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Abstract

The discovery of fullerenes and their production in measurable quantities launched many 
studies about their reactivity and possible applications. Their peculiar structure opened pos-
sibilities for their study, initially replacing carbon atoms with alternative atoms. The surface 
also offers the possibility of attaching several species and the interior of their hollow structure 
represents a challenge because of the possibility of confining elements or molecules that may 
become less stable when attached to the exterior of the cage. These modifications may consid-
erably affect both chemical and physical properties. In this chapter, we propose the encapsula-
tion of 3–10 nitrogen atoms as aggregates inside the C

70
 cage. We also study the structures and 

reactivity indexes and the stabilization conferred as a result of being part of the fullerene. These 
aggregates are mainly of interest because of their possible application as energetic materials.

Keywords: polynitrogen, endohedral fullerenes, Density Functional Theory, reactivity 
indexes, C70, energetic materials

1. Introduction

Over the course of time, carbon materials have become important components not only every-

day aspects of life, but also vanguard research. The enormous diversity concerning their uses 

and applications is constantly increasing, representing an area of constant development. 

Whether as part of a compound or in pure form, carbon has always attracted attention. At 
least in its purest forms, its structural diversity is extremely attractive (Figure 1).

Research on the formation and arrangement of carbon compounds that included long chains 

of this element in interstellar space lead to the discovery of fullerenes in 1985. Subsequently, 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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they were produced in measurable quantities for use in experiments [1–3]. Even though their 

study may have evolved accidentally, insufficient effort has been dedicated to understand-

ing their structure, properties and applications. The best known examples of fullerenes are 
C

60
 and C

70
, both of which consist of 12 pentagons, and only differ concerning the number of 

hexagons in their structure: 20 in the case of the first and 25 in the second. These differences 
result in the C

60
 structure, which is more like a soccer ball and C

70
, which is more like a rugby 

ball (Figure 2). While C
60

 is more often known as a buckyball, the rest of the hollow structures 

are inscribed to the general fullerene group.

1.1. Types of fullerenes

Research into fullerenes has been extremely diverse, but can be categorized according to the 
structural aspect to be studied. Correspondingly, we have the following: exohedral fullerenes 
(with external ligands or molecules), endohedrals (with internal atoms or molecules) and het-
erofullerenes (with one or more carbon atoms in the cage replaced by heteroatoms).

Exohedral fullerenes have essentially resulted from efforts to “decorate” the surface of the fuller-

enes; mainly achieved by means of chemical functionalization. These types of fullerenes have 
proved to be extremely interesting, both for medical applications and for their possible applica-

tions in material sciences [4–8]. With respect to heterofullerenes, the substitution of carbon atoms 

by boron, nitrogen and silicon has been proposed; in the case of the first two, these have regularly 

Figure 1. Allotropic forms of carbon. From left to right and up to down, diamond, graphite, nanotube and fullerene.
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been as -BN- pairs, thus ensuring that isoelectronic species are obtained, although this has not 

necessarily been the only purpose; in the case of silicon, the main motive has been to search for 

useful applications in electronics [9–21]. Last but not least, endohedral fullerenes exist because 
of the fact that they are hollow; so they have the potential application of confining or protecting 
molecules, thus acting as carriers or stabilizers. Particularly, those with metallic atoms inside 
them—endohedral metallofullerenes—have been attractive for chemistry, physics and interdis-

ciplinary areas, such as materials and biological sciences [22–25].

1.2. Polynitrogenated materials

Considerable interest in nitrogen compounds has emerged, especially those with a high con-

tent of this element, because of their particular properties and forms. Apart from the previously 
known molecular nitrogen (N

2
), little was known of species with higher nitrogen content, until 

the synthesis of the azide anion (N
3

−) [26]. However, over time, new polynitrogenated species 

such as N
3
, N

4
, N

5

− and N
5

+ have been discovered or posited, whose synthesis has either repre-

sented a challenge or turned out to be surprisingly simple [27–30]. In spite of this, until now, 
the species with the highest content of nitrogen produced in measurable quantities has con-

tained 5 nitrogen atoms, meaning that in particular the cyclopentazole anion could be consid-

ered as a motivator for theoretical studies on its formation, as well as representing a building 

block towards more complex structures [31–35]. As species with higher nitrogen content have 
proved to be very unstable with respect to decomposition to N

2
, theoretical studies have out-

numbered experimental ones. Of these, it has been determined that the preferred forms of N
4
 

and N
6
 are acyclic, N

8
 must be formed from an azide-pentazole (N

3
–N

5
) and that more  complex 

Figure 2. Comparison of C
60

 fullerene with a soccer ball and C
70

 with a rugby ball.
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polynitrogens may exist such as N
7
, N

12
, N

18
, N

20
 and a great etcetera [36–42]. Considering 

larger structures, there is no doubt that polyhedral or fullerene-type structures have provided 

inspiration, as they are considered as alternative polynitrogenous arrangements with a greater 

number of nitrogen atoms [18, 19, 21, 41, 43–47]. In this sense, a hollow structure could in prin-

ciple be useful for storing internal molecules, which is why it is common to find hollow carbon 
structures as candidates for confining polynitrogenous species. Currently, the most notable 
examples have been studies of N@C

60
, N@C

70
 or even N

2
@C

60
 [48–52], which have extended 

the use of the C
60

 cage as a way of confining up to 16 nitrogen atoms [53, 54]. Also recently, the 
encapsulation of a polymer nitrogen chain in a carbon nanotube was conceived, as in principle 

this could be stable up to room temperature [55]. This contrasts with other proposed polyni-

trogenated phases of nitrogen that have been inspired by the analogy to phosphorus and arse-

nic, all superior in energy to the “cubic gauche” (CG). These have been proposed for extreme 
conditions and some experimental evidence has even been found for them [56–61]. Therefore, 

confinement represents an alternative for the stabilization of polynitrogenated species that are 
not necessarily related to high temperatures and pressure.

As our work group has studied fullerenes and their reactivity [7, 16, 62–65] and it has been 

proposed that C
60

 might be an ideal candidate for trapping nitrogen by a polymer [53, 54], the 

intention now is to show that C
70

 might also be an alternative way of storing polynitrogenous 

species, contributing to the development of new materials in the future.

2. Methodology

Initiating with considerable structural diversity, we calculated and modeled endohedral 
fullerenes; N

n
@C

70
 (n = 3–10). For this, we used the C

70
 structure that corresponds to the iso-

mer from this composition and complies with the isolated pentagon rule, IPR. The Avogadro 
visualizer was used as an auxiliary [66]. Given the considerable number of possible isomers, 
we determined the minimum energy structures in two stages. Initially, we obtained the geom-

etry optimizations for all molecules, using the PM6 method [67]. To ensure that the global 

minimum for each composition has been identified, the use of search algorithms, such as 
those inspired by genetic algorithms, is essential, but this is currently beyond the scope of this 

type of system. However, the diversity of proven structures inspires confidence in our deter-

mination of the most important and representative species. Subsequently, both the geometry 

and the electronic structure were refined for the lower energy isomers of each composition. 
Likewise, the calculation of vibrational frequencies was undertaken in order to corroborate 

that the stationary points located on the potential energy surface correspond to a minimum 

(NImag = 0). All this was undertaken using the hybrid functional B3LYP with the base set 
6-311G [68, 69]. As the structures of the polynitrogen species in free state may differ according 
to charge, this factor was also evaluated, determining the structures for the isomers neutral, 

cation and anion. All calculations were performed using the Gaussian09 program [70].

We also calculated ionization energies (IE) and electron affinities (EA). These were therefore 
calculated to reveal the following energy differences: IE = E

cation
 − E

neutral
, EA = E

neutral
 − E

anion
.
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Chemical potential was computed by conceptual Density Functional Theory approximation. 
For an N electron system with an external potential v(r) and total energy E, electronegativity 
is defined as the partial energy derivative to the number of electrons at constant potential and 
then by the definition of Mulliken as the mean of IE and EA and the negative of electronega-

tivity is the molecular chemical potential, μ:

  μ = − χ =   (  ∂ E ___ ∂ N  )   
ν (r) 

   ≈ −   IE + EA ______ 
2
    (1)

Chemical hardness was calculated as defined by Parr and Pearson [71], differentiating the 
chemical potential to the number of electrons, also at constant energy potential:

  η =   (   ∂   2  E ____ ∂  N   2 
  )   

ν (r) 
   ≈   IE − EA ______ 

2
    (2)

Energies were also obtained for the stabilization reactions for polymer species within the 
C

70
 structure, applying the formula: ∆E = ΣE(products) − ΣE(reagents) for two possible schemes. In 

the first, the stabilization of isolated nitrogen atoms could be analyzed through the reaction 
nN + C

70
  N

n
@C

70
. In the second scheme, the reagents are substituted with nitrogen as found 

in standard state (N
2
) or detected in experiments (N

3
−, N

5
−, etc).

3. Results

It was previously reported that the methodology consisted of an optimization at the PM6 
level. As the refinement and electronic structure were performed at the B3LYP/6-311G level, 
they are presented exclusively in the following.

For the majority of the structures obtained, neutral and charged species correspond to the 

same arrangement. In cases where it is not observed, it will be mentioned in due course.

3.1. Nn@C
70

 structures and reaction energies

N
3
. The minimum energy structure corresponds to a linear and centered N

3
, which shows 

the same structure in charged and neutral systems, see Figure 3. There is also found a second 

stable structure that may closely resemble the association between the N
2
 molecule and an 

“isolated” nitrogen atom. The difference in the relative energies exceeds 40 kcal/mol, leading 
us to assume that the linear isomer encapsulated in C

70
 would predominate, if it was ever pro-

duced. Distances between nitrogen atoms (1.20 Å) suggest a weaker bond than that observed 
for N

2
 (1.11 Å).

Reaction energies were calculated based on various assumptions. First, it is considering only 

the stabilization due to the encapsulation of nitrogen atoms as reagents. Second, considering 
structures that can be found at room temperature as starting materials (Table 1).

The 3N + C
70

 → N
3
@C

70
 reaction was used to evaluate the role of the C

70
 box for the stabilization 

(or not) of 3 isolated nitrogen atoms, compared to placing them within the cage in polymer 
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form as N
3
. Apparently reactions are energetically favored. This energy difference is also high-

est for the cation, followed by the anion and finally the neutral (Table 1).

We evaluated energy differences for the reactions presented, while attempting to evaluate 
the role of the box, when initial material consisted of existing structures (such as N

3

− and N
2
, 

rather than isolated nitrogen atoms). Evidently, as is stated in Table 1, the cation has lower 

∆E energy. This molecule would be the most viable option at the time of the reaction, as the 
carbon cage would effectively stabilize the nitrogen polymer. Similarly, fullerene C

70
 is able to 

stabilize and cage the anion polynitrogen, as it also has a negative ΔE value. Contrastingly, in 
the case of the neutral structure, this is not predicted as a favorable reaction. In spite of this, 
stabilization of N

2
 + N in the C

70
 cage is favorable (∆E = −60.44 kcal/mol).

N
4
. We analyzed structures consisting of two pairs of N

2
 molecules, Figure 3, in almost parallel 

positions (with an approximate distance of 2.67 Å between the two N
2
 pairs). An arrangement 

very similar to the neutral one was observed for the charged systems. Unstable structures for 

charged systems were also found, as in essence they could almost be considered as 4 atoms 

with no obvious interacting link.

The stabilization of arrangements of 4 nitrogen atoms in the cage was evaluated in terms of 
reaction energy, results for which are shown in Table 1. Evidently, the encapsulation would be 

Figure 3. Structure of N
n
@C

70
, where n = 3–10, endohedral fullerenes, calculated using the B3LYP/6-311G method.
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energetically favored. Similar to that observed in the previous isomer, it is predicted that the inter-

action with the cationic system would be greater than with the anionic or with the neutral one.

Analyzing encapsulation reactions initiating with different materials (such as N
2
, neutral and 

charged), evidently the neutral one is not predicted to be energetically favorable. This would 

lead to a structure which could be very interesting for possible high energy density mate-

rial (HEDM) applications, a field where metastable compounds and single nitrogen-nitrogen 
bonds are encouraged. However, the distance between nitrogen atoms (1.11 Å) is character-

istic for a triple bond, which discards (at least in principle) this structure as a candidate. For 
charged systems, the reaction energy is favorable. This gives an idea of the role played by the 

C
70

 cage in general, as it stabilizes systems with higher charge density.

Nn@C
70

Anion Neutral Cation

For n = 3 2N + N− + C
70

 → N
3
@C

70
− 3N + C

70
 → N

3
@C

70
2N + N+ + C

70
 → N

3
@C

70
+

−495.82 −383.89 −544.51

N
3
− + C

70
 → N

3
@C

70
− 1.5N

2
 + C

70
 → N

3
@C

70
N

3
+ + C

70
 → N

3
@C

70
+

−39.13 101.29 −106.97

For n = 4 3N + N− + C
70

 → N
4
@C

70
− 4N + C

70
 → N

4
@C

70
3N + N+ + C

70
 → N

4
@C

70
+

−678.69 −606.42 −764.55

N
2
 + N

2
− + C

70
 → N

4
@C

70
− 2N

2
 + C

70
 → N

4
@C

70
N

2
 + N

2
+ + C

70
 → N

4
@C

70
+

−69.85 40.49 −145.73

For n = 5 4N + N− + C
70

 → N
5
@C

70
− 5N + C

70
 → N

5
@C

70
4N + N+ + C

70
 → N

5
@C

70
+

5 N-a −764.51 −652.59 −814.12

5 N-b −745.26 −646.04 −804.31

5 N-a N
5
− + C

70
 → N

5
@C

70
− 2.5N

2
 + C

70
 → N

5
@C

70
2N

2
 + N+ + C

70
 → N

5
@C

70
+

−0.13 156.04 −167.21

5 N-b N
2
 + N

3
− + C

70
 → N

5
@C

70
− N

2
 + N

3
 + C

70
 → N

5
@C

70
N

2
 + N

3
+ + C

70
 → N

5
@C

70
+

34.89 73.75 −43.31

For n = 6 5N + N− + C
70

 → N
6
@C

70
− 6N + C

70
 → N

6
@C

70
5N + N+ + C

70
 → N

6
@C

70
+

−881.66 −807.24 −965.47

2N
2
 + N

2
− + C

70
 → N

6
@C

70
− 3N

2
 + C

70
 → N

6
@C

70
2N

2
 + N

2
+ + C

70
 → N

6
@C

70
+

50.62 163.12 −23.19

N
5
− + N + C

70
 → N

6
@C

70
− N

5
− + N+ + C

70
 → N

6
@C

70
N

3
 + N

3
+ + C

70
 → N

6
@C

70
+

−117.29 −385.00 −131.54

N
3
− + N

3
+ + C

70
 → N

6
@C

70

−255.14

Table 1. Reaction energies due to the encapsulation of nitrogen structures for Nn@C
70

, where n = 3–6, obtained at 

B3LYP/6-311G level of theory.
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N
5
. The geometries for N

5
@C

70
 nitrogen polymers are shown in Figure 3. Captions 5 N-a and 

5 N-b symbolize the optimized structures, noting that 5 N-a represents a cycle of 5 nitrogen 
atoms that is quite similar to cyclopentazole; a system found only as an anion [29, 31]. Distances 

between nitrogen atoms (~1.34 Å) for the cycle suggest a double-like bond. Contrastingly, 
5 N-b isomers essentially consist of two systems; N

2
 and N

3
, separated by approximately 

2.4 Å. We attempted to optimize a structure similar to N
5

+ that was predicted theoretically; 

however, our efforts were in vain, as all the structures presented fragmentation. Distances 
between nitrogen atoms are, for bended N

3
 fragment, 1.19 Å, whereas for N

2
 dimer 1.11 Å.

Geometry acquired by 5 N-a molecule represents the most stable. The energy of neutral 5 N-b 
is 6.5 kcal/mol greater than 5 N-a, which may be considerable, but would not be as difficult 
to achieve under experimental conditions. Likewise, the energy difference between the anion 
and cation systems exceeds 10 kcal/mol, with the cyclic isomers proving the most stable.

The formation energies of the different N
5
@C

70
 isomers were calculated by assuming that 

nitrogen atoms were the material at initiation, indicating at all times that this reaction would 

be favored. The highest value corresponded to cationic species, followed by anionic species 

and finally neutral species. Changing the reagents for other species reveals interesting dilem-

mas. Assuming formation with the pentazolate anion would imply a slightly favored reaction, 
but when substitute for N

2
 + N

3

−, these systems become energetically unfavorable. Although 
this approach might discourage synthesis, it could also act as a motivator, as it would be con-

sidered as metastable and a candidate for high energy material, HEDMs.

N
6
. For N

6
@C

70
, the most favored structure corresponds to the arrangement of three N

2
 mol-

ecules, separated 2.4 Å each of the other (Figure 3). For previous reports of N
6
@C

60
 [53, 54], 

the lower energy structure corresponds to the pot-shaped hexagon, in contrast to that pre-

sented here. We suggest that this difference is due to the larger volume of C
70

 as compared 

to C
60

, which allows a bigger dispersion within the cage. Cyclic structure with boat-shaped 

conformation is found 100 kcal/mol greater in energy than reported here and, therefore, is not 
considered as a possible candidate.

When the reactants are represented by isolated nitrogen atoms, formation energy shows an 

energetically favorable reaction. However, by changing the reactants for N
2
, the prediction 

becomes highly unfavorable. We undertook analysis by changing the reagents, finding that 
when we proposed charged species as reactants, negative formation energies appeared. We 

attribute this mainly to the stabilization of charges by the cage.

N
7
. Of isomers identified in this system, lowest energy consisted of an N

5
–N

2
 partnership, 

similar to that found previously for C
60

 [53, 54]. Other systems involving N
3
 with 2N

2
 or even 

rings of N
7
 proved to be stable but considerably higher in energy (Figure 3). Bond distances 

for nitrogen-nitrogen in the pentagon are 1.31–1.33 Å long, which indicate a double bond. The 
second energy isomer in order (with N

3
 and 2N

2
 fragments) is 28 kcal/mol higher in energy, 

whereas a distorted heptagon N
7
 cycle is about 90 kcal/mol higher. This is an indication that 

the pentagon-N
2
 association would be the only isomer found in a hypothetical experiment.

Reaction energies show that the stabilization of individual nitrogen atoms is favored, whereas 
if the reagents are exchanged for others found experimentally such as N

5

− + N
2
, this would not 
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be the case. Again this presents a possible other use (as HEDM) for this type of molecule. We 
also present alternative reactions with energetically favored schemes, which we essentially 

attribute to the stabilization of charges in the fullerene cage (Table 2).

N
8
. The most stable isomer for this composition consists of the assembly between a hexagon 

and a dimer as two separate units. Bond distances for N─N are around 1.33–1.34 Å, more 
related to a double bond. Likewise, isomers that involve the formation of a distorted—but 

unstable—octagon are found with considerably higher energies, making it possible to ensure 

Nn@C
70

Anion (−) Neutral (0) Cation (+)

For n = 7 6N + N− + C
70

 → N
7
@C

70
− 7N + C

70
 → N

7
@C

70
6N + N+ + C

70
 → N

7
@C

70
+

−979.94 −866.37 −1026.35

N
2
 + N

5
− + C

70
 → N

7
@C

70
− 3.5N

2
 + C

70
 → N

7
@C

70
3N

2
 + N+ + C

70
 → N

7
@C

70
+

107.89 265.72 −55.99

2N
2
 + N

3
−+C

70
 → N

7
@C

70
− N

5
− + N

2
+ + C

70
 → N

7
@C

70

123.67 −148.76

For n = 8 7N + N− + C
70

 → N
8
@C

70
− 8N + C

70
 → N

8
@C

70
7N + N+ + C

70
 → N

8
@C

70
+

−1615.18 −1528.77 −1688.71

N
3
 + N

3
− + N

2
 → N

8
@C

70
− 4N

2
 + C

70
 → N

8
@C

70
3.5N

2
 + N++C

70
 → N

8
@C

70
+

187.33 392.54 70.88

N
3
 + N

5
−
→ N

8
@C

70
− N

5
− + N

3
+ + C

70
 → N

8
@C

70

171.55 −41.48

For n = 9 8N + N− + C
70

 → N
9
@C

70
− 9N + C

70
 → N

9
@C

70
8N + N+ + C

70
 → N

9
@C

70
+

−1046.85 −995.79 −1149.58

N
5
− + 2N

2
 + C

70
 → N

9
@C

70
− 4.5N

2
 + C

70
 → N

9
@C

70
4N

2
 + N+ + C

70
 → N

9
@C

70
+

364.43 459.75 144.23

3N
2
 + N

3
−+ C

70
 → N

9
@C

70
− N

3
− + N

3
++ N

3
 + C

70
 → N

9
@C

70

380.20 −47.35

For n = 10 9N + N− + C
70

 → N
10

@C
70

− 10N + C
70

 → N
10

@C
70

9N + N+ + C
70

 → N
10

@C
70

+

b −1143.41 −981.87 −1192.45

a −1150.42 −996.12 −1184.66

N
3
−+3.5N

2
 + C

70
 → N

10
@C

70
− 5N

2
 + C

70
 → N

10
@C

70
4N

2
 + N

2
++C

70
 → N

10
@C

70
+

a 438.36 621.14 396.74

N
5
− + 2.5N

2
 → N

10
@C

70
−

422.59

Table 2. Reaction energies due to the encapsulation of nitrogen structures for Nn@C
70

, where n = 7–10, obtained at 

B3LYP/6-311G level of theory.
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that this isomer would predominate in an experiment. The nitrogen hexagon shows distances 
that suggest double bonds, ranging from 1.31 to 1.35 Å, whereas for the unstable octagon they 
range from 1.26 to 1.39 Å.

Similarly, the reaction energy from the stabilization of nitrogen atoms shows that this would 
be a favored case, starting with the cation, followed by the anion and finally the neutral. 
Changing the reactants it is found that metastable species would be formed with molecules 

present at laboratory conditions, such as N
2
 and N

5

−. This alternate reaction scheme opens up 

the possibility to produce HEDM candidates.

N
9
. The most favored structure for this encapsulation consists of the assembly formed from 

an N
5
 ring and two dimers parallel to this. Nitrogen-nitrogen bonds for the cycle are very 

similar to the corresponding for similar cycles (1.3–1.33 Å) and the distance to N
2
 is about 

2.29 Å. Qualitatively, it is similar to that found for C
60

, although with considerably greater 

distances [53, 54]. Stable structures involving ensembles formed with N
3
 and 3N

2
 species are 

18.78 kcal/mol higher in energy. The fact that it is preferred a more complex structure instead 
simple ones, indicates us to suggest a more determinant role of the C

70
 cage in the stabiliza-

tion of the structure. The negative values of the reaction energy reflect the stabilization of the 
polynitrogenated species and evidently the reaction is more favored when the system is posi-

tively charged, after which follows the negative system and finally the neutral system. The 
energy difference revealing a positive energy reflects an unfavorable and endergonic reaction, 
although probably with metastable products. Moreover, by exploring other reaction paths to 
obtain the isomers of 9 nitrogen atoms, favorable reactions are obtained.

N
10

. As the amount of nitrogen atoms in the fullerene cage increases, a greater variety of nitro-

gen polymer structures can be perceived. For this system, the neutral minimum corresponds 

to a distorted cycle of 10 atoms, which contrasts with that reported previously for C
60

 [53, 

54]. However, the second energy structure for charged systems (with an energy difference 
not exceeding 8 kcal/mol compared to the most stable) corresponds to that reported for C

60
. 

Bonding distances between nitrogen atoms are 1.23–1.43 Å for the lowest energy isomer and 
1.24–1.48 Å for the second. The formation energy starting from isolated nitrogen atoms shows 
negative values, suggesting stabilization on the part of the box for N

10
, which is highest for 

the cation, followed by the anion and finally the neutral. The formation reaction that initi-
ates from a variety of reagents, such as N

3

−
,
 N

5

− and N
2
, shows positive values, which suggest 

metastable structures.

3.2. Global reactivity indexes

We obtained the following chemical reactivity indexes: ionization potential, electron affin-

ity, as well as electronic hardness and chemical potential and the results are summarized in 
Table 3. For ionization potentials, apparently fullerenes encapsulating 3–8 nitrogen atoms fall 
within a range of 7.4–7.6 eV. Notably, when the fullerenes contain 4 and 6 nitrogen atoms, the 

force with which the nitrogen endohedral fullerenes retain the electrons is slightly greater 

than when encapsulating between 3 and 5 nitrogen atoms. When encapsulating between 7 

and 8 nitrogen atoms, this force tends to be the same, but with 9 nitrogen atoms within the 
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fullerene, this energy increases to 7.81 eV, implying that more energy is required in order to 

remove an electron. Contrastingly, when there are 10 nitrogen atoms within the fullerene 

network, it is easier to remove an electron because the ionization potential decreases. The 
even/odd effect observed in the first clusters may be explained by the resistance of systems 
with closed shell (even number of nitrogens) to be ionized, in contrast to those with an open 
shell (odd number of nitrogens) that contrarily would present a greater tendency to lose an 
electron, resulting in a closed shell.

The odd/even behavior of endohedral fullerenes, on gaining an electron and forming a nega-

tive ion, is also reflected in electron affinity; as apparently when C
70

 fullerenes encapsulate 3, 

5 and 7 nitrogen atoms, the energy released is greater than when 4, 6 and 8 nitrogen atoms 

are caged. Notably, the energy of 8 nitrogen atoms increases to a lesser degree than 4 and 

6 atoms of nitrogen. When encapsulating 9 and 10 nitrogen atoms, the sequence tends to 

change, because higher energy release corresponds to the 10 nitrogen structure and the lower 

energy release corresponds to the 9 nitrogen structure.

In terms of electronic chemical potential, endohedral fullerenes: of 4, 6 and 8 N atoms pres-

ent the highest values for chemical potential, so they tend to accept electrons. Fullerenes of 3, 

5 and 7 atoms have the lowest value, so they can donate electrons more easily. However, on 

reaching 9 and 10 atoms, the sequence changes because the isomer with 9 nitrogen atoms is 

the one that has the highest value of chemical potential than all other values, whereas the one 

with 10 nitrogen atoms has the lowest value of all.

With respect to overall hardness, there is a sequence ranging from 3 to 7 nitrogen atoms 

where the highest hardness values are the even numbers. These, therefore, have the greatest 

resistance for modifying their electronic density. The lowest hardness values correspond to 

the odd numbers of nitrogen atoms. At 8 nitrogen atoms, the sequence changes direction: 
now the odd number of nitrogen atoms is the one that presents the greatest value for global 

hardness, besides being the molecule that is least reactive in terms of hardness. Considering 

the case of N
10

, this structure has the lowest hardness value. Consequently, it can modify 

I A μ η

N
3
@C

70
7.51 4.49 −6 1.51

N
4
@C

70
7.61 2.77 −5.19 2.42

N
5
@C

70
7.47 4.49 −5.98 1.49

N
6
@C

70
7.61 2.87 −5.24 2.37

N
7
@C

70
7.54 4.56 −6.05 1.49

N
8
@C

70
7.54 3.39 −5.46 2.08

N
9
@C

70
7.81 1.85 −4.83 2.98

N
10

@C
70

6.3 6.33 −6.31 −0.02

Table 3. Global reactivity indexes for Nn@C
70

, where n = 7–10, obtained at B3LYP/6-311G level of theory.
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its electronic density more easily, so that it represents the most reactive molecule. Previous 
results for C

60
 encapsulation [53] showed a reduced HOMO-LUMO gap, as the number of 

nitrogens increased: 2, 4, 6, 8, 10. This is somewhat similar to the results for hardness, as one 
of the approximations to this parameter is precisely the HOMO-LUMO gap (Figure 4).

3.3. Analysis of frontier orbitals

Previous studies have mentioned that from 2 to 10 nitrogen atoms, there would be a charge 
transfer from the C

60
 cage to the nitrogen polymer, explained as resulting from the greater 

ionization and electronegativity potential of N compared to C. For more than 10 nitro-

gen atoms, there would be a reverse transfer from the nitrogen to the carbon atoms. This 

was attributed to reduced space availability and overlapping of orbitals [53]. In this work, 
the frontier orbitals of the most stable structures were analyzed, showing that there is an 
appreciable contribution from frontier orbitals to the nitrogen atoms. This implies that 

there must be areas susceptible to receiving charge density. It is especially interesting that 
when the number of N atoms within the fullerene increases, the contribution of Nitrogen-

centered orbitals for LUMO is even greater. Particularly, in the case of N
8
 and higher sys-

tems, a very considerable contribution of HOMO is observed, and a sure indication that 
possible interactions with the cage are initiating. This may also relate to the suggestion 

that greater interaction between the cage and the N
n
 takes place, as the amount of nitrogen 

atoms increases. The reaction energy may also result from this, particularly as it is apparent 

that from N
3
 to N

7
 there is a more or less constant increase of 150 kcal/mol in stabilization 

energy. This reaction energy changes with N
8
 and higher, suggesting greater participation 

on the part of the cage and its interaction with N
n
.

Figure 4. Frontier orbitals for N
n
@C

70
, where n = 3–10, endohedral fullerenes, calculated using the B3LYP/6-311G method.
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4. Conclusions

The C
70

 fullerene is viable for storage and stabilization of nitrogen aggregates of at least 3–10 
atoms, without presenting any concurrent structural deformation in the carbon network or 

obvious interaction (bond-like) between the nitrogen atoms and the carbon of the fullerene.

Evidently, the formation energy from the isolated nitrogen atoms is favored in all cases and 

from N
3
 to N

8
 there is a progressive increase, indicating the role of the cage as an encapsulator 

and stabilizer of polynitrogenous structures. When we propose the formation of endohedral 
fullerenes, initiating with materials that can be found under laboratory conditions, we predict 

that metastable structures will form, a fact that may be of interest in the potential use of these 

materials as HEDMs. The stabilizing contribution of the cage becomes more evident, as the 
number of nitrogen atoms within it increases, manifested in a considerable contribution on 

the part of frontier orbitals as potential charge stabilizers.

As C
70

 fullerene is a large molecule of approximately 1 nm diameter, nitrogen, polymers of 
3–7 nitrogen atoms prefer to remain as nitrogen molecules or as azides. However, from 8 
atoms onwards, the fullerene cage begins to have greater interaction with the nitrogen poly-

mers, reflected in the fact that these begin to compact and create more complex nitrogen 
polymers (in the form of rings).

According to indexes of global chemical reactivity, endohedral fullerenes present an odd/
even behavior that corresponds to that expected for open layer species (odd number of 
electrons: lower ionization potential and hardness, greater electronic affinity and chemical 
potential) and closed layer (even number of electrons: greater ionization potential and hard-

ness, lower electronic affinity and chemical potential). However, for 8, 9 and 10 encapsulated 
nitrogen atoms, there is a change in behavior. This coincides with the change in formation 

energies and the analysis of frontier orbitals, reflecting greater participation of the cage in 
fullerene behavior. The fact that smaller fullerenes have been able to encapsulate more atoms 

is an indication that the point of saturation in this structure has not yet been reached, provid-

ing an incentive to find new structures with greater complexity, as the degree of encapsula-

tion progresses. These would thus constitute candidates for energetic materials and studies 

are ongoing.
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