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Abstract

Interactions of cell with the extracellular matrix (ECM) are crucial for normal develop-
ment and functioning of the human organism. By regulating ECM integrity and composi-
tion matrix metalloproteinases (MMPs) play the main role in ECM molecules signaling 
and influence processes such as proliferation, migration, differentiation and apoptosis. 
ECM remodeling is a highly regulated process. When imbalanced it could contribute to 
pathophysiology of many diseases. The MMPs actions and activity are regulated through 
different mechanisms such as regulation of transcription, activation of latent MMPs, inhi-
bition of MMP function by tissue inhibitors of metalloproteinases. MMPs are a family of 
calcium- and zinc-dependent endoproteinase, which share similar structural domains, 
but differs in substrate specificity, cell localizations and inducibility. Genetic variations in 
MMPs have been associated with a number of diseases, still not all findings are reproduc-
ible. Nine of 23 human genes encoding MMPs are located in a cluster on chromosome 
11, which implicate their haplotype-driven effects. They could be important mediators of 
disease severity and could trigger acute events. In this chapter, we will review the basics 
of MMP biology and the most significant associations of MMPs variations with cardio-
vascular and neurological diseases in humans and MMPs therapeutic potential through 
synthetic inhibitors.

Keywords: MMP structure, MMP activation, MMP regulation, microRNA, MMP inhibitors, 
genetic variations, MMP haplotype

1. Introduction

Matrix metalloproteinases (MMPs) are a family of calcium (Ca2+)- and zinc (Zn2+)-dependent 

proteolytic enzymes involved in physiological as well as in pathological processes in the 

human organism. Initially they were thought to degrade only the extracellular matrix (ECM) 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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components, but nowadays it is well known that they have wider substrate specificity that 
includes non-matrix proteins of which the vast majority are bioactive molecules. Cell-cell 

and cell-ECM interactions are inevitable for normal development and functioning of the 

organism. Various proteinases are implicated in ECM remodeling, but MMPs are playing 
the key role. Remodeling of the tissue is crucial for physiological processes such as devel-
opment, tissue homeostasis, morphogenesis and tissue repair. It could be a part of many 
pathological states such as arthritis, cardiovascular diseases, neurodegenerative diseases or 
part of the impaired development in congenital anomalies [1–4]. By regulating ECM struc-

ture and composition, MMPs are involved in growth factor availability and are playing the 
main role in the function of cell surface signaling systems and in that way influence prolifera-

tion, migration, differentiation and apoptosis [5]. The importance of their role in the physi-

ological functioning of the human organism entails strict regulation of the expression and 

the activity of MMPs. They are regulated through different mechanisms such as regulation 
of transcription, activation of latent MMPs, inhibition of MMP function by tissue inhibitors 
of metalloproteinases (TIMPS) and so on. There is growing evidence that genetic variations 

in MMPs can influence gene expression or protein activity. Nine of 23 human genes encoding 
MMPs are located in a cluster on chromosome 11 (11q22.2–11q22.3) [6], which implicate their 
haplotype-driven effects. It has been shown that MMPs are important mediators of disease 
severity or could trigger acute events. Since they are involved in a wide spectrum of physi-

ological and pathological processes, there is a need for determination of their precise role in 
different tissue and cell-specific context as well as in different stages of disease development 
or progression. Only then the therapeutic potential through the development of the specific 
inhibitors could be accurately implemented. In this chapter, we will discuss the main struc-

tural, substrate and functional properties of MMPs and give a brief review of the genetic 
associations with cardiovascular, neurodegenerative diseases and congenital anomalies in 
humans.

2. Matrix metalloproteinases

MMPs or matrixins belongs to the large family of proteinases called metzincin superfamily. 
Regarding its structural characteristics metzincins are subdivided into five subgroups. Other 
members of this superfamily are adamalysins, including a disintegrin and metalloproteinase 
(ADAMs) and ADAM with thrombospondin-like motif (ADAMTS), astacins, serralysins and 
pappalysins [7]. MMPs are expressed as zinc-dependent endopeptidases and have a wide 

spectrum of biological substrates that are overlapping. There are 24 genes encoding MMPs in 

humans, including duplicated MMP-23 gene. So, there are 23 different MMPs in humans [8]. 

They were named as MMP by the International Union of Biochemistry and Molecular Biology 

and each member of the enzyme family was assigned by a number (MMP-1, -2, -3 etc.) [9]. 

All MMPs contains the Zn2+ binding motif, HEXXHXXGXXH, in their catalytic domain and 
a conserved methionine forming a ‘Met-turn’; are secreted in pro-pre enzyme form; need 

Ca2+ for its stability; function at neutral pH; are inhibited by TIMPs. The MMPs can be and 
are classified in different ways. The most common classification is based on their substrate 
specificity and basic domain structure. According to these criteria MMPs are subdivided into 
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collagenases, gelatinases, stromelysins, matrilysins and membrane type-MMPs (MT-MMPs). 
However, there are MMPs that do not belong to any of this group specifically so they are 
grouped as “others” (Figure 1).

2.1. Structure of MMPs

MMPs domain composition and arrangements are presented in Figure 1. MMPs protein con-

tains at least three homologous domains: signal peptide responsible for protein secretion, pro-
peptide domain containing a consensus cysteine-switch sequence and is needed for activation 

of the enzyme, catalytic domain which contains a zinc-binding consensus sequence and is 
responsible for the proteolytic activity.

Amino-terminal signal peptide is composed of 17–29 amino acids and is responsible for tar-

geting the enzyme to the endoplasmic reticulum and Golgi complex and for the later excre-

tion out of the cell. The most of the MMPs are extracellular proteins except MT-MMPs that 

are bound to the cell surface by a transmembrane domain or glycosylphosphatidylinositol 

anchor.

The next, pro-peptide domain consists of 77–87 amino acids and have conserved ‘cysteine 
switch’ motif. All MMPs except MMP-23 have this motif. The thiol group from the unpaired 
cysteine molecule could bind to the Zn2+ in the catalytic domain, making the pro-MMPs inac-

tive [10]. After the proteolytic cleavage of the bite region of the protein (serine protease, MMPs 
and furin) the pro-peptide domain become destabilized and the interaction between Zn2+ and 

cysteine disrupts which turns zymogens into the active MMP form. The modification of the 
cysteine thiol group with physiological (oxidation) or non-physiological agents (heavy metal 

ions) could lead to irreversible activation of the MMP by autolysis [11].

Catalytic domain contains approximately 170 amino acids and has the highest sequence 

homology between the metalloproteinases. It comprises Zn2+ binding motif HEXXHXXGXXH 
and a conserved methionine, forming a ‘Met-turn’. This domain contains additional Zn2+ and 

Ca2+ ions that maintain the three-dimensional MMP structure needed for MMPs stability and 

enzymatic activity [12]. MMP-2 and -9 also contains three tandem fibronectin II type repeats 
that are responsible for elastin and gelatin binding. Typically in MMPs, carboxy-terminal end 
is linked to hemopexin domain with linker peptide called ‘hinge region’. Hemopexin domain 
consists of about 200 amino acids and modulates substrate recognition. The MMP-7, -26 and 
-23 do not posses hinge region and hemopexin domain. MMP-23 has a unique carboxy termi-

nal domain rich in cysteine and an immunoglobulin-like domain after the C terminus of the 
catalytic domain.

2.1.1. Collagenases

There are three collagenases: interstitial collagenase (MMP-1), neutrophil collagenase (MMP-8) 
and collagenase 3 (MMP-13). Their main characteristic is to cleave fibrillar collagens type-I, -II 
and -III at the specific site of the triple helices, specifically three-fourths from the N-terminus. 
In that way they are making characteristic ¼ and ¾ fragments. Beyond the fibrillar collagens 
they also degrade a number of ECM and non-ECM substrates (Table 1).
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Figure 1. The domain composition and structural features of the MMPs subgroups.
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MMP Collagenous 

substrates

Noncollagenous ECM substrates Non-ECM substrates

MMP-1 Collagen types I, II, 
III, VII, VIII, X and 
gelatin

Aggrecan, casein, serpins, 
versican, perlecan, proteoglycan 
link protein and tenascin-C

α1-antitrypsin/α1-antichymotrypsin, IL-1β, 
latent TNF-α, MCP-1,-2,-3,-4, IGFBP-2, −3, 
SDF-1, VEGF

MMP-2 Collagen types I, IV, 
V, VII, X, XI, XIV 
and gelatin

Aggrecan, elastin, fibronectin, 
laminin, perlecan, proteoglycan 
link protein and versican

IL-1β, Pro-IL-1β, SDF-1, MCP-3, IGFBP-
3, latent TGF-β, latent TNF-α, FGFR1, 
pleiotrophin, CTGF

MMP-3 Collagen types II, IV, 
IX, X and gelatin

Aggrecan, casein, decorin, elastin, 
fibronectin, laminin, perlecan, 
proteoglycan, proteoglycan link 
protein and versican

α1-antitrypsin/α1-antichymotrypsin, IL-1β, 
Pro-IL-1β, MCP-1,-2,-3,-4, SDF-1, IGFBP-1, 
−3, latent TGF-β, latent TNF-α, Pro-HB-EGF, 
osteopontin, VEGF

MMP-7 Collagen types I, II, 
III, V, VI and X

Aggrecan, casein, elastin, 
entactin, laminin and 
proteoglycan link protein

α1-antitrypsin, Pro-HB-EGF, Latent TNF-α, 
syndecan-1, osteopontin, cellular membrane 
bound FasL, VEGF

MMP-8 Collagen types I, II, 
III, V, VII, VIII, X 
and gelatin

Aggrecan and laminin α1-antitrypsin, CXCL5, IL-8

MMP-9 Collagen types V, 
VI, VII, X and XIV

Fibronectin, laminin, 
proteoglycan link protein and 
versican

α1-antitrypsin, IL-1β, Pro-IL-1β, CXCL5, IL-8, 
SDF-1, latent TGF-β, latent TNF-α, IL-2Rα, 
IGFBP-1, VEGF

MMP-10 Collagen types II, IV, 
V and gelatin

Fibronectin and laminin

MMP-11 None known Laminin α1-antitrypsin, IGFBP-1

MMP-12 None known Elastin Latent TNF-α

MMP-13 Collagen types I, II, 
III, IV, V, IX, X, XI 
and gelatin

Aggrecan, fibronectin, laminin, 
perlecan and tenascin

α1-antichymotrypsin, latent TGF-β, latent 
TNF-α, MCP-3, SDF-1

MMP-14 Collagen types I, II, 
III and gelatin

Aggrecan, dermatan sulfate 
proteoglycan, fibrin, fibronectin, 
laminin, perlecan, tenascin and 
vitronectin

MCP-3, SDF-1

MMP-15 Collagen types I, II, 
III and gelatin

Aggrecan, fibronectin, laminin, 
perlecan, tenascin and vitronectin

MMP-16 Collagen types I, III 
and gelatin

Aggrecan, casein, fibronectin, 
laminin, perlecan and vitronectin

VEGF

MMP-17 Gelatin Fibrin and fibronectin TNF-α

MMP-19 Collagen types I, IV 
and gelatin

Aggrecan, casein, fibronectin, 
laminin and tenascin

VEGF

MMP-20 Aggrecan, amelogenin and 
cartilage oligomeric protein

MMP-23 Gelatin Chondroitin sulfate, dermatan 
sulfate and fibronectin
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2.1.2. Gelatinases

So-called gelatinase A (MMP-2) and gelatinase B (MMP-9) belongs to this group. Both of 
them have three repeats of a fibronectin type-II motif in the catalytic domain. They degrade 
denaturated collagens as well as native collagens type-IV, -V and -XI. They also denaturate 
gelatins, laminin and aggrecan and number of other ECM molecules. MMP-2, but not MMP-9 
could cleave collagens type-I, -II and -III [13, 14]. Nevertheless, its collagenolytic activity is 
weaker than that of collagenases. Still, because of ability of pro-MMP-2 to recruit to the cell 
surface and to be activated by the MT1-MMP, it can accumulate extracellularly and have 
higher collagenolytic potential locally.

2.1.3. Stromelysins

Stromelysin 1 (MMP-3), stromelysin 2 (MMP-10) and stromelysin 3 (MMP-11) belongs to this 
group. Their name reflects the capability of degrading the wide spectrum of ECM proteins. 
MMP-3 and -10 degrade proteoglycans, laminin, fibronectin, vitronectin and some types of 
collagens but not interstitial collagens, whereas MMP-11 has a very weak affinity for ECM 
molecules (Table 1). It is located on chromosome 22, while MMP-3 and -10 are in the cluster 
with seven more genes on the chromosome 11 [6]. MMP-3 has the highest proteolytic effi-

ciency in the group and is capable of activating many other pro-MMPs. It plays the main role 

in full activation of pro-MMP-1 [15].

2.1.4. Matrylisins

The main characteristic of matrylisins is that they lack hemopexin domain. MMP-7 and -26 
belongs to this group. Both of them degrade ECM components, while MMP-7 degrade some 
of the cell surface molecules such as E cadherin, pro-tumor necrosis factor alpha, Fas ligand, 
syndecan 1 and pro-alpha defensin.

MMP Collagenous 

substrates

Noncollagenous ECM substrates Non-ECM substrates

MMP-24 Gelatin Fibrin and fibronectin

MMP-25 Collagen type IV 

and gelatin

Casein, fibrinogen and 
fibronectin

MMP-26 Collagen type IV 

and gelatin

Casein α1-antitrypsin

MMP-28

MMP, matrix metalloproteinase; ECM, extracellular matrix; IL-1 interleukin 1; TNF, tumor necrosis factor; MCP, 
monocyte chemoattractant protein; IGFBP, Insulin-like growth factor-binding protein; SDF, stromal cell-derived 
factor; VEGF, vascular endothelial growth factor; TGF, tumor growth factor; FGFR, fibroblast growth factor receptor; 
CTGF, connective tissue growth factor; EGF, epidermal growth factor; CXCL5, C-X-C motif chemokine ligand 5; IL-8, 
interleukin 8; IL-2R, interleukin 2 receptor.

Table 1. MMP substrates.
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2.1.5. Membrane-type MMPs

There are six MT-MMPs that are divided into two groups: MMP-14, -15, -16 and -24 belongs 
to the type-I transmembrane proteins, while MMP-17 and MMP-25 are glycosylphosphati-
dylinositol-anchored proteins. All of them have a furin-like proprotein convertase recognition 
sequence and are activated intracellularly. All, but MT4-MMP, can activate pro-MMP2 [16]. 

They degrade ECM molecules, whereas MT1-MMP14 can cleave collagen type-I, -II and -III 
[17] and can activate proMMP-13 on the cell surface [18].

2.1.6. Other MMPs

Seven MMPs belong to this group. Three of them (MMP-12, -20 and -27) have a similar domain 
arrangement and are part of the cluster of nine genes on the chromosome 11 [6]. MMP-12 

is called metalloelastase. It is mainly produced in macrophages [19] but has been found in 

hypertrophic chondrocytes [20] and osteoclasts [21], as well. Besides elastin it degrades other 
ECM proteins and is essential for macrophage migration [22]. MMP-19 is expressed in human 

tissues [23] and degrades basement membrane as well as other ECM molecules [24]. It is 

involved in tissue remodeling and migration of epithelial cells by degrading laminin 5 gamma 

2 chain [25]. MMP-20, enamelysin is expressed in newly formed tooth and degrades amelo-

genin [26]. A mutation in this gene causes genetic disorder called amelogenin imperfecta [27]. 

MMP-21 is expressed in human tissues. It was found in basal and squamous cell carcinomas 

[28]. Annotation of its action toward ECM molecules is still not known. MMP-23 is different 
from other MMPs because it lacks the cysteine switch motif in the prodomain and the hemo-

pexin domain. It posses a cysteine-rich domain which is followed by an immunoglobulin-like 
domain. It is mainly expressed in reproductive tissues [29]. MMP-27 is expressed in B lympho-

cytes [30], but the function of this enzyme in mammals is not known, yet. MMP-28, or epilysin, 
is expressed in many human tissues [31]. It is involved in wound repair [32] and its expres-

sion was elevated in patients with osteoarthritis [33] and rheumatoid arthritis [34]. MMP-28 

overexpression up-regulated MT-MMP1 and MMP-9 in A549 lung adenocarcinoma cells [35].

2.2. Regulation of MMPs

Since they have the potential to degrade ECM and wide spectrum of non-ECM substrates and 

to activate other MMPs or release growth factors, matrix metalloproteinases have been strin-

gently regulated at different levels. They are regulated at a transcriptional and translational 
level, by activation of the zymogen forms, by the extracellular or endogenous inhibitors, by 
subcellular or extracellular localization and internalization by endocytosis.

Cellular expression of MMPs is based on successive activation of multiple signaling pathways 

leading to synergistic effects of more transcriptional factors on the MMP promoter. Some of 
the most important are NF-κB, activating protein (AP)-1 and Sp-1. Recent studies have shown 
that endogenous miRNAs are able to recognize complementary genomic sites within human 
gene promoters, and in that way regulate gene transcription [36, 37]. There are multiple  factors 

that can trigger different signaling pathways modulating MMP gene expression. They could be 
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cytokines, chemokines or growth factors such as Interleukin-1 (IL-1), Interleukin-6 (IL-6), tumor 
necrosis factor alpha (TNF-α), epidermal growth factor (EGF) and platelet-derived growth fac-

tor (PDGF). The expression could also be modulated by reactive oxygen species,mechanical 
injury, shear or tensile stress, contact with cell bound ligands, etc. The expression of MMPs 
could be down-regulated by the anti inflammatory molecules such as nitric oxide (NO), trans-

forming growth factor beta (TGF-β), Interleukin-4 (IL-4), Interleukin-10 (IL-10), interferon-γ 
and peroxisome proliferator-activated receptor (PPAR) (reviewed in Ref. [38]). The cell-cell 

and cell-matrix interactions established through adhesion molecules or integrins also have an 

impact on the MMPs expression [39]. Transcription could be also modified by genetic variation 
within the MMPs gene promoters. In the past two decades, the SNPs identified in the promoter 
of the MMP-1, -2, -3, -7, -9, -12, and -13 genes has been denoted as functional and associated 
with cardiovascular disease phenotypes (reviewed in Ref. [40]).

2.2.1. Activation of MMPs

Almost all MMPs are secreted as an inactive form. One of the mechanism of activation is, ear-
lier mentioned, a ‘cysteine switch’ mechanism where the thiol group of the unpaired cysteine is 
replaced by the water. This mechanism is the first step of the stepwise activation process. It enables 
further pro-peptide hydroxylation of partially activated MMP or other proteases until the final 
step of its removal and activation [41]. Most of the MMPs are activated after the secretion, extra-

cellularly. But the MT-MMPs and MMP-11, -23 and -28 are activated intracellularly. They have a 
furin recognition sequence that allows them to be activated in the Golgi apparatus by pro-protein 
convertase within the secretory pathway [42–45]. One of the most significant activator of MMPs 
in vivo is considered to be a serine protease plasmin [46]. It is shown that it activates MMP-1, -3, -7, 
-8, -9, -10 and -13 [46]. Other serine proteases such as mast cell proteases, chymases and tryptases 
also have the potential to activate pro-MMPs. Human tryptase could activate pro-MMP-3 and 
pro-MMP-1 but the activation of the latter is dependent on the activation of the former [47, 48].

Moreover, once activated MMPs are able to activate other pro-MMPs. For example, MMP-3 could 
activate pro-MMP-1, -7, -8, -9 and -13. Then, activated MMP-7 could activate zymogens pro-
MMP-1, -9 and -13. Pro-MMP-2 and -3 could be activated by MMP-12 as well, while MMP-2 can 
activate pro-MMP-9. So, a very complex network of positive feedback loops exist and it could trig-

ger proteolytic cleavage of the complete ECM (Figure 2). That is why the strict and multilevel regu-

lation of MMPs must exist for the physiological functioning of the human organism. Inactive form 

of MMP-2 has somewhat specific activating mechanism which involves MT1-MMP and TIMP-2 
[49]. Long story short, low or moderate levels of TIMP-2 activate pro-MMP-2 while higher levels 
saturate MT1-MMP and in that way inhibit activation of pro-MMP-2 [50]. Also, it was shown that 
other MT-MMPs (MT2-MMP, MT3-MMP, MT5-MMP and MT6-MMP) can activate pro-MMP-2 
as well [51, 52]. Agents that do not have proteolytic feature, but could activate pro-MMPs, are a 
thiol group modifying agents oxidized glutathione and reactive oxygen species [53].

2.2.2. microRNA and MMP

In the last decade the novelty in the research has emphasized the role of microRNAs (miRNAs) 
on posttranscriptional regulation of the expression. The number of studies that have focused 
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on this step of MMPs regulation is growing. In this chapter, we will briefly discuss the most 
recent studies.

Since MMPs have an important role in the progression, metastatic potential and aggressive-

ness of the cancer, numerous studies have analyzed the MMP regulation by miRNAs in this 
disease. A recent study has investigated miRNA-489 effect on migration and invasion of hepa-

tocellular carcinoma (HCC) cells. They have found that miRNA-489 overexpression reduced 
the expressions of MMP7 mRNA and protein. Additionally, miRNA-489 overexpression 
decreased the luciferase activity of wild type MMP7 3′-UTR but not mutated MMP7 3′-UTR in 

Figure 2. Mutual activation of MMPs.
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HEK293T and HCCLM3 cells. The following rescue experiments suggest that miR-489 inhib-

its the migration and invasion of HCC cells, possibly by targeting MMP7 [54]. Another study 
has analyzed the functional background of miRNA-204-5p association with better prognosis 
in patients with melanoma. miRNA-204-5p is down-regulated in melanoma tissues and cells, 
and confers a protective effect that improves the prognosis of those patients. The binding 
sites of miRNA-204-5p matched the 3′-UTR of MMP-9. Up-regulation of miRNA-204-5p led 
to a decrease in the expression of endogenous MMP-9 and their correlation was negative. The 

authors have demonstrated that MMP-9 is the functional target of miRNA-204-5p in mela-

noma and concluded that miRNA-204-5p inhibits melanoma growth in vivo by regulating the 
expression of MMP-9 [55]. Using computational algorithm programs and chromatin immu-

noprecipitation datasets, Zheng et al. identified neighboring binding sites of myeloid zinc 
finger 1 (MZF1) and miRNA-337-3p within the MMP-14 promoter. They have found higher 
MZF1 and MMP-14 levels in gastric cancer cell lines compared to normal gastric epithelial 

cells. Their research results indicated that miRNA-337-3p significantly decreased the growth, 
invasion and angiogenesis of gastric cancer cells through repressing MZF1-facilitated MMP-

14 expression in vitro, as well as in vivo on animal model [56]. Esophageal squamous cell 

carcinoma (ESCC) is one of the most aggressive cancers with very poor 5 year survival rate. 

The research has revealed that miRNA-375 is downregulated in several types of ESCC and 
that ectopic expression of miRNA-375 suppressed cancer cell aggressiveness in several types 
of cancer cells. The authors have shown significantly upregulated expression of MMP-13 in 
25 ESCC specimens and ESCC cell lines compared with that in 13 normal specimens. They 

revealed that MMP-13 is directly regulated by antitumor miRNA-375 and acts to regulate 
several cell cycle promoting genes having the role in the ESCC aggressiveness [57].

With regard to the cardiovascular phenotypes a recent study has investigated miRNA-
516a-5p in vascular smooth muscle cells (VSMCs) explant cultured from human abdominal 

aortic tissues. They have generated stable overexpression and knockdown of miRNA-516a-5p 
in those VSMCs. The relative MMP-2 protein expression in VSMCs with miRNA-516a-5p-
overexpression was significantly higher than that in control VSMCs while the TIMP-1 lev-

els were significantly lower. When miRNA-516a-5p was knockdowned, the opposite results 
were seen. Additionally, the changes in protein expression of collagen type I alpha 1 chain 

(COL1A1), TIMP-2 and MMP-9 have not been observed in VSMC. The authors suggested that 
miRNA-516a-5p may regulate MMP-2 and TIMP-1 expressions in human VSMCs, possibly 
promoting the proteolytic degradation of elastin for abdominal aortic aneurysm formation. 

[58]. Another study showed that shear-sensitive miRNA-181b binds to the TIMP-3 3′-UTR and 
downregulates it when overexpressed in human aortic valve endothelial cells. Additionally, 
it increases gelatinase/MMP activity. Through specific rescue of TIMP-3, they have clearly 
shown that the decreased matrix degradation results from anti-miRNA-181b treatment [59]. 

The miRNA-155 has been considered to be a pro-inflammatory agent, because its major tar-

get is the suppressor of cytokine signaling-1(SOCS1). It has been linked to pro-atherogenic 
processes in humans, as well. A recent study has shown that the SNP in the angiotensin II 

receptor type 1 AT1R 3′-UTR has significantly changed the miRNA-155 expression in human 
carotid plaques whereas rare allele homozygotes has a significantly higher expression com-

pared to the subjects carrying wild type allele containing genotypes [60]. Also, miRNA-155 
has been reported to participate in cell migration and transformation, but its function in skin 
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wound healing was unknown. Jang et al. have been investigating the function of miRNA-155 
on keratinocytes in wound healing. The results of the study showed that the protein level of 
MMP-2 significantly increased after miRNA-155 overexpression, while the level of TIMP-1 
obviously decreased, whereas the levels of MMP-9 and TIMP-2 did not change. The authors 
concluded that miRNA-155 induced acceleration of keratinocyte migration is mediated at 
least partly through MMP-2/TIMP-1 pathway in the process of wound healing [61].

2.2.3. Tissue inhibitors of matrix metalloproteinases (TIMPs)

There are a lot of physiological inhibitors of MMPs in the organism. However, in tissues they 
are primarily regulated by TIMPs that bind MMPs in a 1:1 stoichiometry. Four mammalian 

TIMPs have been revealed and characterized. They are named TIMP-1, -2, -3 and -4 [62–65]. 

TIMP-1 and -3 are glycoproteins, while TIMP-2 and -4 do not contain carbohydrates. TIMPs 
inhibit all MMPs but TIMP-1 is a poor inhibitor of three membrane-type MMPs (MT1-MMP, 
MT3-MMP and MT5-MMP) and MMP-19 [66].

TIMPs have an N-terminal domain of approximately 125 and C-terminal domain of 65 amino 

acids. Both of these domains contain three conserved disulfide bonds [67, 68]. It is thought 

that the N-terminal domain is responsible for their binding to MMPs [67]. But there are some 

exceptions, C-terminal domain of TIMP-1 is shown to bind pro-MMP-9 [69]. Certain TIMPs 

inhibit different MMPs better than other TIMPs. Additionally, TIMPs do not inhibit only 
matrixins, several studies have shown that they can inhibit adamalysins as well [70, 71]. It has 

been shown that expression of TIMP-1 and -3 could be regulated by cytokines and growth fac-

tors such as: IL-1, fibroblast growth factor 2, platelet-derived growth factor BB, tumor growth 
factor-beta and tumor necrosis factor-alpha [72, 73].

TIMPs exert other functions except inhibition of MMPs. For example TIMP-1 and -2 have mito-

genic activity for different type of cells [74, 75] and both have antiapoptotic activity [76, 77], 
while TIMP-3 has proapoptotic activity in tumor cells [78]. Solely, TIMP-2 is shown to have 
antiangiogenic activity [79].

Several other molecules have been reported to inhibit different MMP-s. The serpine family 
member, alpha2-macrogobulin, can irreversibly inhibit active MMPs in the circulation [80]. 

Secreted form of beta-amyloid precursor protein can inhibit MMP-2 [81]. Reversion-inducing 
cysteine-rich protein with Kazal motif (RECK), a GPI-anchored glycoprotein inhibits MMP-2, 
MMP-9 and MT1-MMP [82].

3. Synthetic MMP inhibitors

The first efforts in developing synthetic MMPs inhibitors were based on a peptide sequence 
recognition of the desired MMP and introduction of the group that chelated its catalytic Zn2+ 

ion. This first generation of the MMP inhibitors was called hydroxamate-based MMP inhibi-
tors. Despite the promising results in animal models regarding their antitumor effects [83–85], 
following clinical studies were unsuccessful [86, 87]. The major concern was unselectivity in 

MMPs inhibition and serious side effects. It became clear that the knowledge of the MMPs 
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activity in different stages of the disease and spatio-temporal expression needs to be followed 
in future development of the synthetic inhibitors of MMPs. Nevertheless, although hydrox-

amate-based MMP inhibitors have not shown the desirable effects the efforts toward their 
improvement had continued.

The second type of the MMP inhibitors that were developed are non-hydroxamate MMP 

inhibitors. The hydroxamate was replaced with other Zn2+ binding groups that were more 

metabolically stable and had higher specificity for MMPs alone. But, again the results were 
not satisfactory, they all had side effects in different stages of trials. From the other hand, tet-
racycline antibiotics have an innate ability to inhibit MMPs. The only inhibitor approved by 

the US Food and Drug Administration for any human disease is collagenase inhibitor doxy-

cycline hyclate, which is a tetracycline analogue [88].

The new approach in synthetic inhibitor development has focused on targeting less conserved 

sites in MMPs compared to the catalytic one. This should enable more specific targeting and 
reduce off-target effects that the clinical trials have shown so far. As a result, inhibitors with a 
much stronger inhibition capacity of target MMPs have been developed [89].

The next alternative strategy has focused on the use of specific antibody fragments. Up to 
date, functional blocking antibodies that specifically target MT-MMPs have been developed. 
What is the most important, it seems that antibodies could target specific function of MMP 
rather than its broad proteolytic activity [90].

Part of the research has investigated the use of endogenous MMP inhibitors as potential thera-

peutics [91]. Nowadays, it is known that TIMPs have many of non-MMPs functions in the 
organism and it is very difficult to make them selective and specific to the target MMP inhibi-
tion. It could be hard to keep the balance between MMPs and TIMPs which could have seri-
ous impact on the overall MMPs activities.

So, there are few important issues to be solved before the efficacious metalloproteinase inhibi-
tors could be made. First of all, there is a need for knowledge of precise MMP functioning and 
activity in cells, tissues and different stages of the disease. Also, their function in maintaining 
the tissue and cell homeostasis should be analyzed in details. An additional concern is their 
overlapping expression patterns and successive activation as well as context-dependent func-

tioning. It seems that they could be good therapeutics for many of diseases, but the designing 
criteria for synthetic inhibitors are very demanding. We should combine refined and validated 
experimental and theoretical knowledge in order to raise the selectivity and specificity of the 
inhibitors toward target MMPs. Another important issue is administration of synthetic MMP 
inhibitors in order to avoid unnecessary toxicity of the inhibitors in the circulation. It would 

be of interest to determine the location (cells, tissue and organ) and temporal framework of 
the adverse MMP activity and develop site-specific delivery systems (detailed review in [92]).

4. MMP genes in human disease

The functions of MMPs are implicated in a variety of diseases, including those of respiratory 
system, central nervous system, liver, kidneys, muscles, and joints as well as the  cardiovascular 
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system [93]. Accordingly, genetic variations in genes that codes for MMPs were investigated 
in many of them, but only the limited number of genetic variations was thoroughly investi-
gated. Herein, we will review mainly the findings of the genetic influence of MMPs in coro-

nary artery disease (CAD), atherosclerosis and neurodegenerative disease.

4.1. Genetic association of variants in MMPs with vascular disease

Among all the MMPs genes only few were repeatedly investigated in a gene candidate asso-

ciation studies. In the year of 1996 and 1999, the two papers that investigated the functional 
role of promoter variants in MMP-3 [94] and MMP-9 [95] gene were published, respectively. 
Since then, the most investigated genetic variants in any of the MMP gene have been the 
MMP-3 5A/6A (rs3025058) and MMP-9-1562 C/T (rs3918242) variant, based on their role to 
influence gene transcription.

4.1.1. MMP-3

The common 5A/6A (rs3025058) variant in the promoter of the MMP-3 gene has been shown 
to affect the level of gene expression in both in vitro [94] and in vivo [96] conditions. The 5A 
allele was associated with higher and the 6A allele with lower transcriptional activity [94, 96]. 

In general, the 6A allele was mostly associated with stenosis and coronary disease progression. 
It was associated with greater progression of coronary artery disease (CAD) in men [97, 98] and 

women [99] and with the greater number of coronary arteries with significant stenosis [100, 
101], but not with susceptibility to coronary heart disease [100, 102]. The 6A/6A genotype was 

associated with greater progression of coronary atherosclerosis [97] and the number of coronary  

arteries with stenosis >50% [100]. Also, it was associated with carotid stenosis >70% [103] and 

greater intima-media thickness (IMT) [103–105]. One or more 6A alleles had significantly higher 
risk for development of carotid atherosclerosis compared to 5A/5A homozygotes [106]. Besides 

its association with definite cardiovascular phenotypes the 5A/6A polymorphism has been linked 
to their risk factors such as elevated blood pressure [107], stiffer large arteries [108] and, in combi-
nation with angiotensin I-converting enzyme DD genotype, with hypertension in men [109]. On 

the contrary, the 5A allele as the high activity allele was predominantly associated with acute clin-

ical events such as plaque rupture and consequently myocardial infarction (MI) [100, 110, 111]. 

The combination of MMP-9 and MMP-3 genotypes was found to be potentially significant for 
presentation of atherosclerosis. Patients with “high activity genotypes” of both SNPs had larger 

area of complicated atherosclerotic lesions compared to other genotypes [112]. One of the first 
meta-analysis that aimed to realize the effect of MMP variants on atherosclerosis found signifi-

cant effect of the 5A allele on acute MI [113]. The newer meta-analysis of 15 studies (10,061 cases, 
8048 controls) in coronary disease displayed no significant overall risk of coronary disease for the 
carriers of the 5A allele and 6A/6A genotype of rs3025058 [114]. Similarly, the haplotype-tagging 
approach for several SNPs (rs522616, rs650108, rs569444 and rs635746) and rs3025058 did not 
show significant difference in genotype distribution in MI patients compared to controls [114]. 

The meta-analysis of 8 SNPs selected from the studies in which 58 SNPs within MMPs and TIMPs 

were investigated in abdominal aortic aneurism (AAA) pinpoint the significant association of 
only MMP-3 rs3025058 with AAA presence [115]. Another one, published the same year, which 
was investigated several genes in AAA presented the similar results for MMP-3 rs3025058 [116].

Overview of MMP Biology and Gene Associations in Human Diseases
http://dx.doi.org/10.5772/intechopen.70265

15



4.1.2. MMP-9

The first main role of MMP-9, which gave the rationale for the investigation in aterogenesis is 
the degradation of basement membrane, which surrounds each VSMC and is primarily com-

posed of type-IV collagen, laminin and fibronectin [117]. The MMP-9 gene possesses several 

single nucleotide polymorphisms, the most widely studied of which is the −1562 C/T gene 
polymorphism (rs3918242) in the promoter of the MMP-9 gene [118]. It was suggested that 

this polymorphism has a functional capacity to regulate MMP-9 expression, since luciferase 
reporter assays showed higher promoter activity of the T allele in vitro [95]. Although in this 
study authors have not found the significant effect of the rare allele on the susceptibility to MI 
they suggested its role in coronary artery severity [95]. Recently, another study challenged the 
functional role of this SNP [119]. In cells with different −1562C/T genotypes there was neither 
difference in MMP-9 expression level nor in MMP-9 promoter activity [119]. Nevertheless, 
this variant was extensively and repeatedly studied in CAD. Both positive [120, 121] and 

negative [122, 123] association of −1562T allele with the disease were presented. The meta-
analysis of previous studies showed no association of MMP-9-1562 C/T polymorphism with 
coronary heart disease [113]. The other one, which included 11 polymorphisms from MMPs 
showed that Glu45Lys in MMP3 gene and −1562C/T in MMP9 gene had an overall significant 
association with CAD [124]. In one of the biggest gene association studies of MMP genes in MI 

and CAD the composite genotypes of MMP-9 variations CT/RQ had greater risk for MI after 
full adjustment for covariates [125].

Arterial stiffness and MMP-9 levels were explored in healthy subjects in association with com-

mon risk factors and MMP-9 variations. Mean aortic pulse wave velocity (PWV) values were 

significantly higher in the carriers of the 1562 T and 279 Q alleles compared with common 
homozygotes, as well as serum MMP-9 levels [126]. The rs3918242 and exon 6 R279Q A/G 
(rs17576) polymorphisms were not associated with the presence of CAD or MI, but R279Q 
was associated with hypertension [127]. Among several MMP-2, MMP-7 and MMP-9 varia-

tions the MMP-9 R668Q genetic variant was associated with left ventricular dysfunction [128].

In order to overcome a simplistic mechanistic interpretation of the −1562T allele roles in regu-

lation of MMP-9 gene expression, the five promoter and nine exon SNPs, which change amino 
acid in the encoded protein, were analyzed. The functional consequences of these SNPs were 
investigated [129]. Three exon SNPs altered the specific enzymatic activity while altered pro-

moter activity was shown for four promoter SNPs among which was the −1562C/T [129]. Still, 
for promoter SNPs the explanation of how they exert their effect is not known, yet.

Recently, several variants in the 3′ UTR of the MMP-9 gene were analyzed in association 
with atherosclerotic cerebral infarction (ACI) in Chinese population. They found a significant 
association of the rare C allele and CC genotype of rs1056628 with ACI. Also the haplotype 
rs20544C-rs1056628C-rs9509T showed significantly increased risk for ACI. Further findings 
indicated that miR-491 directly targets MMP-9 and that the A–C transition in rs1056628, which 
is located in the miR-491 seed sequence, could influence the miR-491 binding. Moreover, the 
miR-491 decreased MMP-9 protein expression in cotransfected HUVEC, but did not show the 
influence on the mRNA expression [130].
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4.1.3. MMP-2

The other gelatinase, MMP-2, contrary to MMP-9 is constitutively expressed in many of the 
connective tissue cells that have a role in the vascular system. It is also functionally implicated 

in the processes of cell invasion, migration of smooth muscle cells (SMC) and destabilization 

of atherosclerotic plaque. The 15 novel sequence variants in the MMP-2 gene were firstly 
described in the year of 2001 [131] among which six were in the promoter of the gene and six 

in the coding region. Among three promoter variants that map onto cis-acting elements the 
one that disrupts SP-1 type of promoter site (−1306 C/T, rs243865) showed the lower promoter 
activity in rare allele [131]. The −790 T allele was associated with triple vessel disease [132].

4.1.4. MMP-1

Similarly to other MMP genes the study of MMP-1 genetic variants started with a definition 
of potentially functional SNPs. First, the 2G-allele of −1607 1G/2G variation in the MMP-1 
promoter has been noted to increase transcriptional activity by creating an E26 transcrip-

tion factor binding site [133]. Next, in vitro analysis in human macrophages showed that the 
A−519-C−340 and G−519-T−340 haplotypes compared with the A−519-T−340 haplotype, had 
lower promoter activity, whereas the G−519-C−340 haplotype had greater promoter strength 
[134]. At the same time that study was one of the first which investigated the genetic variations 
in MMP-1, solely and in haplotype, in association with cardiovascular disease. It revealed 
both, risk (G−519-C−340) and protective (A−519-C−340 and G−519-T−340) MMP-1 haplotypes 
in MI [134]. Recently, the −340 T/C, −519 A/G and −1607 1G/2G variations, separately and 
in haplotype were associated with the occurrence of carotid plaques (CP). Compared to the 

referent haplotype 2G−1607-T−340-A−519, the haplotypes 1G−1607-T−34-A−519, 1G−1607-
T−340-G−519 and 2G−1607-C−340-A−519 had statistically significant protective effect on CP 
presence. The MMP-1−1607 2G allele had significantly increased allele dose-dependent risk for 
CP presence [2]. Previously, the 2G allele also appeared to favor carotid artery stenosis [103].

SNPs in genes encoding MMP-1, -2, -3 and -9 and TIMP-1, -2 and -3 were associated with 
MI and CAD and combinations of MMP-1 1G/2G and MMP-3 5A/6A genotypes were sig-

nificantly associated with CAD, but not MI [125]. Recently, the MMP-1/MMP-3 less active 
haplotype 1G−1607-6A was described as a significant risk factor for obstructive uropathy, 
which is characterized by collagen accumulation [4]. Others did not find the association of the 
selected SNPs in MMP1, MMP2, MMP3, MMP9 or MMP10 with either acute MI compared 
with angina, or with coronary disease compared with controls [135]. Recently, the genome-
wide association analysis was performed using 500 K SNPs to identify genes influencing vari-
ation in serum levels of MMP-1 [136]. The cluster of 179 SNPs in the cluster on chromosome 

11 were associated with MMP-1 serum levels, with the peak of association on rs495366, which 
is located between the MMP-1 and MMP-3 genes [136].

4.1.5. MMP-8

The investigation of the genetic variations in MMP-8 started with the identification of several poly-

morphisms in the MMP8 gene, at −799 C/T (rs11225395), −381 A/G (rs1320632) and +17 C/G. Their 
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functional capacity was suggested after the study showed significantly higher promoter activity 
of the construct that contained the minor alleles compared to the construct with major alleles 

[137]. Many of the forthcoming studies investigated the role of MMP-8 in atherosclerosis. After 
analysis of selected 16 SNPs in the MMP-8 gene the rs1940475, in the coding region of the MMP-8 
gene, was associated with the extent of coronary atherosclerosis [138]. Also, the minor T allele of 
rs1940475 was associated with a protective effect against carotid atherosclerosis progression in a 
10-year follow-up [138]. In another study the significantly higher frequency of the −381 G allele 
was found in female patients with carotid atherosclerosis compared to controls [139]. The sig-

nificantly higher expression of MMP-8 mRNA was found in carotid plaques of the G−381 T−799 
haplotype compared to the reference A–381C−799 haplotype [139].

One of the not so commonly investigated MMP gene, the MMP 14, was significantly asso-

ciated with ultrasonographically defined plaque phenotype suggesting protective effect of 
rs2236307 major T allele for vulnerable plaque, in Chinese Han population [140].

It seems that a precise definition of particular phenotypes of interest is necessary to get the 
reproducible findings about genetic influence of a variant in complex disease. The CAD end-

points, the study design as well as a selection of the controls in association studies might influ-

ence the findings. The good example of previous is the particular meta-analysis performed for 
MMP family gene variants [124].

4.1.6. Serum levels of MMPs in atherosclerosis

Over the past 15 years the protein, plasma and serum levels of MMPs were investigated in 
association with cardiovascular and atherosclerotic plaque phenotypes (mainly MMP-1, 
MMP-2, MMP-9, MMP-13 and recently MMP-8). MMP-1 but not MMP-9 serum levels were 
associated with the total plaque burden [141]. Both, MMP-9 and MMP-8 serum and plasma 
levels were associated with cardiovascular outcomes in CAD patients [142–144]. Although 
MMP-8 cleaves collagen type-I three times more potently than two other interstitial collage-

nases, MMP-1 and MMP-13 [145], its role in CAD was lesser investigated in comparison to 
other MMPs, until recently. MMP-8 plasma levels were associated with unstable angina [146] 

and with the occurrence of carotid plaque [147]. Among the serum levels of MMP-1, -2, -3, 
-8, -9, -13, and TIMP-1, -2, -3, -4 analyzed prospectively after the MI only the baseline levels 
of MMP-8 were significantly associated with changes in left ventricular end-diastolic volume 
after the adjustment for covariates [148].

4.2. Genetics of MMPs in brain disease

In the central nervous system, MMPs have an important role and may influence proteolysis 
of basement membranes, extracellular matrix molecules, precursors of the cytokines, cell 
surface molecules and myelin components. In healthy central nervous system (CNS), they 
also have a role in synaptic plasticity, learning and memory. It is known that MMPs play a 
significant role in Alzheimer’s disease (AD), Parkinson’s disease (PD) and multiple sclerosis 
(MS). Their role in neuroinflammation and neurodegeneration was reviewed in detail in 
Brkic et al. [149]. Thus, as reasonable candidate genes the variations in MMPs were investi-
gated in several neurological diseases.
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The results in this field were also partly inconsistent. While one of the first studies that inves-

tigated MMP-9 polymorphism in multiple sclerosis had not found that it is a susceptibility 

marker for MS [150] two other studies showed the significant decrease in the MMP-9 rs3918242 
rare T allele carrier ship in female patients with MS [3, 151]. The same allele was found to be 

more often in patients with PD and amyotrophic lateral sclerosis [152]. The haplotype formed 

by the −1562 T allele and the L allele ((CA)(<or = 20)) of −90 (CA)n repeat polymorphism in 
MMP-9 was over-represented in patients with MS in comparison to controls [153]. Others sug-

gested that haplotypes of these two polymorphisms might modulate disease severity, expressed 
through expanded disability status scale (EDSS) [154]. The MMP-3 6A/6A genotype was also 
associated with disease severity, showing significantly higher mean multiple sclerosis severity 
score (MSSS) values in comparison to other genotypes [155]. In another study, the MMP-2 − 
1575 G/A variation was shown to influence the age of disease onset in MS patients with optic 

neuritis as a first symptom [156]. The four polymorphism haplotypes in the gene encoding 

MMP-3 was associated with changes in amyloid beta levels in non-demented subjects [157] 

but no evidence was found that the MMP-3gene is causally involved in dementia or AD [158].

4.3. Genetic epilogue

In the last few years the explosion of the data regarding the genetic variations and their asso-

ciation with disease happened as a consequence of the use of high throughput technologies, 
genome wide association studies, bioinformatical databases, etc. Thus, the results of the can-

didate gene association studies should be combined with the findings of the different genetic 
analysis approaches. Some of the genetic variations mentioned above cannot even be found 

on the arrays, as they are the insertion/deletion variation type, for example, MMP-3 5A/6A or 
MMP-1 1G/2G. The majority of studies that consider the role of MMPs in different pathologies 
did not include the genetic component, thus a lot is to be done yet in specifying the genetic 
architecture of MMPs in health and disease.
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