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Abstract

In comparison with metallic thermoelectric films, oxide films with artificial nanodefects
have been seldom studied. And there has been no report on the incorporation of island-
shaped organic nanoparticles. We describe a new approach to introduce nanometer-sized
phonon scatterers in aluminum-doped ZnO (AZO) thermoelectric thin films–concurrent
multi-beam multi-target-pulsed laser deposition and the matrix-assisted pulsed laser
evaporation (MBMT-PLD/MAPLE). The approach was used to make nanocomposite
thin films of AZO matrix with evenly dispersed poly(methyl methacrylate) (PMMA)
nanoparticles. The introduction of the nanoparticles enhanced phonon scattering with
consequent decrease of thermal conductivity by 20%. The electrical conductivity did not
decrease after the addition of the second phase, as it would be predicted by Wiedemann-
Franz law, but improved by 350% over pure AZO film. The thermoelectric figure of merit
of the nanocomposite film became twice that of the pure AZO film. Taking advantage of
room-temperature deposition, optimized AZO nanocomposite films are expected to be
used in real applications, such as thin film modules deposited on flexible polymeric
substrates for ubiquitous harvesting of the waste heat.

Keywords: laser ablation, pulsed laser deposition, matrix-assisted pulsed laser
evaporation, nanocomposite films, AZO, polymer nanoparticles, thermos-electric
energy harvesters

1. Introduction

ZnO is a well-known n-type semiconductor used in a variety of applications such as optical

devices, piezoelectric transducers, transparent electrodes, and gas sensors [1]. Furthermore,

interesting results have been published on Al-doped ZnO (AZO) as a sustainable thermoelectric

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



material to replace toxic and expensive materials based on Se, Te, and Bi [2]. More recently,

researchers have focused on the preparation of AZO in thin film form due to the possibility to

control better the morphology and crystalline orientation of the films. In pure AZO films

prepared by the conventional pulsed laser deposition (PLD) on single crystal substrates at

relatively low temperatures (400–600�C), the thermal conductivity κ has been reduced signif-

icantly with respect to the bulk material due to the enhanced phonon scattering at the film

substrate interface and at grain boundaries [3]. Ultimately, this approach has yielded a higher

thermoelectric figure of merit, ZT [4]. Further improvement of ZT can be achieved by the

introduction of multilayer structures and nanodefects acting as additional phonon scatterers

reducing the thermal conductivity [5, 6].

In contrast to metallic thermoelectric films, oxide films with artificial nanodefects have been

seldom studied: SrTiO3/Nb-SrTiO3 [7], AZO/hydroquinone [8], and AZO/Y2O3 [9]. There is

still no report on oxide films with nanodefects in the form of polymer nanoparticles. This

chapter describes nanocomposite thin films made of AZO matrix with evenly dispersed poly

(methyl methacrylate) (PMMA) nanoparticles produced by the concurrent multi-beam multi-

target pulsed laser deposition of AZO and matrix-assisted pulsed laser evaporation of the

polymer (MBMT-PLD/MAPLE) [10–13].

A wide variety of nanocomposite materials based on polymers and inorganic substances can

be classified as “polymer nanocomposites,” where the polymer serves as a host for inorganic

nanoparticles [14, 15]. In case, when the volume fraction of the polymer decreased below

90% (and the interaction between the inorganic inclusions became stronger, as illustrated in

Figures 1 and 2), the resulting materials were often called as “organic-inorganic hybrid com-

posites” [14]. In some occasions, one polymer was used as a host for a nanoparticles made of

Figure 1. Two-phase polymer-inorganic nanocomposite films.
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another polymer [16]. Making a uniformly mixed nanocomposite films with low fractional

volume (<10%) of the polymer and at least one inorganic phase prevailing and serving as a

host for the polymer nanoparticles (Figures 1 and 2) has remained an unachievable goal

because the list of suitable technologies was limited mainly to the sol-gel process [17]. Hence,

the two novelty features of this work are: (i) the use of MBMT-PLD/MAPLE to produce an

oxide-polymer nanocomposite film at room temperature with the oxide acting as a host to

the polymer nanoparticles and (ii) the use of the polymer nanoparticles as phonon scatterers.

The description given below demonstrates how the approach improves the thermoelectric

properties of AZO films.

2. Methods and materials

The MBMT-PLD/MAPLE system at Dillard University is schematically presented in Figure 3.

Two pulsed laser beams ablated concurrently two targets and ejected the target materials in the

plumes that propagated toward the surface of a substrate where they mixed and formed a

nanocomposite film. Linear actuators tilted the targets and changed the directions of the plumes

in order to secure uniform mixing of the target materials in the film. Plume 1 is formed by laser

beam 1 ablating a conventional solid inorganic PLD target. The second target (to the right) was

a polymer solution frozen by circulating liquid nitrogen (LN). Accordingly, the process of

polymer deposition was the matrix-assisted pulsed laser evaporation (MAPLE) [10–13]. All the

Figure 2. Three-phase polymer-inorganic nanocomposite films.
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components of the deposition system were placed in a vacuum chamber (not shown) with

optical windows for the laser beams. The inorganic, AZO target was a pellet of Zn0.98Al0.02O

where the aluminum fraction was 2% of the total by weight as compared with zinc, not

counting the oxygen. The AZO pellet had 20 mm in diameter and 3 mm in thickness. The pellet

was prepared by the spark plasma sintering method as described elsewhere [18]. The MAPLE

target was a solution of PMMA in chlorobenzene at a proportion of 1 g solids per 10 mL liquids

filtered with 0.2 μm filter. The solution was poured in a copper cup of the MAPLE target

assembly (Figure 3) and frozen in liquid nitrogen (LN). The laser source was a Spectra Physics

Quanta Ray Nd:YAG Q-switched Pro-250-50 laser with a pulse repetition rate of 50 Hz, 750 mJ

energy per pulse at the 1064 nm fundamental wavelength, and 400 mJ energy per pulse at

the 532 nm second harmonic. The AZO target was ablated with the 532 nm beam. The fluence

was tuned up between 0.8 and 1.0 J/cm2 per pulse. The MAPLE target was evaporated with

the 1064 nm beam. The fluence was ranging from 0.84 to 2.4 J/cm2 per pulse to maintain a

volume fraction of PMMA in the AZO matrix of about 5%. The deposition time was 3.0 min.

The thickness of the deposited films was approximately 150 nm as measured with an atomic

force microscope. The films were deposited on Al2O3 (sapphire) (100) single crystal substrates at

room temperature in vacuum. The inorganic target was rotated during the irradiation of laser

beam. The substrate-target distance was maintained about 35 mm. Deposition of pure AZO

films in the same experimental conditions was carried out in order to have reference samples.

3. Results and discussion

X-ray diffraction (XRD) analysis of the as-grown AZO-PMMA films conducted with a Bruker

D2 Phaser diffractometer (Figure 4) revealed the presence of polycrystalline AZO, while peaks

Figure 3. The schematic of the multi-beam multi-target-pulsed laser deposition system used to make the films.
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of PMMAwere absent. Polycrystallinity of AZO is due to the fact that the ablation in MBMT-

PLD/MAPLE system was performed at room temperature to solidify PMMA after its conden-

sation on the substrate (PMMA has been reported to melt at about 430 K [19]). As widely

observed in literature, AZO films deposited at room temperature by conventional PLD are

commonly polycrystalline [20–22].

Figure 5 (a) and (b) present TEM images of the film samples that were peeled off from the

Al2O3 substrate. Typically, polymer nanoparticles-nanoclusters of a size of 10–50 nm are seen

embedded in the AZO matrix. The formation of the nanoclusters is due to the heavy entangle-

ment of the polymer molecules ruled by chemical interactions during their condensation on

the substrates and chemical interaction with the ceramic host. Some polymer molecules could

also self-assemble in individual fibers creating networks across the AZO matrix.

The electrical conductivity versus temperature (σ�T) characteristics of the films were mea-

sured by the conventional four-probe technique, and Seebeck coefficient was measured by a

commercial system (from MMR technologies) in the temperature range from 300 to 600 K.

Further, the thermal conductivity κ of the films was measured at 300 K using the time domain

thermoreflectance (TDTR) technique [23, 24].

Figure 4. X-ray diffraction spectrum of the films (peaks are indexed with [hkl] reflections of AZO matrix).

Figure 5. Top-view TEM images of the films deposited on Al2O3 substrate with (a) low and (b) high magnification.
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Electro-conductive and thermo-electrical characteristics of the AZO-PMMA nanocomposite

films in the range of 300–600 K are presented in Figures 6 through 11 and Table 1. Performance

of pure AZO films deposited on the same substrate is also reported for comparison.

Electrical conductivity σ of AZO + PMMA films is higher than that of the AZO films over all

the measured temperature range and increases with the increase of temperature (Figure 6).

The highest value of the electrical conductivity is 1630 S/cm at 600 K, three times increase

comparing to pure AZO films. 1 S/cm (siemens per centimeter) is 100 times 1 S/m, the unit of

electrical conductivity in SI, 1 S/m = 1 (A2.s3)/(kg.m3). The significant increase of σ can be

explained as follows. At first, as long as PMMA remains unaffected by the temperatures

applied during the measurement (below 430 K), the polymer can be assumed to increase the

number of oxygen vacancies in AZO usually resulting in the increase of electrical conductivity

in a hybrid system. Another scenario is that above 430 K, PMMA decomposes in CO2 and by-

products. Then, carbon dioxide converts into amorphous carbon, which is known to have good

electrical conductivity (around 670 S/cm [25]). Since, virgin PMMA has very low electrical

Figure 6. Temperature dependence of the electrical conductivity of AZO and AZO + PMMA films deposited on Al2O3

substrates.

Sample Electrical

conductivity σ

(S/cm)

(300K/600K)

Seebeck coefficient

S (μV/K)

(300K/600K)

Power factor σS2

(mW/(m.K2))

(300K/600K)

Thermal

conductivity κ

(Wm�1K�1)

300K

ZT

(300K/600K)

Pure

AZO

AZO +

PMMA

Pure

AZO

AZO +

PMMA

Pure

AZO

AZO +

PMMA

Pure

AZO

AZO +

PMMA

Pure

AZO

AZO +

PMMA

Film on

Al2O3

433/539 1382/1630 �15/�30 �9/�20 0.01/0.05 0.01/0.07 7.4 � 0.2 5.9 � 0.3 0.005/0.04 0.0055/0.07

Bulk

AZO

206/152 �132/�150 0.35/0.34 34 0.0035/0.014

Table 1. Comparative performance of the nanocomposite thermoelectric AZO-PMMA films.
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conductivity (of the order of 10�13 S/cm [26]), the degree of polymer conversion into carbon

could be assumed rather substantially, and thus, affecting not only σ, but other physical pro-

perties that were becoming similar to those of an AZO-carbon nanocomposite.

Seebeck coefficient versus temperature plot is presented in Figure 7. The negative sign of

Seebeck coefficient indicates electrons as the electric charge carriers and correspondingly the

hybrid composite material being an n-type semiconductor. The magnitude of Seebeck coeffi-

cient increases with the temperature increase. Overall, the magnitude of Seebeck coefficient of

AZO + PMMA hybrid films is lower than that of the pure AZO thin film due to the fact that it

has more electric charge carriers. The highest absolute value of Seebeck coefficient is about

�30 μV/K at 600 K for AZO thin films. Based on the measured electrical conductivity and

Seebeck coefficient, power factor PF =σS2 was calculated. The value of PF for AZO + PMMA

films (Figure 8) was found to be higher than that of the AZO thin films due to the higher

electrical conductivity. The maximum value of PF is about 0.07 mW/(m.K2) at 600 K.

Electrical conduction is governed by thermally activated hopping mechanism as is indicated

by linear plot of ln(σT) versus 1/T in Figure 9. The electrical conductivity follows relation

σT =A exp[�E
σ
/(kbT)] (where E

σ
is the activation energy for electrical conductivity, A is the

pre-exponential factor, kB is the Boltzmann constant) [27]. Activation energy E
σ
was calculated

using the slope of the linear fit of the plots to be about 44 and 47 meV for AZO + PMMA and

AZO films respectively. Slightly lower activation energy of the nanocomposite film indicates

that the charge carriers with lower energy hopping between the grain boundaries also partic-

ipate in electrical conduction. Due to this, AZO + PMMA film exhibits higher electrical con-

ductivity. Further, the temperature dependence of Seebeck coefficient can be described as

S = (kB/e)[ES/(kBT) +B], where ES is the thermopower activation energy and B is the heat of trans-

port taken as temperature independent [27]. Activation energy ES was calculated from the slope

of linear fitting of the plots of S versus 1/T (Figure 10) to be 7.0–9.2 meV for AZO + PMMA and

Figure 7. Temperature dependence of Seebeck coefficient of AZO and AZO + PMMA thin films on Al2O3 substrates.

Symbols used to represent data points are the same as in Figure 6.

Multi-Beam Multi-Target Pulsed Laser Deposition of AZO Films with Polymer Nanoparticles for Thermoelectric…
http://dx.doi.org/10.5772/intechopen.70678

219



AZO films, respectively. The values of E
σ
are about five to six times greater than ES, which

suggests that a part of the activation energy is arising from the activated mobility of the small

polaron, which does not contribute to thermopower and the formation of which has been

reported for a number of oxides [27, 28]. It is worth of mentioning that, besides the thermal

hopping mechanisms, the temperature-independent tunneling electron transport mechanism

can be sometimes observed in the granulated multi-component films prepared by PLD as it has

been recently reported (for the films made of gold and silver nanogranules at a temperature

below 60�C) in paper [29].

Figure 8. Temperature dependence of the power factor of AZO and AZO + PMMA thin films on Al2O3 substrates.

Symbols used to represent data points are the same as in Figure 6.

Figure 9. Inverse temperature dependence of ln(σT) of AZO and AZO + PMMA thin films on Al2O3 substrate. Dashed

lines are the linear fit of the corresponding plots. Symbols used to represent data points for different samples as in

Figure 6.
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Thermal conductivity κ (at 300 K) was measured by the above-described TDTR method to be

(5.9 � 0.3) and (7.4 � 0.2) W/m.K for AZO + PMMA and AZO film, respectively. Less κ for the

hybrid film can be attributed to two factors: low thermal conductivity of PMMA (κ = 0.25 W/m.

K at room temperature [30]) and the phonon scattering from uniformly dispersed PMMA

nanoparticles (as shown in Figure 3). These out-of-plane film thermal conductivity values

κ(300K) measured at 300 K were further used in calculating the thermoelectric figure of merit

ZT = σS2T/κ0(T) in the range of 300–600 K, where κ0(T) is the film in-plane thermal conductivity

at a given temperature T. For elevated temperatures (T > 300 K), the replacement of κ0(T) by

κ(300K) can be validated by two facts: (i) in ZnO films, the in-plane thermal conductivity

determined at different conditions was always higher than the out-of-plane one [31]; and (ii)

the thermal conductivity of ZnO films was found to decrease with increasing temperature [32].

So, the replacement will not change the trend of ZT growth with T. Figure 11 and Table 1 show

that ZT for AZO + PMMA film is always greater than that of the pure AZO film (twice as great

at 600 K). This is due to the higher electrical conductivity and lower thermal conductivity of

the nanocomposite film.

The electrical conductivity σ of AZO + PMMA films turned out to violate the Wiedemann-

Franz law, κel/σ =L0T (κel is the electronic component of the combined thermal conductivity

κ = κph +κel, κph is the phonon component, L0 is the Lorentz number) and got decoupled from

the thermal conductivity, a common feature of complex and disordered media (so called

“electron crystals and phonon glasses”) [33]. The hypothetical structure of the composite

AZO + PMMA medium can be schematically depicted in Figure 12. The polymer phase in the

inorganic AZO matrix is assumed to be present in a variety of forms: nanoclusters (nano-

particles or nanodots), nanofibers, and fiber nanobundles. Nanoclusters are formed by the

entangled long-chain polymer molecules. Nanofibers may be formed by straightened single

polymer strands or the bundles of parallel polymer strands. All these formations (nanoclusters,

Figure 10. Inverse temperature dependence of Seebeck coefficient of AZO and AZO + PMMA films on Al2O3 substrates.

Dashed lines are the linear fit of the corresponding plots. Symbols used to represent data points for different samples are

the same as in Figure 6.
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nanofibers, and nanobundles) can be interconnected forming a network across the inorganic

host. The polymer nanoclusters increased phonon scattering and reduced thermal conductivity

of the nanocomposite films.

As was mentioned above, one of the mechanisms of significant (three times) increase of

the electrical conductivity of AZO + PMMA films with respect to pure AZO could be the

carbonization of the polymer phase. Carbonization occurs as a pyrolysis–a thermochemical

decomposition of organic material at elevated temperatures without oxygen (or any halogen).

Figure 11. Temperature dependence of the thermoelectric figure of merit ZT of AZO and AZO + PMMA thin films on

Al2O3 substrates. Symbols used to represent data points are the same as in Figure 6. ZTwas calculated using the thermal

conductivities of AZO and AZO + PMMA films on Al2O3 substrates measured at 300 K (see Table 1).

Figure 12. Schematic diagram of the AZO + PMMA nanocomposite film illustrating the effects of the polymer nanophase

on the electrical and thermal conductivity of the AZO host.
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It involves the simultaneous change of chemical composition and physical phase. Pyrolysis is a

type of thermolysis, and is most commonly observed in organic materials exposed to elevated

temperatures. It is one of the processes involved in charring wood, starting at 200–300�C (390–

570�F). It also occurs in fires where solid fuels are burning or when vegetation comes into

contact with lava in volcanic eruptions. In general, pyrolysis of organic substances produces

gas and liquid products and leaves a solid residue richer in carbon content, char. Pyrolysis

leading to carbonization of polymers, such as PMMA, poly(vinylidene fluoride)—PVDF, poly

(acrylonitrile)—PAN, and poly-N-vinylformamide—PNVF, during laser ablation and heat

treatment has been reported before and used to modify the electrical conductivity of polymer

coatings and fibers [34–36]. In case of AZO + PMMA films, carbonization could turn the

network of the polymer nanoclusters and nanofibers into an additional efficient passage for

the electric current (Figure 12) contributing to the overall increase of the electrical conductivity

of the nanocomposite films and eventually to the increase of ZT.

4. Conclusions

The new concurrent MBMT-PLD/MAPLE deposition method has been successfully used to

produce nanocomposite oxide-polymer thermoelectric films composed of AZO matrix with

uniformly dispersed PMMA nanoparticles. The deposition was conducted at room tempera-

ture and on the cold (kept also at room temperature) substrate with no buffer gas. The volume

fraction of the polymer material in the AZO matrix was chosen to be around 5%. These depo-

sition conditions affected favorably the enhancement of the thermoelectric effect because the

long-chain polymer molecules had a better chance to reach the substrate and mix with the

inorganic matrix material without being decomposed. The chosen polymer fraction was small

enough not to compromise substantially the electrical conductivity of the matrix. The PMMA

nanoparticles allowed enhancing the phonon scattering with consequent decrease of thermal

conductivity as compared to pure AZO film. The electrical conductivity did not drop after the

addition of the second phase, as it would be expected from Wiedemann-Franz law, but grew

three times higher over pure AZO film. This was assumingly due to the increase of the number

of oxygen vacancies in AZO caused by PMMA or/and by the polymer carbonization at

elevated temperatures. The thermoelectric figure of merit was improved by a factor of two.

Further experiments would be necessary to establish the optimal proportion of the polymer

nanoadditive in AZO matrix and other deposition parameters that maximize the thermoelec-

tric performance of the nanocomposite films. Taking advantage of room-temperature deposi-

tion, optimized AZO nanocomposite films are expected to be used in real applications such as

thin film modules deposited on flexible polymer substrates for ubiquitous harvesting of the

waste heat.
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