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Abstract

High-chromium martensitic steels are one of the basic creep-resisting construction mate-
rials used for the modernization of old and the construction of new power units. During 
the service under creep conditions, the metastable microstructure of martensitic steels 
undergoes gradual degradation. The rate of degradation mostly depends on the operat-
ing temperature, but it is also affected by stresses. The changes in the microstructure 
of martensitic steels have an influence on the decrease in their mechanical properties, 
including creep resistance. The knowledge and description of the changes in the micro-
structure of steels working under creep conditions allow extending the time of safe 
operation of the elements of power systems. The paper presents and describes the main 
mechanisms of degradation of 9–12%Cr martensitic steels on the basis of the independent 
studies and literature data.

Keywords: creep-resistant steel, 9–12%Cr steel, microstructure degradation, 
precipitates, mechanical properties

1. Introduction

The need to reduce emissions of pollutants (mainly CO
2
) to the atmosphere enforced by increas-

ingly stringent EU directives has contributed to the development of conventional energy. 

Restrictions on emissions to the atmosphere caused by the combustion of fossil fuels have 

forced the power industry to increase the thermal efficiency of power units (from 33–35 to 40%, 
and ultimately up to 50%). On the other hand, the need to increase the thermal efficiency of 
power units involves a significant increase in steam parameters (pressure, temperature). This 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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requires the construction of new and the modernization of existing power units to allow them 

to operate at the so-called supercritical or ultra-supercritical steam parameters. The increase in 

steam parameters in new and existing power units was possible due to the materials revolu-

tion in the power industry and was associated with the introduction of new grades of steels 

and cast steels with higher resistance to creep and oxidation than that of the materials used so 

far. The implementation of new materials in the power industry took place primarily through 

modifications and optimizations of steels that were already being used in the power sector. 
It has contributed not only to the increase in steam parameters, but also to the reduction in 

overall dimensions of boiler components, and thus in their weight, which has also a significant 
impact on the reduction in the energy production costs [1, 2].

One of the new steel groups introduced to the power industry was high-chromium martensitic 

steels containing 9–12%Cr. By the optimization of carbon content and the introduction of addi-

tions and micro-additions such as W, Co, V, Nb, N, B, and Cu to these steels, the construction 

materials characterized by high mechanical properties were obtained. For example, their creep 

strength is higher by approx. 20–25% than that of the steels used so far [2, 3]. The expected high 

reliability and long life of up to a minimum of 200,000 h of pressure parts made from, among 
others, 9–12%Cr steels require understanding and describing the effects and microstructure 
degradation processes for these materials. Based on many years of Authors’ own research and 

literature data, the main steel/martensitic cast steel microstructure degradation mechanisms 

and their impact on mechanical properties were described and characterized in this paper.

2. Microstructure degradation and properties of 9–12%Cr steels

The basic requirement for creep-resistant steels used in the broadly understood power indus-

try is to maintain—for a relatively long time of operation (at present, 200–250,000 h)—the 
assumed mechanical properties at the operating temperature of power equipment compo-

nents. The maintenance of the required mechanical properties of creep-resistant steels during 

long-term service depends on the stability of their microstructure. The structural components 

of the power equipment are influenced by the continuous destruction process, which has 
a significant impact on the life and time of safe service of a specific component. Therefore, 
the time of safe service for devices used in the power industry is one of the most important 

parameters related to their life, and it determines their applicability in this sector [1, 4, 5].

During their long-term service, progressive changes in microstructure of creep-resistant steels 

take place—the process of degradation of their microstructure occurs. For 9–12%Cr martens-

itic steels, the main microstructure degradation mechanisms include [6–8]:

• matrix recovery and polygonization processes,

• coagulation of M23C6
 carbides,

• precipitation of secondary phases: Laves phase and Z-phase, and

• depletion of alloying elements in matrix.
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Martensitic steels in the hardened condition are characterized by high dislocation density 

within the martensite laths (1016–1018 m−2). Due to high-temperature tempering of hardened 

steel, a more thermodynamically stable microstructure with still high dislocation density at 

1012–1014 m2 (including free dislocations) within the subgrains formed during the tempering 

is obtained. The dislocation substructure in 9–12%Cr steels is characterized by small elon-

gated subgrain (of 200–400 nm in width) and low-angle boundaries [6, 7, 9, 10]. High disloca-

tion density and microstructure refinement with dislocation boundaries has a very intensive 
impact on the 9–12%Cr steel hardening with the dislocation hardening mechanism and the 

grain boundary hardening mechanism, respectively. The calculations in [11] showed that 

the gain in yield strength in martensitic steels for the above-mentioned mechanisms is 18 

and 33%. In addition to this hardening, the following further mechanisms are additionally 
used to form the structure and mechanical properties of 9–12%Cr steels: solution hardening 

with interstitial and substitution elements and precipitation hardening [9, 11, 12]. In high-

chromium martensitic steels, the precipitation hardening mechanism is mainly performed by 

the secondary particles precipitated when tempering M23C6
 carbides and MX precipitates. In 

9–12%Cr creep-resistant steels, three types of MX precipitates can occur [3, 13, 14]:

• Primary niobium-rich spheroidal NbC carbides (carbonitrides)

• Secondary lamellar VN (VX) nitrides (carbonitrides), which are precipitated within the 

martensite laths during high-temperature tempering

• Precipitate complexes consisting of the spherical NbX precipitate in which the VN precipi-

tate nucleates, referred to as the “V-wings”

The degree of hardening with secondary phase precipitates depends mainly on the amount 

and size of precipitates and their distribution within the matrix.

High-chromium martensitic steels in the as-received condition (i.e., after quenching and tem-

pering) have a metastable microstructure, which will be affected by gradual evolution as a 
result of long-term service (Figure 1).

Figure 1. The microstructure of GP91 cast steel in the as-received condition [8].
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Long-term effect of the temperature and time, in the case of creep as well as stress, leads to 
a decrease in strengthening with the dislocation mechanisms and the grain boundaries. A 

decrease in free dislocation density within grains and increase in size of the subgrains take 

place. The decrease in dislocation density with the time of service/aging is associated with 

the progressing process of their regrouping, arranging, annihilation, and entangling the dis-

locations in grain boundaries as well as the formation of cellular dislocation and subgrain 

microstructure (Figure 2). The matrix recovery and polygonization process results in the dis-

appearance of martensite lath microstructure and the formation of polygonised ferrite micro-

structure Figures 3 and 4.

In the microstructure of martensitic steels, the formation of polygonal structure during 

service takes place due to the progressive increase in the size of subgrains. This process is 

slow because of low mobility of these subgrains. The stability of subgrain size has a posi-

tive impact on the maintenance of high mechanical properties, including creep resistance 

[16]. The increase in the size of subgrains occurs due to the migration or coalescence of the 

sub-boundaries.

The increase in the size of sub-boundaries usually takes place with the “Y” mechanism 

[15, 17, 18]. The migration with this mechanism is based on the movements of “Y” nodes 

that are the place where three sub-boundaries meet, which allows the coalescence of two 

low-angle boundaries. The increase in the size of subgrains with the “Y” node movement 

mechanism is shown in Figure 5.

The matrix recovery and polygonization process takes place in the presence of secondary dis-

persion phases, which act as a stabilizing agent. The lath microstructure stability depends on 

the stability of M23C6
 carbides precipitated on these phases (Figure 6). M23C6

 carbides precipi-

tate on the tempered martensite lath boundaries and on the subgrain boundaries preventing 

Figure 2. The interaction of dislocations with lath/subgrain boundaries, PB2 steel, TEM.
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their growth due to the matrix polygonization, repolygonization, and recrystallization pro-

cesses [17, 19]. In addition, the elongated shape of M23C6
 carbides precipitated on the sub-

boundaries (Figures 1, 3, and 5) has a positive impact on anchoring the boundaries by them 

as their contact surface with the boundary on the same volume fraction is bigger than for 

spherical particles [18].

The thermodynamic thermal stability of M23C6
 carbides is not too high—the Cr23C6

 carbide 

formation enthalpy is: –20 kJ/mol [20]. In the as-received condition, the size of M23C6
 carbides 

Figure 3. The microstructure of: (a) T91 steel after long-term service [12], (b) GP91 cast steel after 70,000 h aging at 600°C.

Figure 4. The microstructure of polygonised ferrite with numerous precipitates in GP91 cast steel after low-cycle fatigue 

at 600°C with strain amplitude of 0.60%.
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in martensitic steels is 50–150 nm [8, 21]. The long-term service/aging contributes to changing 

the morphology of M23C6
 carbides. These precipitates show a high tendency to coagulation. 

The process of coagulation of precipitates is determined by two basic factors: the thermody-

namic and the kinetic one. The thermodynamic factor results from a large value of the surface 

energy of the interphase boundaries. As a result of coagulation, the surface energy decreases 

and aims at reaching the energy equilibrium. The kinetic factor of coagulation, on the other 

hand, is connected with the diffusion and reactions occurring on the boundary surface. They 
run at different rates, and the slowest one determines the rate of particle growth in the sys-

tem, and thereby determines the kinetics of coagulation. The constant of the rate of growth of 

particles K
p
 in the matrix of martensitic steels is presented in Table 1.

Figure 5. The morphology of “Y” nodes in: (a) P91, (b) PB2, TEM [15].

Figure 6. The interaction of dislocations in GP91 cast steel with particles of precipitates occurred after low-cycle fatigue.
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The coagulation of M23C6
 carbides reduces their amount with almost the same volume frac-

tion and results in the increase in distance between these precipitates. Also, nonuniform 

distribution of these precipitates within matrix makes them become a less effective factor 
controlling the increase in the size of subgrains (Figure 7). The literature data [23] show that 

the subgrain boundaries with mutual disorientation angle of less than 20° are not the points 
of preferential carbide precipitation. According to the research in [24], only about 8% of M23C6

 

carbides was precipitated at the low-angle boundaries with mutual disorientation angle of 

8–15°. The low-angle boundaries represent at least 60% of the total amount of boundaries in 

Precipitate Steel Temperature, °C Based on solubilities at tempering 

temperature

Based on solubilities at 

exposure temperature

K
p
, m3 s−1 γ, J/m2 K

p
, m3 s−1 γ, J/m2

MX P92 600 1.17 × 10−32 0.5 8.58 × 10−33 0.5

650 9.5 × 10−32 0.5 65.5 × 10−33 0.5

Laves phase P92 600 – – 2.91 × 10−31 1.0

650 41.6 × 10−31 1.0

M23C6
P92 600 0.12 × 10−29 0.1 1.88 × 10−30 0.1

650 1.37 × 10−29 0.1 4.78 × 10−30 0.1

P91 600 2.88 × 10−29 1.0 7.67 × 10−30 0.5

650 25.3 × 10−29 0.8 59.8 × 10−30 0.3

Table 1. Calculated coarsening rate constants K
p
 of MX, Laves phase, and M23C6

 precipitated in P91 and P92 steel based 

on the shown fit values for the interfacial energy γ [22].

Figure 7. The microstructure of martensitic steels with both wide and narrow martensite laths visible: (a) P91, (b) PB2, TEM.
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tempered martensite. This limits their role and reduces their effectiveness as a substructure 
stabilizer, which results in the reduction in creep strength. The precipitate-free boundaries 

show higher mobility, which results in an increase in their width. The increase in the size of 

M23C6
 carbides precipitated at the boundaries is also conducive to the reduction in ductility of 

9–12%Cr steels [6, 8, 22–26].

In steel with micro-addition of boron, the carbon atoms in M23C6
 carbides are partially 

replaced by boron during the tempering, which results in the formation of M23(C, B)
6
 car-

boborides. Like M23C6
 carbides, these precipitates occur at the grain boundaries and at the 

martensite lath boundaries. However, these precipitates are more finely dispersed and char-

acterized by higher thermodynamic stability compared to M23C6
 carbides [9, 14, 27]. This 

results in a slower increase in the size of these precipitates, which has a positive effect on the 
stability of tempered martensite lath microstructure and results in a higher creep resistance. 

Also according to [24], vanadium plays a significant role as a factor controlling the process of 
coagulation of M23C6

 carbides. Vanadium dissolved in the matrix is conducive to decreasing 

of the coefficient of chromium diffusion in ferrite. Similar influence is also observed in the 
case of tantalum [28]. The temperature of work has a considerable effect on the rate of coagu-

lation of M23C6
 carbides. Elevating the temperature of service by 50°C can cause a growth of 

the rate of coagulation of these precipitates even by an order of magnitude.

The martensitic steels gain high creep resistance mainly due to the precipitation hardening 

provided by: MX nitrides, carbonitrides (where: M = V, Nb; X = C, N). MX precipitates are 

characterized by nanometric dimensions of about 10–50 nm, and in spite of their low volume 
fraction of 0.020–0.025, they ensure very strong hardening of creep-resistant steels (Figure 8).

The hardening with these precipitates is ensured by anchoring and hindering the motion of 

dislocations [6, 7, 9, 14, 15, 18, 29]. The calculations made for the P91 steel showed that the 

stress required for dislocation to “bypass” the carbide and nitride particles with the Orowan 

mechanism is as follows: for M23C6
—39 MPa, for NbC—15 MPa, and for VN—106 MPa [30]. 

The MX precipitates in 9%Cr steels have a very high thermal stability (Table 1). The approxi-

mate formation enthalpy for these precipitates is as follows: for VC and NbC carbides, 55 and 
70 kJ/mol, respectively, and for VN nitride, 125 kJ/mol [19]. High stability of MX precipitates 

and their coherent (semi-coherent) interphase boundaries cause that after approx. 100,000 h 
creep at 600°C, their size is similar to that as in the as-received condition [24, 30, 31].

Figure 8. The MX precipitates in T91 steel after service: (a) NbC and VX, (b) V-wings [12].
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In martensitic steels used at above 600°C and containing at least 10%Cr, MX precipitates rep-

resent a metastable phase and undergo a transition into a more thermodynamically stable 

Z-phase (Figure 9a) [30–34]. The disappearance of finely dispersed MX precipitates in the 
microstructure of these steels due to the MX carbide → Z-phase transition (complex Cr(V, Nb)

N nitride) results in a very fast decrease in creep resistance [31, 32, 34, 35].

According to [32, 35], one large Z-phase precipitate is formed at the expense of dissolving 

approx. 1000–1500 finely dispersed MX precipitates in the matrix. The disappearance of MX 
precipitates in martensitic steels during service in favor of Z-phase eliminates the effect of 
precipitation hardening with these particles. Nevertheless, as shown in [12], the interaction 

of MX precipitates with dislocations (Figure 9b) is still observed in the microstructure of P91 

steel after service, and single Z-phase precipitates do not adversely affect its properties, and 
thus the creep strength (Figure 10).

Unlike the MX precipitates, both the chemical composition and the size of Z-phase depend on 

chemical composition of the steel it precipitates in and on creep duration. The Z-phase in 9%Cr 

steels is approx. 80–100 nm, whereas in steels with 11–12%Cr it is much larger and amounts 
to approx. 0.5–2 μm. Consequently, in 9%Cr steels the Z-phase precipitation is accompanied 
by a slight reduction in the volume fraction of MX precipitates, whereas in 12%Cr steels MX 

precipitates are virtually completely transformed into this complex nitride [31, 32, 36]. In 

addition, in 9%Cr steels the Z-phase precipitates after approx. 105 h at the earliest, while in 

12%Cr steels the precipitation of this phase can be observed as early as after 103 h. Hence, the 

effect of Z-phase precipitates on creep strength is slight in steels with 9%Cr, whereas in 12%Cr 
steels it is significant [25, 32, 35, 36].

In high-chromium martensitic steels, the Z-phase precipitation may proceed with two mecha-

nisms [32, 33]. The schematic transition of MX precipitates into Z-phase in high-chromium 

martensitic steels is shown in Figure 11.

On the other hand, dissolving NbX precipitates in the matrix “releases” carbon atoms, which 

results in the precipitation of chromium-rich M23C6
 carbides, frequently nearby the Z-phase par-

ticles. The precipitation of Z phase is preferential near the grain boundaries of prior austenite, 

and in the steels containing delta ferrite additionally also near the interphase boundary mar-

Figure 9. Z-phase precipitate in T91 steel after service (a), interaction of dislocations inside the subgrain with MX 

precipitates (b).
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tensite/delta ferrite [14, 25, 33, 35, 36]. This is due to faster diffusion of substitution elements 
nearby these defects. It results in the formation of near-boundary areas free from MX precipi-

tates, which leads to the accelerated matrix recrystallization and reduction in strength properties 

in these areas. Such changes lead to the formation of creep grain, which is unequal in volume, 

and consequently to a faster destruction of steel during service [32, 35, 36]. The disappearance of 

Figure 11. Schematic transition of MX precipitates into Z-phase [32].

Figure 10. Results of short-term creep tests of T91 steel after service [12].
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finely dispersed MX precipitates also results in disproportionately high reduction in hardness in 
relation to other mechanical properties [21].

In martensitic steels containing approx. 9%Cr, a more important problem is the increase in 

the size of M23C6
 carbides as well as the precipitation and growth of intermetallic Fe

2
Mo Laves 

phase [6, 7, 25, 37]. In 9–12%Cr steels in the as-received condition, the Laves phase does not 

occur. The precipitation of this phase takes place during service/aging mainly at the grain/lath 

boundaries, frequently nearby M23C6
 carbides Figure 12 [37–39]. In the case when the total 

content of W + Mo in the steel amounts to at least 4.53, the particles of Laves phase precipitate 
heterogeneously at grain boundaries as well as homogeneously within grains, forming the 

precipitation free zone on both sides of the grain boundary [40].

It is assumed that due to high dispersion in the initial period of the precipitation the Laves 

phase has a positive effect on properties of these steels by increasing the precipitation harden-

ing. However, low stability of the Laves phase results in its high coagulability, which results 

in a very fast increase in its size [15, 25, 37, 39].

The Laves phase precipitating in 9–12%Cr creep-resistant steels makes the matrix deplete of 

substitution elements (tungsten, molybdenum, chromium), which increases the tendency of 

these steels to the recovery and polygonization process and reduces their resistance to oxida-

tion. On the other hand, the matrix depletion of substitution elements (Cr, Mo, W), which are 

also components of M23C6
 carbides, has a positive effect on the inhibition of coagulation of these 

precipitates [12, 38]. According to [41, 42], the nucleation and growth of Laves phase requires 

the enrichment of micrograin boundaries not only in Mo and Si, but also in phosphorus.

The Laves phase precipitates with average diameter above 130 nm also contribute to the 
change in cracking mechanism from ductile to brittle (transcrystalline, cleavable fracture) and 
are the main reason for sudden reduction in creep strength of [40, 41, 43, 44]. The Laves phase 

and M23C6
 carbide precipitates occurring during long-term service form the so-called continu-

ous grid of precipitates at the grain boundaries (Figure 13), which contributes to a decrease in 

ductility of 9% Cr steel [8, 12, 43–49].

Figure 12. Precipitation of Laves phase at the grain boundary nearby M23C6
 carbides: (a) T91 steel, (b) GP91 cast steel [38].
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The increase in stability of the Laves phase precipitates in these steels can be achieved by the 

addition of boron and/or tungsten [50, 51]. On the contrary, phosphorus, silicon, and cobalt 

have an adverse effect as they stimulate the precipitation of the Laves phase [52, 53].

In the tempered structure of martensite in steel of the 9–12%Cr type, in the case of the typical 

volume fractions of particular precipitates and spacing between them, the Orowan stress can 

be estimated as shown in Table 2.

The precipitation processes as well as the growth of carbides and secondary phases, which 

occurs during the operation of creep-resistant steels, make the matrix deplete of substitution 

elements as a result of their diffusion into these precipitates.

The matrix depletion of the above-mentioned elements facilitates the self-diffusion processes, 
speeds up the matrix recovery and polygonization processes, and reduces the oxidation resis-

tance, thus contributing to the reduction in high-temperature creep resistance and life of these 

steels [11, 54].

An important factor affecting the basic property of 9–12%Cr steels, i.e., creep strength, is alu-

minum content in the steel. The addition of aluminum to steel is to deoxide it in the metal-

lurgical process, hence part of aluminum will remain as Al
2
O3 in the steel, while the other part 

in the atomic form is dissolved in solid solution. The aluminum content in 9–12%Cr steels for 

Figure 13. Continuous grid of precipitates at the former austenite grain boundaries (a) P91 steel (SEM), (b) GP91 cast 

steel (TEM) [49].

Particle Volume fraction, % Diameter, nm Spacing, nm Orowan stress, MPa

Fe
2
M 1.5 70 410 95

M23C6
2 50 260 150

MX 0.2 20 320 120

Table 2. Volume fraction, diameter, and spacing of each kind of precipitates in high-chromium martensitic steel, together 

with Orowan stress from the values of interparticle spacing [14].
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the power industry should not exceed 0.04%. Due to its greater affinity to nitrogen, alumi-
num forms large lamellar AlN nitrides of about 0.5–1.0 μm to prevent the formation of finely 
dispersed vanadium-rich MX precipitates. This results in not only a reduction in the volume 

fraction of vanadium-rich MX precipitates, but also in a change in their chemical composition. 

There occurs a decrease in the amounts of vanadium and nitrogen with simultaneous increase 

in the amounts of niobium and carbon in these precipitates, which makes niobium-rich car-

bides (NbC) become the main precipitate in martensitic steel. This results in a decrease in 

creep strength of martensitic steels: for P91—by about 10% at 600°C, whereas for P92 the time 
to rupture of test specimen was shorter by 7–30 times, depending on test temperature and 
stress [30, 55]. Higher than permissible aluminum content in 9–12%Cr steels has a positive 

Features of microstructure As-received condition Creep/aging

Matrix Dislocation density High Low/very low

Size, width of subgrains/

martensite laths

High-temperature 

tempered martensite 

microstructure with 

small width of laths

Recovery and 

polygonization process – 

transformation of the lath 

martensite microstructure 

into the polygonised ferrite 

grain microstructure

Precipitates MX Finely dispersed 

(~20–50 nm), precipitated 
inside laths at 

dislocations, limit grain 

growth, make steel 

precipitation-hardened

Finely dispersed (~20–
50 nm), precipitated inside 
laths at dislocations, limit 

grain growth, make steel 

precipitation-hardened, 

change into Z-phase

M23C6
50–150 nm, precipitated 
at the martensite lath 

boundaries and at the 

former austenite grain 

boundaries, stabilize 

substructure

≥220 nm, partially 
precipitated at the 

subgrain boundaries, 

coagulate during creep/

aging resulting in a 

reduction in creep 

strength and increase in 

embrittlement

Z-phase Nonexistent Formed at the expense 

of finely dispersed MX 
precipitates, causes 

sudden decrease in creep 

strength

Laves phase nonexistent Medium and large size of 

precipitates (≥0.5–1 μm), 
precipitated at the grain 

and subgrain boundaries 

nearby M23C6
, decreases 

creep strength and 

reduces ductility

Table 3. Basic features of microstructure in 9–12%Cr steels in the as-received condition and after creep.
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effect on the increase in impact strength and reduction in brittle fracture appearance transi-
tion temperature, which is the result of positive effect of AlN on the austenite grain refine-

ment. The increase in aluminum content from 0.03 to 0.094% in P92 steel makes the average 
diameter of austenite grain decrease from 50 μm (which corresponds to the grain grade of 5.5)  
to 10 μm (grain grade 10) [30, 56]. The negative impact of aluminum on creep resistance 

requires control of chemical composition of 9–12%Cr steel as early as at its production stage, 

in particular with regard to elements with high affinity to nitrogen, such as Al and Ti, so as 
to prevent from the formation of unfavorable AlN or TiN nitrides at the expense of finely 
dispersed VN precipitates.

The basic features of the microstructure of 9–12%Cr steel in the as-received condition and 

after long-term service/aging are summarized in Table 3.
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