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1. Overview

Detecting and locating faults is one of the most important issues of current research
community. Many efforts have been taken to improve software development and to prevent
faults. But still software faults pose the most challenging problems to software engineers.
Fault localization is a most challengeable task during the debugging process. Fault
localization is the next step after detecting faults in programs. Use of fault localization in
control engineering where engineers often employ the procedural programming paradigm.
Often controls software is safety-critical and thus detection but also localization of bugs is
uttermost important.

This chpater makes use of abstract dependences between program variables for locating and
localizing faults in procedural programs. The so called verification-based Model (VBM) for
debugging is an extension of dependence model from Jackson’s Aspect System, which has
been used for verification of C programs. The Aspect system analyzes the dependences
between variables of a given program and compares with specified dependences.
Otherwise, the program fulfills the specification. In case of mismatch the program is said to
violate the specification. Unfortunately, the Aspect system does not allow locating the
source of mismatch. The VBM extends Jackson’s idea towards not only detecting behavior
but also localizing malfunctioning real cause. The VBM performs fix-point computation for
recursive invocation (in all cases where we obtain a cyclic call graph). We presented
algorithm and proof for fix point computation which ensures that no dependences loss
during iteration and we always reached fix-point after finite number of iterations.
Furthermore we present novel results obtained from our most recent case studies. Notably,
whenever our novel model detects a structural fault, it also appears to be capable of
localizing the detected misbehavior’s real cause.

Key Words

Model Based Reasoning, Software Verification, Software Debugging, Fault Detection and
Localization.
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2. Introduction

Software verification is an important phase of software development. In the last decade the
software verification and the debugging communities have made considerable progress. In
this chapter we focus on fault localization which is based on the abstract dependencies that
are used by the Aspect system (Jackson 1995) for detecting faults. The verification-based
model for debugging is an extension of the dependence model from Jackson's Aspect system
(Jackson 1995) which has been used for dependency based verification of C programs. The
Aspect system analysis the dependences between variables of a given program and
compares them with the specified dependences. In case of a mismatch the program is said to
violate the specification. Otherwise, the program fulfils the specification. Unfortunately, the
Aspect system does not allow locating the source of a mismatch. In the following we extend
Jackson's idea towards not only detecting misbehaviour but also localizing the
malfunctioning real cause.

Although program slicing, as a lightweight technique, has seen successful application in
fault localization (Agrawal et al., 1993, Fritzson et al., 1999, Lyle and M. Weiser 1987, its
discrimination like MBSD (Wotawa 2002). In (Kuper 1989, Wieland 2001) the authors
employ the notion of dependences for fault localization. In contrast to latter approach we do
not employ detected difference in variable values at a certain line in code but use of
differences between specified and computed dependencies and thus also incorporate the
structural properties of program and specification. Thus, the models introduced in (Kuper
1989, Wieland 2001) can not deal with assertions or pre- and post conditions in a
straightforward way.

In this chapter we focus on localizing faults in procedural programs and dealing with global
variables. Procedural programs are generally more computationally efficient that object
oriented programs, because there is less overhead to handle abstractions and the data
structures more closely resemble the hardware that must manipulate them.

The chapter is organized as follows. In Section 3 we introduce our verification based model
by using motivating example. The results and discussion given in Section 4 reveal the
verification based model provides a useful means for detecting and localizing common
errors for procedural programs and particular in contest of global variables. In Section 5 we
present related research. Further more we resent limitation of our model in section 6. Finally
we summarize the chapter.

3. Motivating Example

In this section we explain the basic idea of localizing the fault by checking whether the post
condition is satisfying or not using the verification based model.

In this chapter we focus on fault localization which is based on abstract dependencies that

are used by the Aspect system (Jackson 1995) for detecting faults. Abstract dependencies are
relations between variables of a program. We say that a variable x depends on a variable yiff
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a new value for y may causes a new value for x. For example, the assignment statement x
=y + 1 implies such a dependency relation. Every time we change the value of y the value
of x is changed after executing the statement. Another example which leads to the same
dependency is the following program fragment (Fig. 1):

If (y < 10) then

X=1;
Else
X=0

Fig. 1. Simple conditional block

In this fragment not all changes applied to y cause a change on the value of x, although x
definitely depends on y. The Aspect system now takes a program, computes the
dependencies and compares them with the specified dependencies. If there is a mismatch
the system detects a bug and notifies the user. However, the Aspect system does not
pinpoint the root-cause of the detected misbehavior to the user.

In the following program fragment (Fig. 2) we explain the basic ideas using the following
small program which implements the computation of the circumference and area of a circle.
The program contains one fault in line 2 where a multiplication by 1 is missing.

// pre true
1. d=r*2;
2. ¢c=d; //BUG!a=d*pi;
3. c=r*r*pi;
//postc=r2.nra=2rnm
Fig. 2. Calculation of circumference and area

These dependences solely are given by a statement whenever we assume that the statement
is correct (w.r.t. the dependences). If a statement is assumed to be incorrect, the
dependences are not known. We express the latter fact by introducing a new type of
variable, the so called model variables. Model variables are variables that work as place-
holder for program variables. For example, if we assume statement 2 to be incorrect, we
introduce a model that says that program variable a depends on model variable €2 (where €2
is unique).

The idea behind our approach is to find assumptions about the correctness and
incorrectness of statements which do not contradict a given specification. In our running
example, the specification is given in terms of a post-condition. From this post-condition we
derive that ¢ has to depend on r and pi. However, when assuming statement 1 and 2 to be
correct, we derive that a depends on d and 4 in turn depends on r which leads to ¢ depends
on r but not on pi. Hence, the computed dependence contradicts the specified one.

To get rid of this inconsistency, we might assume line 2 to be faulty. Hence, we can compute
that ¢ depends on model variable €2. When now comparing the specification with the
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computed dependence we substitute €2 by r and pi and we can not derive an inconsistency
anymore.

The authors of (Wotawa and Soomro 2005, Peischl and Soomro 2006, Soomro 2007) present a
detailed formalization of this idea and also present rules for most important language
artifacts like an assignment statement, the if-then-else statement, while loop and procedures.
In this chapter we focus on method invocation, parameter substitution, return statement and
global variables.

0. // Pre conditions of class: true

1. public class sumpowers {

2. int i, start, sum;

3. int stop, f;

4.,

5. o

6. i = start;

7. while (i < stop)

8. {

9. sum = sum + power (x,f);

9. // post (sum, x), (sum,f), (sum, power)
10. i=1+1;

11. }

12.

13. //Pre-condition of method: true

15. int power (xf,ef) {

1. int power = 1;

2 while (ef > 0)

2 {

3. power = power * 10;

3 //instead of power = power * xf
4 ef = ef - 1;

4 }

5. return power;

16 // post { (power,power), (power,xf), (power, ef)}
16. }

17. //Equation power = xfet

17. }

Fig. 3. Sum and power of integer values

In Fig. 3 we show an example that use a method to compute the sum and power of integer
numbers.The program contains one method which computes the nth power of an integer
number.

In computing the dependences for procedures and their invocations we first compute the
dependences of the procedure being invoked. Afterwards we substitute the procedure's
formal parameters by the actual ones. We capture recursive invocations by computing the
transitive and reflexive closure of the procedure's body and subsequently getrid of

www.intechopen.com



Verification Based Model Localizes Faults from Procedural Programs 59

dependences induced by local variables. Finally, we add those dependences caused by the
procedure's return values.

In Fig. 3., line number 9 we call the method power with some parameters. The specification
of method is { (power, power), (power, ef), (power, xf) }. When computing the dependences
from the method we derive these dependences { (power, power), (power, ef), (ef, ef) }.

In these dependences the variable pair (ef, ef) are not impacting overall dependences.
So we have final dependences of method are { (power, power), (power, ef) }.
We have to map formal to actual parameters from these derived dependences.

Definition 1 (Parameter Substitution)
Let d be the dependences of the a method m and let f be a formal parameter and a the
corresponding actual parameter. The dependences after method invocation are given by

d={(y) |y edlu{xa ]| (xf) ed}

After mapping parameters we derived dependences (sum, power), (sum, f) , here we find a
contradiction with the post conditions { (sum, x), (sum, f), (sum, power) }. If post conditions
are consistent with computed ones then we introduce model variables. We used unique
model variable for every assumption. The Definition 2 states that how to establish the
relationship between the return variables and the target variable of calling context.

Definition 2 (Return Values of a Method)

—Ab(x = proc(ai, ay, ..., an)) >
D(t = proc(ay, a, ..., an)) = (1)
{t) x {v] (x, v) € D(proc(ay, ay, ..., an)), x € return(proc)}

Ab(t = proc(ai, az, ..., an)) =

D(t = proc(as, ax .., ax)) = {(t, &), (g, €1) | g € G} @

where t denotes the target variable, g global variable in proc(body) and return(proc) is a
function returning the return values of the procedure proc. Where Ab shows abnormal and
—~Ab shows not abnormal conditions.

The definition 3 states how to establish dependences of the two consecutive statements of
the program.

Definition 3 (Composition)
Given two dependency relations Ry, R € D on V and M. The composition of R; and R» is
defined as follows:

{(xy) | 3(xz) e R2 & 3(z,y) € Ry} L
{(oy) | 30cy) € Ri & ~3(x7) € Ra} U o)
((oy) | 305y) € Re& ~3(y,2) < Ra)

R10R2=
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This definition ensures that no information is lost during computing the overall dependency
relation for a procedure or method. Hence, the first line of the definition of composition
handles the case where there is a transitive dependency. The second line states that all
dependencies that are not re-defined in R; are still valid. In the third line all dependencies
that are defined in R; are in the new dependency set provided that there is no transitivity
relation.

For combining the dependencies of two consecutive statements we define the following
composition operator as given in definition 3 for dependency relations to obtain the
following dependences D ( sum = power( x , f) ) = { (power, power), (power, ef) }. After
substituting formal to actual parameter derived dependences of line number 9 are { (sum,
power), (sum, f) | but the post conditions are { (sum, x), (sum, f), (sum, power) }. Here we
find contradiction between both dependences, derived ones and specified ones.

In order to compare a computed dependence set with the specification we have to find a
substitution that makes the computed dependence set equivalent to the specified one. If
there is no such substitution the sets are said to be inconsistent.

A substitution o is a function which maps model variables to a set of program variables, i.e.,
0: M > 2V. The result of the application of the substitution o on a dependence relation R is a
dependence relation where all model variables x in R have been replaced by o (x).

We assume that statement 9 is abnormal, we take the target variable from the assignment
statement and introduce a model variable (sum, &) . In order to compute dependences

we derive { (sum, &), (i, i), (i, stop) } and the substitution variables are { ( x, f, power) }. We
now compare the specification with the computed dependences obtained by substituting &y
with { (x, f, power) }. Since, we can not derive an inconsistency anymore, so line number 9 is
a bug candidate.

Some assumptions for other lines of method call:

If we assume statement 3 to be incorrect then we can take the left variable from the
assighment statement and introduce a model variable to arrive at (power, G3). After
computing dependences with this model variable we derive {(power, &3), (ef, ef)} and
substitution variables are { ( power, xf, ef) }. If we now compare the specification with the
computed dependences obtained by substituting &3 by { ( power, xf, ef) }, we can no longer
derive inconsistency. So line number 3 from method is a bug candidate.

Assuming line 2 to be incorrect, the dependences derived with model variable are {( (power,
power) , (power, ), (ef , ef) ) }. Now we substitute the model variable from set of program
variables, i.e, {2 = { ef, xf, power }. After substituting we derived { (power, power) ,(power,
xf), (power, ef), (ef , ef) }. In order to allow the direct comparison of specified dependences
with the computed ones, we introduce a projection operation which deletes all dependences
for variables which have no impact on the overall dependences, like an internal variable pair
(ef, ef) from Fig. 3.

A projection is defined on dependence relations R € D and a set of variables A 2 M U V.
The projection of R on A written as [[a (R) is defined as follows in an equation 3:

[Ta®)={(xy) | (xy)eRaxe A ®)
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However when assuming statement numbers from method 1,2,3,4 we obtain three
diagnoses. Line numbers 1,2,3 are said to be faulty, but line number 4 did get substitution so
line number 4 is not faulty.

Definition 4 (Treatment of Global Variables)
To obtain dependences form global variables we are dealing with the following features

1. Global variables impact global variables

If a global variable depends upon global variable in a program then we use similar rules to
derive dependences from simple statements.

For an assignment statement g = a + g the dependences are (g, a), (g, ).
2. Local variable impact global variables

If a global variable depends on a local variable of a method and the return variable also
depends upon the same local variable then we can compute dependences as: Let d be the
dependences of the method m and let I be a local variable, g the corresponding global
variable and x be the returning variable . The dependences after method invocation is given
by {(g x) | (1) }, wherexis (x e return).

3. Formal variables impact global variables dependences

Let d be the dependences of a method m and let f be a formal parameter, a be an actual
parameter and g the corresponding global variable. The dependences after method
invocation is given by { (g, a) | (g f) € d}.

If we assume an invocation to be abnormal we introduce a single variable for every
occurrence of a certain procedure. For recursive invocations (in all cases where we obtain an
cyclic call graph) we have to perform a fix-point computation. In order to guarantee that the

computed dependences increase monotonically w.r.t. the subset relation like d, = dn + 1.
Computing fixed point we add these dependences to overall dependences.

Fig. 4 shows the fixed point computation.
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INPUT : while C do {B} end
OUTPUT: D (Dependences)
initialize d = dO
initialize dprey = null
do
{

dPrev = d

d = dPrev o (dPrev o dO)
}
while (!d.equals (dprey))
alldep = (alldep o d)

Fig. 4. Algorithm of Fixed Point Computation

In

Fig. 4 do, d, dp., are variables which are storing pairs of dependences, where d computes
new dependences, dp., stores previous dependences. d comprises of block dependencies
from while loop while C do { B } end. The return statement stores overall dependences into
d after finding fix-point. Function union adds both dependences ds,o, U (dprey © dg). The
composition operator o ensures that no information is lost during computing the overall
dependency relation. Union operator in the algorithm shows that dependencies are adding
after every iteration of loop. The condition of the do {} while loop ensures that whenever
previous and new dependences are same we reached fix-point with finite number of
iterations. After reaching fix-point we have to terminate loop and add computed
dependence pairs into overall dependences d.

Theorem 1 (Fixed Point Computation Theorem)
The fixed-point computation algorithm computes a fix-point from repetitive invocation
within a finite number of iterations.

Proof. We prove this theorem in two steps: First we prove that the dependencies are
increasing monotonically. Second these dependencies should become equal within finite
number of iterations at one point which is a fix-point.

e Dependencies are increasing monotonically i.e Vi dij+1 © di.
From the above algorithm, we know that di+1 = dj w {d; o d}. The computed
dependences of block statements are stored in d. Because of the union operator it is
obvious that di+1 © di. This (d; o d) are the new dependences which are added to
the old dependency set. This leads to a monotonically increasing amount of
dependences.

e  Fix Point Computation i.e. 3i dj+; = d;.
We know that set of variable v is finite. Hence, d;i = V x V is finite and the upper
bound of the dependency computation. From this follows that iteration an i exists
when di+1 = d;.
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(Wieland’s 2001 (Fix-point Computation)) Complexity of computing dependences from
while loop to reached fix-point in a finite number of iterations.

Theorem 1 shows the complexity of while loop for computing the dependences using the
above algorithm. In [Wieland 2001], the author proves the theorem depending upon the
number of variables used in dependences set. This example represents the worst case.

In Fig. 5 we call method foo recursively. Here we show that the dependences of recursively
methods are in this fashion with using fixed point computation. The dependences of calling
method foo has following dependences { (y,x), (z, y), (z, x), (res, z), (res, y), (res, x) }. The
definition 4 ensures that we substitution of local, global variables are derived correctly. We
use fixed point algorithm to find d,, = d, + 1. In the fooexample method line number 5 has an
assignment statement ¢ = foo(a, b) that calls a method. Now we have to subsitute formal into
actual parameters from computed dependences of calling method. After substitution we
derived following dependences (t, a),(t, b),(t, res).

1. public int fooexample {
2. int t, a, b;
3.
4, .
5. t = foo(a, b)
5. //{(t,a), (t,b), (t,res)}
private int foo(int x, int y) {
6. int res=0;
7. int z=1;
8. if ((x < 0)
9. y = X;
else
10. z = foo(x-1, Vy);
11. res = z + y;
12. return res;
12. {// (y, x), (z, y), (z, x), (res, z), (res, y), (res, x)}
12. 1}

Fig. 5. Recursively call foo function
4. Example applying on fixed point computation
We show the small example to find fixed point over transitive relations. In an example

program in Fig.6 we compute dependences step by step fashion to show that how we reach
fixed point by using the algorithm in

Fig. 4. The body of while loop iterates i times.
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In particular we are interested to compute dependences from the body of loop and
summarized the loop dependences. Obviously all variables are used in the the body of loop
(a, b, ¢, d and i), which depends on variable i, because i appears in the condition of while
loop. We did not show the computed dependences of i variable in Fig.6 and the graph’s Fig.
7. The dependences of i are explicitly computable and do not make any changes during
iteration of loop. This is the reason we are not presenting these dependences. The
dependences of other variables are presented in the below. The algorithm presented
presented earlier outlines the method of computing dependences from recursive invocation.

The dependences of the variables a; b; c and d are depicted in the following
cases:

e (i=0)yanddo={(a b), (b, c), (c, d),(d, e)}

e (i=1)randdi={(a b), (b, c), (c, d), (d e),(ce),(ac) (b d)}

e (i=2randdx={(a b), (b, c), (c,d), (d, e),(ce),(a c) (b d), (a d), (b, e)}

. (i=3):and d3;={(a, b), (b, ¢), (c, d), (d, e), (¢, e), (a, c), (b, d), (a, d), (b, e), (a, )}
e (i=4):andds={(a b), (b, c), (c,d), (d e),(ce),(a c) (b d),(a d), (b e), (ae)}

The given specification from Fig. 6 and computed dependences are equal. So we
reached fix point with finite number of iteration. We find d3 = d4 is a fix-point
where both dependences are equal. Which ensures d,, = dn+1.

All variables of assignment statements are depend upon variablei « (a, b, ¢, d).

SPEC {(a, b),(b, ¢),(c, d), (d, e), (c, e), (a, ¢),(b, d), (a, d), (b, e),(a, e)}
1. public int WhileExample {
2 int a, b, ¢, d, e;
3 int 1 = 0;
4.
5 cee
6 while (i £ 5)
7 {
8. a = b;
9. b =c¢c;
10. c = d;
11. d = e;
12. i=1+1;

}

}

Fig. 6. Example program showing transitive dependencies in a loop

The graph shows the dependences of the while loop. There are five nodes in Graph
including incoming and outgoing edges. Based on Theorem 1 we can prove that after a finite
number of iterations we reached fixed point. we explain as follows:

Dependences are increasing monotonically i.e. Vi di+; © d;. We present the algorithm in
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Fig. 4 for computing dependences of block statements. Because of the union operator it is
obvious that di+; o di. This leads to a monotonically increasing amount of dependences.
which is proven in Theorem 1. After calculating n we find fix-point within four iterationsn =
4. Therefore, we reached at fixed point after a finite number of iterations which is described
in the algorithm. The graph shows the graphically representation of finding fixed point.

Fig. 7: The Diagraph of the While Loop from Fig.6
5. Experimental Results and Discussions

The proposed model has been implemented in Java using the Eclipse platform. In this
section, we present the experiments that evaluate the result using dependencies in Java
programs without using object-oriented features. Experiments were performed on a Intel
Pentium 4 Workstation (3 GHZ,512 MB Memory) running Gentoo Linux (Gentoo Base
System Version 1.4.9, Kernel version 2.6.5). The results are reported in Table 1.

For various examples programs, we introduced a single fault, and afterwards computed all
single-fault diagnoses. Table 1 presents empirical results of programs with methods. We
considered medium sized programs. The second column shows the lines of code from 26 to
509. The third column counts the number methods in the programs. The fourth column
reports the number of diagnosis candidates. The 5% column gives the number of input
variables and the last column shows the number of output variables.

In Table 1 the tested programs consisting of simple and multiple statements, loops, methods
and global variables. Program specification consists of all variables i.e., input variables and
output variables. In Fig. we show all these programs with minimum, maximum and average

of diagnoses.
In Fig. 8 we presented a graph of programs with the number of faults depending on output

variables (presented in Table 1). We used hundred iteration for every possible combination
of output variables. It shows the minimum, maximum and mean of diagnoses in respect to
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the output variables and the faults. In all graphs full line represent the minimum, dash line
the maximum and dotted line the number of diagnoses candidates.

Programs LOC Methods Diag.No Input-VAR | Output-VAR
Adder 51 3 6 18 15
AddulseTime 378 21 10 98 54
Equation 26 4 4 13 5
MathFunctions 509 22 3 80 57
MethodTest1 42 3 12 14 11
MethodTest2 75 5 2 22 16
MethodTest3 46 5 3 20 14

Programs LOC Methods Diag.No Input-VAR | Output-VAR
MethodTest4 218 15 3 53 44

Table 1. Diagnosing candidates obtained by an introducing a single fault

Note, in the graph we consider only those diagnoses which has contradiction. This means
that we never pick values which lead to no contradiction. Full line indicates that when we
increase the number of output variables used in the specification, and then the number of
diagnosis increases. The results indicate that our approach is feasible for detecting and
localizing real cause of misbehaviour. The results presented there solely stem from
procedural programs.

6. Limitation

Unlike previous approaches (Wieland 2001, Mayer. W & Stumptner M 2003) , the debugging
approach introduced in this chapter specially intends localizing structural faults. In an
account of this, we focus this discussion our model’s weaknesses in detecting and localizing
these faults.
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First, the proposed model is not localizing faults caused by a erroneous target variable. For
example, the following code snippet assigns the value of variable z to two different
variables, namely, x and .

1. y <z // should be x < z
2. y<«—z

Due to (structural) error in line 1, we obtain (y, z) as a single dependence, but our
specification enumerates { (x, z), (y, z) } as dependences. Since {(y, z)} is not super set or equal
to {(x, z), (y, z) }, we know some thing must be wrong. Thus, obviously, we can detect this
bug. In localizing the detected misbehaviour’s cause, we assume statement 1 to be abnormal
and obtain R; = { (x, €1)}. R2 = {(x, z)}, and R; > R, ={(x, z)}. This results shows that we can not
find any substitution ¢ that removes the given contradiction. Virtually, we can not correct
our program by modifying solely the right-hand side of statement 1.

Allowing for model variable left hand side we can get rid of this deficiency: R1 = { (1, z)} Ro,
= { (v, z) }, which yields to Ry ° R2 = { (¢1, 2), (x, z) }. Apparently, the substitution o( ¢1) = x
fulfils {(e1, z), (y, z)} is super set or equal to {(x, z), (y, z)} and thus we can localize this fault.
However, this is approved solely in the rather are case that the substituted variable does not
appear in any of the statements (on the right hand side) subsequent to variables
substitution. Thus, this approach is not applicable in a practical setting.

Furthermore our model is only applicable to alias-free programs. This issue is further
discussed in (Jackson 1995). In summary we conclude that, provided the fault appears on
the right hand side of an assignment, our model allows for correcting these kind of
structural faults as long as we can also detect this fault in terms of the specified
dependences.
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Fig. 8. Sensitivity Analysis of All Programs of Table 1.

7. Related Research

The author of (Jackson 1995) presents work which is closest to the work presented herein.
This work employs abstract dependences for detecting rather than for localizing a fault.
Furthermore in (Kuper 1989, Wieland 2001) the authors employ the notion of dependences
for fault localization. In contrast to the latter approach we do not employ detected
differences in variable values at a certain line in code but make use of differences between
specified and computed dependences and thus also incorporate the structural properties of
program and specification.

In the recent past the authors (Wotawa 2000, Wotawa et, al. 1999, Koeb and Wotawa 2004,
Mayer and Stumptner 2003) developed models for different languages at various abstraction
levels in the model-based context. In general, abstract modelling approaches sacrifice detail
in favour of computational complexity whereas more detailed value-level models (Wotawa
2002, Peischl and Wotawa 2003) provide accurate fault localization capabilities but on the
other hand require considerable computational resources in terms of space and computing
power.

Although program slicing, as a lightweight technique, has seen successful application in
fault localization (Agrawal et, al., 1993, Fritzson et, al., 1999, Lyle and Weiser 1987 ) its
discrimination like MBSD (Wotawa 2000). In (Kuper 1989, Wieland 2001) the authors
employ the notion of dependences for fault localization. In contrast to latter approach we do
not employ detected difference in variable values at a certain line in code but use of
differences between specified and computed dependencies and thus also incorporate the
structural properties of program and specification. Thus, the models introduced in (Kuper
1989, Wieland 2001) can not deal with assertions or pre- and post conditions in a
straightforward way.
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The authors of (Wotawa 2000, Friedrich et, al., 1999, Wieland 2001) solely make use of
concrete values in incorporating correctness information. These models do not allow taking
advantage of arbitrary relationships between several variables or variables and constants.
The author (Stumptner 2001) shows that localizing structural faults requires exploiting
design information like assertions, and pre and post conditions.

Other approaches like (Johnson 1986) focus on novice programmers and make use of
methods that help to find faults in the code by comparing the code with pre-specified
problem formulations.

7. Conclusion

In this chapter we extend and present the novel model which detect and localize real faults
from programs, comprising methods invocations and global variables. The computation of
dependences from recursive invocation we found that every iteration has added new
dependences and the number of dependences increasing monotonically. In order to
guarantee that the computed dependences are increasing monotonically w.r.t. iterations, we
find fixed-point where all dependences are equal with finite number of iterations. We
presented an algorithm and proof for fixed point computation which ensures that no
dependences loss during iteration and we always reaches fix-point after a finite number of
iterations. Moreover, the approach is different to other available dependency-models and
provides better results for medium sized programs.

A future research challenge is the formal and empirical evaluation of the modelling
approaches when apply it to real object-oriented programs.
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