in Figure 1 and appendix

A.1). The lumped parameter model for the examined system (Figure 10) consists beside this

spring system with linear spring rate k1 and nonlinear spring rate k3 of an oscillator mass m, a

viscous damping factor d and an external basepoint excited harmonic force with amplitude

y0(t). System coordinate origin is placed at the basepoint excitation.

The elastic energy of this nonlinear spring system with n = 2 will lead to the following spring

energy, see also derivation in (4).

Eelastic yð Þ ¼
1

2
k1y

2 þ
1

4
k3 y

4 (45)

Adding up all kinetic energies and all potential energies, disturbances in form of a viscous

damping and a basepoint excited force is given in (46)–(49).

T ¼
1

2
m y0

2
(46)

U ¼ m g yþ
1

2
k1 y

2 þ
1

4
k3 y

4 (47)

Fd ¼ d y0 (48)

F0 ¼ m
d2

dt2
A cos ωtð Þ ¼ �mAω2 cos ωt (49)

Applying the Lagrangian formalism (1) and (2), we deal again with a SDoF system, will lead to

the resulting DE shown in (50), similar to the result derived in Section 2.1 – but here we have

now introduced a nonlinear spring system.

m y
0 0

þ d y0 þ k1yþ k3y
3 þmɡ ¼ mAω2 cos ωt (50)

Introducing dimensionless notation, by using a dimensionless time τ , a dimensionless system

resonance frequencyΩ, the damping factor ξ1 and the gravity offset term ϱ (51) and setting the

dimensionless displacement u (52).
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τ ¼ t ω1;Ω ¼
ω

ω1
;ω1

2 ¼
k1
m
; β ¼

k3
k1

A2; ξ1 ¼
d

2 m ω1
; ϱ ¼

ɡ

A ω1
2

(51)

path u τð Þ ¼
y tð Þ

A
(52)

By replacing parameters of (50) with (51), (52) we obtain (53), including the dimensionless

gravity term ϱ as well.

u
0 0

þ 2ξ1u
0 þ uþ βu3 þ ϱ ¼ Ω2 cos Ωτð Þ (53)

DE (53) is nonlinear, as we have also a path dependent function to the power of 3 and a

dimensionless factor β which is generally small. If this factor β is positive, we deal with a

nonlinear spring hardening system, if β is negative, it is a spring softening system. Unfortu-

nately, such a system cannot be examined using the Laplace or Laplace-like transformation,

such as [6], as this transformation can deal only with linear functions, respectively, nonlinear

quadratic functions. For solving this nonlinear so-called Duffing DE, there are several methods

available, such as averaging method or the harmonic balancing method. The averaging

method assumes that a solution of the DE can be obtained using harmonic functions In Ref.

[7], chapter 9.3, a general solution for nonlinearity terms with a positive integer exponent βun is

obtained using the averaging method. Another method to get analytic solutions is, as said, the

harmonic balance method, which is well explained in the textbook [8], chapter 2.3.4; the DE

case of (53) is discussed in the same book, chapter 4.1 and there are many research papers to

discuss this nonlinear DE, see for example [9, 10]. Note that this case is of nonlinear nature, as

it includes the nonlinear term βu3, but cannot exert parametric resonance. However, there are

also many research papers where such nonlinearities coupled with a Mathieu DE are

discussed, see for example [11].

The depicted Figure 11 shows simulation results of DE (53). The time domain behavior (top

left) and its dimensionless phase space behavior (top right) is shown with simulating 50

periods with settled initial conditions (amplitude of by < 1μmÞ. The top row depicts one

simulation point in the bottom row, where a frequency sweep has been done, sweeping the

basepoint excitation from ω = 5…40Hz and keeping the acceleration signal constant at 0.5 g.

To make sure that only non-transient amplitudes are selected to create the frequency

response, only in the last 5 periods (out of 50) the maximal and minimal value is selected).

The top row is using a constant angular excitation of 25 Hz and depicts only one simulation

point of the generated frequency response. The main simulation parameters are shown in the

heading, a variant of this simulation is given in the appendix A.3. Note the shown simulated

data are taken from a validated electromagnetic SDoF vibration energy harvester system by

the author.

3.2. Nonlinear two degree of freedom systems

Let us consider the lumped parameter model in Figure 12. A pendulum with a stiff rod of

length l and mass m2 suspended on a spring damper system with mass m1 and stiffness k and
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Figure 11. Numerical simulation results of the nonlinear basepoint excited SDoF system shown in (53) using a constant

acceleration of 0.5 g and a basepoint excitation ofω = 25Hz (top row) and its sweep behaviorω = 5…40Hz (bottom row).

Figure 12. Nonlinear two degree of freedom (2DoF) spring mass damper model.

Resonance146



damping factor d. Mass m1 can move only in the depicted y direction and pendulum only in

the X-Y plane.

Governing equations are derived using again the Lagrange formalism. Considering the frame

of reference at the origin shown in Figure 12 and defining in Cartesian coordinates first the two

degrees of freedom vector ry and rϕ (54).

ry ¼
0

y tð Þ

� �

and rϕ ¼
l sin ϕ tð Þ

y tð Þ � l cos ϕ tð Þ

� �

(54)

The kinetic energy for both degrees of freedom are shown in (55, 56).

Ty ¼
1

2
m1

d

dt
ry:x

� �2

þ
d

dt
ry:y

� �2
 !

¼
1

2
m1 y0

2 (55)

Tϕ ¼
1

2
m2

d

dt
rϕ:x

� �2

þ
d

dt
rϕ:y

� �2
 !

¼
1

2
m2 l

2 cos ϕð Þ2ϕ02 þ
1

2
m2 y0 þ l sin ϕ ϕ

0ð Þ
2

(56)

The potential energies derived from the same vectors lead to (57) and (58).

Uy ¼ m1ɡ yþ
1

2
k y2 (57)

Uϕ ¼ m2ɡ y� l cos ϕð Þ (58)

The Lagrange energy function L becomes:

L ¼ Ty þ Tϕ � ðUy þUϕÞ (59)

The viscous friction for both degree of freedoms is given in (60) and the basepoint excited

driving force is given in (61).

Fdy ¼ d y0 and Tdϕ ¼ D ϕ
0 (60)

F0 ¼ � m1 þm2ð Þ
d2

dt2
A cos ωtð Þ ¼ m1 þm2ð ÞAω2 cos ωt (61)

Applying the Lagrange formalism (2) for both degrees q1 = y and q2 = ϕ lead to the coupled DE

system of (62), (63), representing a force DE respectively a torque DE. On the right-hand side of

those DE's, the defined viscous frictions of (60) and the basepoint excitation (61) is present.

m1 þm2ð Þy
0 0

þ ɡ m1 þm2ð Þ þ kyþ lm2 ϕ
02 cos ϕþ ϕ

0 0

sin ϕ

� �

¼ �d y0 þ F0 (62)

m2l
2
ϕ

0 0

þ ɡlm2 sin ϕþ lm2y
0 0

sin ϕ ¼ �D ϕ
0 (63)

The parameters for non dimensionalization are given in (64, (65). Note that the reference

system frequency ω1 is set to the 1. DoF (also called primary, the mass spring system) and the
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second system frequency ω2 to the 2. DoF (the pendulum – also called secondary system). The

excitation frequency is associated to ω.

τ ¼ t ω1;λm ¼
m2

m1 þm2
¼

m2

m
;Ω ¼

ω

ω1
;ω1

2 ¼
k

m
;ω2

2 ¼
ɡ

l
;Ω0

2 ¼
ω2

2

ω1
2
;λl ¼

l

A
;

ξ1 ¼
d

2 m1 ω1
; ξ2 ¼

D

2 m2 l
2 ω2

; ϱ ¼
ɡ

A ω1
2

(64)

path u τð Þ ¼
y tð Þ

A
and angle θ τð Þ ¼

ϕ tð Þ

ϕ0

(65)

u
0 0

þ 2ξ1u
0 þ uþ λmλl θ02 cos θþ θ

0 0

sin θ
� �

þ ϱ ¼ Ω2 cos Ωτð Þ (66)

θ
0 0

þ 2ξ2Ω0 θ
0 þ sin θ Ω0

2 þ λl
�1 u

0 0
� �

¼ 0 (67)

Figure 13 depicts left the excitation (magenta) and the time response signals of y (blue) and ϕ

(red) and its phase space behavior on the right-hand side.The parameters are chosen in such a

way,that the pendulum starts rotate.The excitation primary system has a resonance ratio of

ω : ω1 = 1 : 1 and secondary primary frequency ratio is ω2 : ω1 = 2 : 1. The stability of such a

pendulum is described in chapter 4.4 of [7], where so called semi trivial and nontrivial solu-

tions for this system are discussed.

A treaty of such a system, a kinetic energy harvesting device, with additionally a nonlinear

spring system on the primary and an electromagnetic harvester on the secondary system is

given in Ref. [12]. Note that the derivation of the system equations there have been made

without the Lagrangian formalism and the found system equations are equivalent.

Figure 13. Numerical simulation results of the nonlinear basepoint excited 2DoF system shown in (66, 67) using a

constant acceleration of 0.2 g and a constant basepoint excitation of fexc = 22.22 Hz.
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4. Conclusions

In the introduction, we showed the equivalence of rotary and translatory mechanical systems

as well as the equivalence of mechanical and electrical resonance systems. Also, a brief intro-

duction to the Lagrangian formalism is given. In preparation to nonlinear resonance systems,

also rotational and translational springs are discussed. Three classes of spring systems have

been identified: linear springs nonlinear symmetric springs and nonlinear asymmetric springs.

Throughout the chapter further readings are proposed.

In Section 2, linear resonance systems with one and two degrees of freedom have been

investigated using basepoint excited systems. Using the Laplace Transformation is most useful

to analyze any linear resonance system with a periodic excitation.

Section 3 deals with nonlinear resonance systems. When in such a dynamical system one of the

resulting DE's is of Mathieu or Hill type, the response amplitude of such a system might grow

exponentially. This is exemplary demonstrated in Section 3.2 identifying the system differential

equations of a basepoint excited two degree of freedom system. Some dynamic properties of

such a system is demonstrated.

A. Appendix

A.1. Nonlinear symmetric spring systems

Using instead of disk magnets ring magnets, strong nonlinearities can be generated. The

following series in Figure A1 depicts a few simulation cases. Some of shown simulation cases

have been validated and proven experimentally.

A.2. Variant of linear 2DoF system

Instead of using linear springs, magnetic nonlinear springs can be used (see also a selection of

such spring characteristics in A.1). Using nonlinear springs and making the system nonlinear

(instead of having only a linear spring term, we have for each spring also a term of the form

β1 u
3 and β2 v

3). The relative response signals of such a system is depicted in Figure A2.

It is interesting, that the relative motion of the 2. DoF is responding with resonance between

19…25.5 Hz.The first degree of freedom has a nonlinear spring hardening behavior, reaching

App = 7.9 mm at 25.5 Hz.

A.3. Variant of nonlinear SDoF system

A created tool by the author in Matlab/Simulink has been used to simulate many basepoint

excited SDoF or nDoF systems with rotational or translational or mixed structures.
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It allows to simulate such systems with constant amplitude or constant acceleration, can

handle hard or soft-impact of the oscillating proof mass(es). In addition, one sided spring

characteristics can be simulated, see also Figure A3 – a feature that is especially interesting in

relation with magnetic springs. Main disadvantage of such one-sided bound springs is the fact,

that they need to be installed upright. The behavior of such a one-sided magnetic spring is

depicted in Figure A3. It has a frequency response similar to a softening spring. The maximal

Figure A1. Spring force behavior of ring magnets using different distances of non-movable magnets.
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amplitude of 3.65 mm occurs at 17.5 Hz (the two-sided classical hardening magnetic spring

reaches an amplitude maximum of 4.3 mm at 27 Hz). Such a spring system could also be

analytically described, by introducing for example continuous piecewise functions.
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Figure A2. Response signals of a 2DoF system using lumped parameter model in Figure 5: Instead of having linear

springs, also nonlinear springs are present.

Figure A3. Response signals of a one-sided bound magnetic spring.
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