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Abstract

In view of the analogy of an exciton, biexciton and trion to the positronium (Ps) atom, Ps
molecule, and Ps negative ion, in this chapter, we review our recent works on the Ps
atom, Ps negative ion (Ps�), and Ps-Ps interaction with Coulomb and screened Coulomb
interactions for better understanding of spectroscopic properties of excitons, and exci-
tonic ions and molecules. For the Coulomb case, this chapter describes the recent theo-
retical developments on the ground state, resonance states, photodetachment cross
sections, polarizability and the recent experimental advancement on the efficient forma-
tion, photodetachment, resonance state of Ps�. The chapter also presents results for the
lowest 3De Feshbach and 1Po shape resonances for Ps� using correlated exponential
wavefunctions. The 1Po shape resonance parameter is in agreement with the recent
experiment. For screened interactions, various properties of Ps and Ps� along with the
dispersion coefficients for Ps-Ps interaction have been reviewed briefly. This review
describes the effect of screened interactions on various properties of Ps� within the
framework of both screened Coulomb potential (SCP) and exponential-cosine-screened
Coulomb potential (ECSCP). The influence of ECSCP on the dipole and quadrupole
polarizability of Ps� as functions of screening parameter and photon frequency are
presented for the first time.

Keywords: excitons, positronium atom, trions, positronium negative ion, bi-excitons,
positronium molecule, correlated exponential wave functions, spectroscopic properties,
variational methods

1. Introduction

An exciton is a bound state of an electron and a positive hole (an empty electron state in a

valence band), which is free to move through a nonmetallic crystal as unit. The electron and

the positive hole are attracted to each other by the electrostatic Coulomb force. Excitons are

electrically neutral quasiparticles that exist in insulators, semiconductors, and in some liquids.

Excitons are difficult to detect as an exciton as a whole has no net electric charge, but the
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detection is possible by indirect means. Excitons can be described at various levels of sophis-

tication; among them, the simplest and intuitive pictures can be understood using the

effective mass approximation. Such approximation suggests that the Coulomb interaction

between an electron and a positive hole leads to a hydrogen-like problem with a Coulomb

potential term �e
2/(4πε0ε|re�rh|). Indeed, excitons in semiconductors form, to a good app-

roximation, a hydrogen- or positronium-like series of states below the gap. The analogy of

excitons to the hydrogen atom or even better the positronium atom can be pushed further. In

analog to the formation hydrogen molecule or positronium molecule, two excitons can bind

to form a new quasiparticle, the so-called bi-exciton or excitonic molecule. Similarly, in

analog to the hydrogen molecular ion or the positronium negative ion, it is possible to form

trions which are charged excitons or bi-excitons, i.e., quasiparticles of two electrons and one

hole or vice versa. Like Ps molecule or Ps negative ion, bi-excitons or trions can also form

bound states or quasi-bound states from the theoretical point of view. For detail discussions,

classifications, and list of references on excitons, interested readers are referred to the review

book authored by Klingshirn [1]. Keeping the above discussion in mind, it would be of great

interest to review our works on the Ps atom, Ps negative ion, or Ps-Ps interaction for better

understanding of spectroscopic properties of excitons, bi-excitons, or trions. The study of

excitons under the influence of external environments is also of great interest both from

theoretical and experimental sides. In this work, we have also discussed our recent study of

the proposed systems under the influence screened Coulomb and cosine-screened Coulomb

potentials.

The positronium negative ion (Ps�) is the simplest bound three-lepton system (e+, e�, e�) for

which the 1Se state is the only state stable against dissociation but unstable against annihilation

into photons. The Ps� has gained increasing interest from the theoretical studies and experi-

mental investigations since its theoretical prediction [2] and discovery [3]. This ion is a unique

model system for studying three-body quantum mechanics as the three constituents of the Ps

negative ion are subject only to the electroweak and gravitational forces. This elusive ion is of

interest in the various branches of physics including solid-state physics, astrophysics, and

physics of high-temperature plasmas, etc. It is also important for workability of many technical

devices, such as modern communication devices. The Ps� has been observed first by Mills [4]

almost 40 years ago, and he subsequently measured its positron annihilation rate [5]. Since

then, several experiments have been performed on this ion. Review of the most recent exper-

iments can be found in the article of Nagashima [6] which also contains a large number of

useful references. This review [6] also includes discussion on efficient formation of ion, its

photodetachment, and the production of an energy-tunable Ps beam based on the technique of

the photodetachment. It is here noteworthy to mention the accurate measurement of the decay

rate [7] and only measurement of the 1Po shape resonance of Ps� [8]. Several theoretical studies

have been calculated so far on various properties of this ion, such as bound state [9–17],

annihilation rate [16–18], photodetachment cross sections [19, 20], resonance states [21–24],

and polarizability [25–27], using the numerical approaches such as the variational principle

of Rayleigh-Ritz [9, 15–17, 28, 29], the correlation function hyperspherical harmonics method
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[30–32], the complex-coordinate rotation method [33–36], the stabilization method [36–40], and

the pseudostate summation method [25–27, 41–43]. Full list of articles can be found in the next

sections. Besides such properties in the Coulomb case, several properties of the Ps negative ion

have been studied under the influence of screened Coulomb potential (SCP) and exponential

cosine-screened Coulomb potential (ECSCP). It is important to mention here that the study of

atomic processes under the influence of screened interactions is an interesting, relevant, and hot

topic of current research [44–49]. The complete SCP in a general form can be written as [50, 51]

V rð Þ ¼

Ze2
1

r
�

1

λD þ λA

� �

, r ≤λA

λD

λD þ λA

� �

Ze2

r
exp �

r� λA

λD

� �

, r ≥λA

,

8

>

>

>

>

<

>

>

>

>

:

(1)

where Z, λD, and λA denote the nuclear charge, the screening length, and the mean radius of

the ion sphere, respectively. In the limit when λA! 0, Eq. (1) reduces to the Debye-Hückel

potential [52]. The ECSCP in form can be written as [53]

V rð Þ ¼
Ze2

r

� �

exp �μr
� �

cos μr
� �

, (2)

where μ is the screening parameter. The SCP or ECSCP occurs in several areas of physics

(solid-state physics, ionized plasma, statistical thermodynamics, and nuclear physics). The

potentials are also used in describing the potential between an ionized impurity and an

electron in a metal or a semiconductor and the electron-positron interaction in a positronium

atom in a solid [44–55]. In the next sections, we will briefly describe the properties of Ps

negative ion, such as bound state, positron annihilation, resonance states, photodetachment,

and polarizability. Bound states of the Ps atom and the Ps2 molecule and dispersion coefficients

on Ps-Ps interaction have also been discussed in the next sections.

2. Bound states

It is well-described that variational methods are the most effective and powerful tool for

studying the Coulomb three-body bound-state problem [8, 11, 12, 16, 17, 56]. From here, we

will concentrate on the works based on the variational approach. As mentioned in the last

section, the Ps� has very simple bound-state spectra that contain only one bound (ground),

singlet state with total angular momentum, L = 0, i.e., 1 1S state for short. To calculate ground

state energy of such ion, one needs to obtain the solutions of the Schrödinger equation,

HΨ = EΨ, where Ε<0 following the Rayleigh-Ritz variational method. Here, we review our

works using correlated exponential wave functions. The nonrelativistic screened Hamiltonian

H (in atomic units) for a system having two electrons and a positron is given by
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H ¼ T þ V, (3)

with

T ¼ � 1

2
∇

2
1 �

1

2
∇

2
2 �

1

2
∇

2
3, (4)

V ¼ �V μ; r13
� �

� V μ; r23
� �

þ V μ; r12
� �

, (5)

V μ; rij
� �

¼ exp �μ ri � rj

�� ��� �

ri � rj

�� �� cos �ξμ ri � rj

�� ��� �
, (6)

where 1 and 2 denote the two electrons and 3 denotes the positively charged particle and |ri�rj|

= rji = rji = |rj�ri|. In Eq. (6), ξ = 0 for SCP, ξ = 1 for ECSCP, and μ = 0 for unscreened case (UC).

The variational wave functions for the 1S-state of positronium negative ion can be shown as

Ψ0 μ
� �

¼ 1þ P
_

12

� �XNB0

i¼1

C0
i μ
� �

exp �α0
i r13 � β0i r23 � γ0

i r12
� �

, (7)

where the operator bP12 is the permutation of the two identical particles 1 and 2. NB0 is the

number of basis terms. The nonlinear variational parameters α0
i , β

0
i ,γ

0
i in the basis sets (7) are

generated by the judicious implementation of a pseudorandom process of the following form

Xn
i ¼ 1

2
i iþ 1ð Þ ffiffiffiffiffiffi

pX
p


 �
R2,X � R1,Xð Þ þ R1,X, (8)

[x] is the fractional part of x, [R1,X,R2,X](X = α,β,γ) are real variational intervals which need to

be optimized, and pX assigns a separate prime number for each X. Quite a few theoretical

studies have been performed to calculate binding energies of the proposed ion using varia-

tional wave functions (7) and the Hylleraas-type wave functions:

Ψkmn ¼
X

kmn

Ckmn exp �α r13 þ r23ð Þ½ �rk12rm13rn23 þ 1 $ 2ð Þ
� �

: (9)

In Eq. (9), we also have k + m + n ≤ Ω, with Ω, l, m, and n being positive integers or zero.

Detailed works in free atomic cases can be found from the earlier works [9–17, 57, 58]. In the

screening environments, the ground state energy of Ps� along with the electron affinity of Ps

atom has been estimated variationally by Saha et al. [57] using multi-term correlated basis sets

and SCP. The bound-state properties including ground state energies, radial and correlation

cusp for this ion, and electron affinity of Ps have been investigated by us [58] using SCP and

correlated wave functions (7). The bound states of Ps atom have also been described in our

previous work under SCP ([59], references therein). To calculate the bound states of Ps atom,

we have used standard Slater-type orbitals (see Eq. (40) in Section 7). Similar properties have

been studied by Ghoshal and Ho [59] using ECSCP and wave function (9). The results show
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interesting behavior in the screening environments. The binding energies of the Ps molecule

have been reported in previous works [60, 61].

3. Positron annihilation

The (e+,e�)-pair annihilation (or positron annihilation, for short) can proceed with the emission

of a number of photons, for illustration, e+ + e
� = γ1 + γ2 + γ3⋯ +γK, where γK is the emitted

photons and K is the maximal number of such photons [16, 17]. Each of the annihilation

processes has its unique annihilation width or annihilation rate Γkγ. For the proposed ion, the

two-photon case would be the dominant annihilation process. However, the one-photon and

three-photon, etc., annihilation are possible but in smaller rates. The annihilation rates Γ2γ, Γ3γ,

Γ4γ, Γ5γ, and Γ1γ (arranged according to their numerical values) are important in applications.

Here, we mention the formula for the one-, two-, three-, four-, and five-photon and total

annihilation (Γ) rates, respectively [16, 17, 58]:

Γ1γ ¼
64π2

27
α8ca�1

0 <δ321> ¼ 1065:7569198 <δ321> s�1, (10)

Γ2γ ¼ nπα4ca�1
0 1�

α

π
5�

π2

4

� �
 �

<δ r31ð Þ>

¼ 100:3456053781� 109 <δ r31ð Þ> s�1,

(11)

Γ3γ ¼ nα5ca�1
0

4 π2 � 9
� �

3
<δ r31ð Þ>

¼ 271:8545954� 106 <δ r31ð Þ> s�1,

(12)

Γ4γ ≈ 0:274
α

π

� �2

Γ2γ, (13)

Γ5γ ≈ 0:177
α

π

� �2
Γ3γ, (14)

Γ ≈n Γ2γ þ Γ3γ

� �

¼ 2πα4ca�1
0 1� α

17

π
�
19π

12

� �
 �

<δ r31ð Þ>

¼ 100:61745997357� 109 < δ r31ð Þ > s�1,

(15)

where α, c, and a0 denote, respectively, the fine structure constant, the velocity of light, and the

Bohr radius and <δ321> denotes the expectation value of three-particle delta function. It is

obtained from the expectation value <Ψ∣Ψ> evaluated for r32 = r31 = r21 = 0. Exploiting the

results for <δ321> and <δ(r31)>, one can easily calculate the values of Γ1γ, Γ2γ, Γ3γ, Γ4γ, Γ5γ, and

Γ using the explicit relation (10)–(15). The total annihilation rate along with the one-, two-, and

three-photon annihilation rates, together with the values of <δ321> and <δ(r31)> for various

Debye lengths, is reported in our earlier work. The annihilation rates obtained from our

calculations [59] are in agreement with the reported results [16, 17]. Detailed calculations of
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annihilation rate can be found from previous articles. As mentioned above, the positron

annihilation process is of great interest in several areas of physics, such as astrophysics, solid-

state physics, etc. It is also important for applicability of many technical devices, e.g., modern

communication devices. In this review, we cited the recent references for free atomic case. For

screened interaction, Kar and Ho [58] reported the annihilation rate under the influence of

SCP, and Ghoshal and Ho [59] studied the similar features under ECSCP. The annihilation

rates decrease with increasing screening strength.

4. Resonance states

A great number of theoretical studies on Ps� have been performed in last few decades. Several

studies have been performed on the resonances in e�-Ps scattering using the theoretical

methods such as the Kohn-variational method [20], adiabatic treatment in the hyperspherical

coordinates [62, 63], adiabatic molecular approximation [64], the hyperspherical close coupling

method [65], the complex-coordinate rotation method [23, 24, 66–71], and the stabilization

method [67, 68, 72–74]. For the recent advances in the theoretical studies on the resonances in

Ps�, readers are referred to recent reviews [23, 24, 66, 67, 75–77]. Review on resonance states of

the proposed ion can be found in the articles of Ho [21–24, 33, 67–71]. Here, we review the

resonance calculations using correlated exponential wave functions within the framework of

two simple and powerful variational methods: the stabilization method (SM) and the complex-

coordinate rotation method (CRM). The variational correlated exponential wave functions for

higher partial wave states can be written as

Ψn μ
� �

¼ 1þ SpnbP12

� � XNBn

i ¼ 1
l1 þ l2 ¼ Lþ ε

XL

l1¼ε

Cn
i μ
� �

�1ð Þκf r13; r23; r21ð ÞYl1, l2
LM r13; r12ð Þ, (16)

with the radial function f(r13,r23,r21) and the bipolar harmonics Yl1, l2
LM r13; r23ð Þ,

f r13; r23; r21ð Þ ¼ exp �χ αn
i r13 þ βni r23 þ γn

i r21
� �� 


, (17)

Yl1, l2
LM r13; r23ð Þ ¼ rl113r

l2
23

X

m1,m2

< l1l2m1m2∣LM > Yl1m1
br13ð ÞYl1m2

br23ð Þ, (18)

where l1 = i�(L + 1)mod{i/(L + 1)} for natural parity states, l1 = mod{i/L} + κ for unnatural

parity states, mod{i/I} denotes the remainder of the integer division i/I, NBn is the number of

basis terms, κ = 0 for natural parity states, κ = 1 for unnatural parity states, and χ is a scaling

factor. Now, we would like to point out briefly the computational aspects of SM and CRM.

4.1. Computational aspect of SM

In the first step of resonance calculations using the stabilization method [37–40, 55, 67, 68,

72–74], it is mandatory to obtain precise values of energy levels. Resonance position can be
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identified after constructing stabilization diagram by plotting energy levels, E versus the

scaling factor χ for certain μ. A stabilization diagram for the resonance states for the 3De states

of Ps� for certain range of energy is depicted in Figure 1. The stabilized or slowly decreasing

energy levels in the stabilization diagram indicate the position of the resonance at an energy E.

Then to extract parameter (Er,Γ) for a particular resonance state, one needs to calculate the

density of the resonance states for each single energy level in the stabilization plateau using the

formula

ρn Eð Þ ¼
En αjþ1

� �

� En αj�1

� �

αjþ1 � αj�1

�

�

�

�

�

�

�

�

�1

En αjð Þ¼E

, (19)

where the index j is the jth value for α and the index n is for the nth resonance. After calculating

the density of resonance states ρn(E) using formula (18), we fit it to the following Lorentzian

form that yields resonance energy Er and a total width Γ, with

ρn Eð Þ ¼ y0 þ
A

π

Γ=2

E� Erð Þ2 þ Γ=2ð Þ2
, (20)

where y0 is the baseline offset, A is the total area under the curve from the baseline, Er is the

center of the peak, and Γ denotes the full width of the peak of the curve at half height.

We obtained the desired results for a particular resonance state by observing the best fit (with

the least chi-square and with the best value of the square of the correlation coefficient) to the

Lorentzian form. The best fitting (solid line, using formula (20)) of the calculated density of

states (circles, using formula (18)) for the lowest 3De state of the Ps negative ion is presented in
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-0.0628
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E
 (

a
.u

.)
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−1

0
)
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Figure 1. Stabilization diagram for the 3De states of the Ps negative ion using 600 basis terms in Eq. (26).
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Figure 2. The resonance position and width obtained from this work for the lowest 3Destate

below the Ps (N = 2) threshold as Er = �0.06259(1) a.u. and Γ = 2.2(8)�10�6 a.u. are comparable

with the results Er = �0.0625878(10) a.u. and Γ = 6.4(20)�10�6 a.u. reported by Bhatia and Ho

(see Refs. [70, 71]). As the 3De resonance states are too narrow, so it seems difficult to extract

resonance parameters for the other states above the Ps (N = 2) threshold. However, a 3De

resonance parameter is obtained for the first time using the stabilization method, as well as

using correlated exponential wave functions.

4.2. Computational aspect of CRM

In the complex-rotation method [23, 24, 33], the radial coordinates are transformed by

r ! reiθ (21)

and the transformed Hamiltonian takes the form:

H ! T exp �2iθð Þ þ Ve�iθ exp �reiθµ
� �

(22)

where T and V are the kinetic and the Coulomb part of potential energies. The wave functions

are those of Eqs. (7) and (9). In the case of non-orthogonal functions, there are overlapping

matrix elements:

Nij ¼ ψijψj

D E

(23)

and

Hij ¼ ψijH θð Þjψj

D E

(24)
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Figure 2. The best fitting (solid line) of the calculated density of states (circles) for the lowest 3De state of the Ps negative

ion.
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The complex eigenvalues problem can be solved with

X

i

X

j

Cij Hij � ENij

� �

¼ 0 (25)

Resonance poles can be identified by observing the complex energy levels, E(θ,α). The com-

plex resonance eigenvalue is given by

Eres ¼ Er �
iΓ

2
, (26)

where Er is the resonance energy and Γ is the width. The resonance parameters are determined

by locating stabilized roots with respect to the variation of the nonlinear parameters in the

wave functions and of the rotational angle θ.

Resonance states for P, D, and F states of the Ps� were reported following the abovementioned

wave functions (16) and CRM [23, 24]. We have also located an S-wave shape resonances of the

Ps� lying above the Ps (N = 2) threshold using wave functions (18) and (9) and CRM [78]. Later,

S-wave resonance states associated with and lying above the Ps (N = 2, 3, 4, 5) thresholds are

reported by Jiao and Ho [79] using the wave function (9) and CRM. We have mentioned that a
1Po shape resonance has been observed in the laboratory [8]. The observed 1Po shape resonance

is in agreement with the available theoretical data [80–82] and the present work using corre-

lated exponential wave functions and CRM. Figure 3 shows the rotational path for the 1Po

shape resonance of the Ps� lying above the Ps (N = 2) threshold, in the complex plane for four

different values of the scaling factor, χ using 500-term correlated exponential basis functions.

From this work, we have obtained the lowest 1Po shape resonance parameters as Er = �0.06212

-0.06220 -0.06216 -0.06212 -0.06208
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[E

] 
( 

1
0

−
3

a
.u
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Re[E] (a.u.)
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ω=0.30
ω=0.35

θ=0.15(0.05)0.45

NBn=500

Figure 3. Rotational path of the 1Po shape resonance of the Ps� lying above the Ps(N = 2) threshold, in the complex plane

for four different values of the scaling factor, χ using 500-term correlated exponential basis functions.
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(3) a.u. and Γ = 0.00044(3) a.u. The numbers in the parentheses indicate the uncertainty in the

last digits. The resonance states of Ps-Ps interaction were also studied by Ho [69].

In the screening environment, Kar and Ho [67, 68, 72–74] investigated the effects of SCP on the

S-, P-, and D-wave resonance states of the Ps� using correlated exponential wave functions,

and Ghoshal and Ho [83] reported the effects of ECSCP on the lowest S-wave resonance state

using the wave function (11) within the framework of SM. The resonance states have also

successfully obtained using Hylleraas-type wave functions (9). Ho and Kar [76, 77] also inves-

tigated the S-wave resonance states of the proposed ion under the influence of SCP using CRM

and wave function (9). In this work, wave functions (9) with up to Ω = 21, NB0 = 1078, were

used. The resonance parameters below the N = 2, 3, 4, 5, and 6 Ps thresholds, for various

screening parameters, were reported. The lowest S-wave resonances of this ion interacting with

ECSCP have also been studied by Ghoshal and Ho [83] using wave function (9) and ECSCP.

5. Photodetachment

The photoionization or photodetachment process is a subject of special interest in several areas

of physics, such as astrophysics, plasma physics, and atomic physics due to its extreme

importance in the atomic structures and correlation effects between atomic electrons [16, 17,

82, 84, 85]. The photoionization processes are also of great interest due to their applications in

plasma diagnostics. Photodetachment of the Ps� is also of particular interest as the experi-

ments on Ps� suggest that the Ps could be used to generate Ps beams of controlled energy, and

this will involve acceleration of Ps� and photodetachment of one electron. Photodetachment of

the Ps� is also of utmost importance due to its application in propagation of radiation in our

galaxy. It is well known that the center of our galaxy, the Milky Way, contains a number of

sources of the annihilation γ-quanta with Eγ ≈ 0.511 MeV [86].

We reported the effect of screened Coulomb (Yukawa) potentials on the photodetachment

cross sections of the positronium negative ion by using the asymptotic form of the bound-

state wave function and a plane wave form for the final-state wave function. For detailed

calculations and applications of the photodetachment of the positronium negative ion, inter-

ested readers are referred to the articles of Bhatia and Drachman [19], Frolov [17], Igarashi [82,

84, 85], Michishio et al. [8], Nagashima [6], and Ward et al. [20]. Here, we outlined the

computational details in brief as mentioned in our earlier work [87] and in the works of Bhatia

and Drachman [19].

In our previous work [87], we have considered the final-state wave function of the form

Ψf ¼ exp i p
!

: r
!

� �

with E = 3p2/4 and the initial bound-state wave function in the asymptotic

region with the following form: Ψi = Cexp(�γr)/r. The constant C for the Ps negative ion is

obtained from the formula

C ¼ GAr exp γrð ÞΨi r; 0; rð Þ, (27)
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where GA is some normalization constant and γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 EPs � EPs�ð Þ=3

p
, with EPs� and EPs, the

ground state energies of the Ps� ion and Ps atom, respectively. The ground state energy of the
Ps atom has been calculated using basis functions (40) prescribed in Section 7.

The photodetachment cross sections (σ) having photon energy Ep can be expressed as

σ ¼
2
3
αa20pg Ep

� �
< Ψf ∣bΛ 1; 2ð Þ∣Ψi > , (28)

where α is the fine structure constant and g(E) = E or E�1 for the dipole length and velocity
approximations, respectively. The operator Λ represents the position and gradient operators
for the length and velocity approximations, respectively, and can be written in explicit form as
bΛ 1; 2ð Þ ¼ Λ r

!
13

� �
þΛ r

!
23

� �
.

The final form of σ in terms of wavelength takes the form

σ ¼ 4:30255225� 10�17ρ5 C
2

γ3

λ

λ0


 �3=2
1�

λ

λ0


 �3=2
cm2,withλ ≤λ0, (29)

and λ0 = 911.267057/γ2 (in Å), where ρ denotes the reduced electron mass. For the Ps� ion,

ρ ¼ 1þM�1
c

� ��1
withMc = 2. The required normalization constant has been determined in this

from highly accurate, completely non-adiabatic wave functions in Eq. (7) for the three-particle
systems. Similar type of work was reported by Ghoshal and Ho using ECSCP and wave
function (9) [88].

6. Polarizability

The study of atomic and ionic polarizabilities (both static and dynamic) plays an important
role in a number of applications in physical sciences ([25–27, 44, 45, 89–98], references therein).
When an atom or ion or molecule is placed in an electric field, the spatial distribution of its
electrons experiences a distortion, the extent of which can be described in terms of its polariz-
ability. The dynamic (dc) polarizability describes the distortion of the electronic charge distri-
bution of an atom, ion, or molecule in the presence of an oscillating electric field of certain
angular frequency. In this review, we describe the polarizability calculations of the Ps negative
ion reported by Bhatia and Drachman [25], Kar and Ho [99], and Kar et al. [26, 27]. We also
describe the polarizability calculations with SCP and ECSCP. To obtain dipole and quadrupole
polarizability for the Ps� ion, it is an important task to determine precisely the energies and
wave functions for the ground state and the final P and D states. The dynamic 2l-pole polariz-
ability of the Ps� ion in the screening environment can be written as [27]

αl ωð Þ ¼ αþ
l ωð Þ þ αþ

l �ωð Þ (30)
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with

αþ
l ωð Þ ¼

8π

2lþ 1

M

Mþ 1

� �2lþ1 X

n

f nl
En μ

� �
� E0 μ

� �
þ ω

in units of a2lþ1
0

� �
, (31)

where

f nl ¼ Ψ0 μ
� �

j
X2

i¼1

rliYlm rið ÞjΨn μ
� �

* +�����

�����

2

(32)

The summation in the above expression includes all the discrete and continuum eigenstates. Ψ0

and Ψn describe the ground state eigenfunction with the corresponding energy eigenvalue E0

and the nth intermediate eigenfunction for the final states with the corresponding eigenvalue, En,

respectively. In the limit when ω!0, αl(ω) is the static polarizability. For precise determination of

eigenvalues and eigenfunction for each frequency and for each screening parameter for a partic-

ular system, one needs to solve the Schrödinger equation, HΨ = EΨ, by diagonalization of the

Hamiltonian with the properly chosen wave functions in Eqs. (7) and (10). We rewrite the explicit

form of wave function in Eq. (10) for polarizability calculations of this ion as

Ψn μ
� �

¼ 1þ bP12

� � XNBn

i ¼ 1
l1 þ l2 ¼ L

Cn
i μ
� �

exp �αn
i r13 � βni r23 � γn

i r21
� �

Yl1, l2
LM r13; r12ð Þ (33)

where l1 = i�(L + 1)mod{i/(L + 1)}, mod{i/(L + 1)} denotes the remainder of the integer division

i/(L + 1), and NBn is the number of basis term.

The static dipole and quadrupole polarizability for Ps� has been reported by Bhatia and

Drachman [25]. Kar and Ho also reported the static dipole polarizability of this ion in the

screening environments as well in free atomic system [99]. Kar et al. also reported the dipole

and quadrupole polarizabilities (static and dynamic) of this ion using SCP and exponential

wave functions (33) [26, 27]. The dynamic dipole polarizability of the Ps� was also studied by

Kar et al. [27] in the screening environments. In this present work, we calculate the dipole and

quadrupole polarizabilities (static and dynamic) under the influence of ECSCP and wave

functions (33). The polarizabilities as functions of screening parameter and photon frequency

are reported in Figures 4 and 5 and Tables 1 and 2.

7. Dispersion coefficients for Ps-Ps interaction

Knowledge of the Van der Waals two-body dispersion coefficients in the multipole expansion

of the second-order long-range interaction between a pair of atoms is of utmost importance for

the quantitative interpretation of the equilibrium properties of gases and crystals, of transport

phenomena in gases, and of phenomena occurring in slow atomic beams ([93, 100–102],

references therein). The long-range part of the interaction potential between two spherically
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symmetric atoms a and b separated by a distance R can be written as a series with coefficients

Cn denoted as dispersion coefficients [93, 100–102]:

Vab ¼ �
C6

R6
�
C8

R8
�
C10

R10
�⋯, (34)

with

C6 ¼
3

π

Gab 1; 1ð Þ, (35)

C8 ¼
15

2π
Gab 1; 2ð Þ þ Gab 2; 1ð Þ½ �, (36)

C10 ¼
14

π

Gab 1; 3ð Þ þ Gab 3; 1ð Þ½ � þ
35

π

Gab 2; 2ð Þ, (37)

where

Gab la; lbð Þ ¼
π

2

X

nm

f
lað Þ
n0 f

lbð Þ
m0

Ea
n0E

b
m0 Ea

n0 þ Eb
m0

� � , (38)
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Figure 4. The dipole polarizability of the positronium negative ion as a function of screening parameter and photon

frequency.
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Ei
n0 ¼ Ei

n � Ei
0 is the excitation energy for atom i and is positive for the atoms in the ground

state, and f
lð Þ
n0 denotes the 2

l-pole oscillator strengths and defined by

f
lð Þ
n0 ¼

8π

2lþ 1
En � E0ð Þ < Ψ0

X

i

rliPl cosϑið Þ
�

�

�

�

�

�

�

�

�

�

Ψn

* +�

�

�

�

�

�

�

�

�

�

2

, (39)

with i = 1 for Ps and H atom. We also review here the dispersion coefficients for H-H interac-

tions to establish a relation of dispersion coefficients with Ps-Ps and H-H interaction.

For positronium and hydrogen atoms, we have employed the Slater-type basis set:

Ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2lþ 1
p

4π

X

N

i¼l

Dir
iþle�λrPl cosθ1ð Þ, (40)

where λ is the nonlinear variation parameters; l = 0, 1 for S and P states, respectively, and

Di(i=1,.…,N) are the linear expansion coefficients.
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Figure 5. The quadrupole polarizability of the positronium negative ion as a function of screening parameter and photon

frequency.
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ω μ = 0.01 μ = 0.02 μ = 0.04 μ = 0.05 μ = 0.06 μ = 0.08 μ = 0.09 μ = 0.10

0.000 231.3779 231.7355 234.4589 237.308 241.438 254.3094 263.4554 274.709

0.001 231.8534 232.2127 234.9495 237.813 241.964 254.9026 264.0985 275.416

0.002 233.2980 233.6626 236.4406 239.348 243.563 256.7081 266.0575 277.572

0.003 235.7687 236.1426 238.9923 241.976 246.302 259.8077 269.4255 281.285

0.004 239.3685 239.7562 242.7131 245.810 250.304 264.3508 274.3733 286.755

0.005 244.2600 244.6673 247.7751 251.033 255.763 270.5782 281.1787 294.311

0.006 250.6914 251.1256 254.4422 257.922 262.979 278.8678 290.2821 304.479

0.007 259.0429 259.5144 263.1203 266.908 272.423 289.8223 302.397 318.132

0.008 269.917 270.441 274.458 278.687 284.857 304.455 318.753 336.819

0.009 284.332 284.935 289.567 294.457 301.624 324.642 341.717 363.680

0.010 304.207 304.939 310.583 316.576 325.43 354.54 376.95 407.13

0.011 334.00 334.98 342.67 350.97 363.53 408.6 4.53[2]

0.012 392.9 395.2 4.17[2]

The numbers in square brackets indicate the power of 10.

Table 1. The dipole polarizability of the Ps negative ion for different screening parameters and photon frequencies.

ω μ = 0.01 μ = 0.02 μ = 0.03 μ = 0.05 μ = 0.06 μ = 0.07 μ = 0.09 μ = 0.10

0.000 8630.1 8649.4 8701.3 8962.1 9198.5 9522.9 10496.4 11182.1

0.001 8647.3 8666.7 8718.8 8980.7 9218.0 9543.7 10521.4 11210.1

0.002 8699.5 8719.2 8771.9 9036.9 9277.2 9607.0 10597.3 11295.5

0.003 8788.6 8808.6 8862.4 9132.9 9378.2 9715.0 10727.4 11442.0

0.004 8917.6 8938.2 8993.7 9272.3 9525.0 9872.2 10917.3 1.1656[4]

0.005 9091.6 9113.1 9170.8 9460.7 9723.7 10085.4 1.1176[4] 1.1950[4]

0.006 9318.1 9340.7 9401.4 9706.6 9983.6 10364.9 1.1518[4] 1.2339[4]

0.007 9608.2 9632.3 9697.0 10022.7 1.0319[4] 1.0726[4] 1.1965[4] 12852[4]

0.008 0.9978[4] 1.0005[4] 1.0075[4] 1.0428[4] 1.0750[4] 1.1195[4] 1.2554[4] 1.3534[4]

0.009 1.0456[4] 1.0485[4] 1.0563[4] 1.0956[4] 1.1314[4] 1.1811[4] 1.3343[4] 1.4465[4]

0.010 1.1086[4] 1.1119[4] 11209[4] 1.1660[4] 1.2074[4] 1.2650[4] 1.446[4] 1.582[4]

0.011 1.196[4] 1.200[4] 1.211[4] 1.266[4] 1.317[4] 1.388[4] 1.62[4] 1.81[4]

0.012 1.330[4] 1.336[4] 1.350[4] 1.43[4] 1.50[4] 1.60[4]

The numbers in square brackets indicate the power of 10.

Table 2. The quadrupole polarizability of the Ps� in terms of screening parameter and photon frequency.
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To investigate the effect on the dispersion coefficients C6 in the screening environments, one

can assume that the leading term in the Van der Waals interaction between two atoms a and b

in their ground states still has a form of R�6, as [101, 102]

Vab ¼ �
C6 μ

� �

R6
þO 1=R8

� �

þ⋯: (41)

Here, the plasma effect on Vab is reflected on the value of C6, which now depends on the

screening parameter μ, and is denoted by C6(μ). Similarly, to consider the plasma effect on the

dispersion coefficients C8 and C10, we assume the coefficients depend on the screening param-

eter μ and are denoted, respectively, by C8(μ) and C10(μ). To calculate the dispersion coeffi-

cients for the interactions for Ps-Ps or H-H interactions, one needs to obtain the energy levels

for the positronium atom or the hydrogen atom in the different partial wave states with the

optimum choices of nonlinear parameters. To obtain the energy levels for hydrogen and

positronium atoms with different Debye lengths, we diagonalize the Hamiltonian

H ¼ �
η

2
∇

2 �
exp �r=λDð Þ

r
(42)

with the wave functions (40). Here, η = 1 is for the hydrogen atom and η = 2 for the positronium

atom. In our previous work, we have reported the C6, C8, and C10 coefficients for Ps-Ps

interactions under the influence of SCP. We have found from our calculations that the C6, C8,

and C10 coefficients are, respectively, 2
5, 27, and 28 times larger than the corresponding coeffi-

cients of hydrogen-hydrogen interactions [103].

8. Comparison of spectroscopic properties and concluding remarks

To describe a semiconductor, one needs in principle to solve the Schrödinger equation for the

problem. Depending on the coordinates of the ion cores having the nucleus and the tightly

bound electrons in the inner shells and the outer or valence electrons with coordinates Rj and ri
and masses Mj and m0, respectively, the Hamiltonian looks as ([1], Chapter 7)

H ¼ �
ℏ
2

2

X

M

j¼1

1

Mj
∇

2
Rj
�

ℏ
2

2m0

X

M

j¼1

∇
2
ri
þ

1

4πε0

X

j>j0

e2ZjZj

Rj � Rj0

�

�

�

�

�

�

þ
X

i>i0

e2

ri � ri0j j
þ
X

i, j

e2Zj

Rj � ri
�

�

�

�

0

B

@

1

C

A
, (43)

where Zj is the effective charge of the ion core j and the indices j and i run over all M ion cores

and N electrons, respectively. The wave function solving (43) can be constructed using all

coordinates Rj and ri including spins. The optical properties of the electronic system of a

semiconductor or an insulator or even a metal can be understood as a description of the excited

states of the N particle problem. The quanta of these excitations are known as “excitons” in

semiconductors and insulators. The ground state of the electronic system for a perfect semi-

conductor can be described from various points of view as a completely filled valence band
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and a completely empty conduction band [1]. However, from the theoretical side, the wave

function of the bound state for excitons is said to be hydrogenic, an exotic atom (such as

positronium atom) state akin to that of a hydrogen atom or even much better positronium

atom. However, the binding energy is much smaller and the particle’s size much larger than a

hydrogen atom or larger than a positronium atom. This is due to the screening of the Coulomb

force by other electrons in the semiconductor and due to the small effective masses of the

excited electron and positive hole. However, it can be understood that the Hamiltonian for an

exciton can be similar to a positronium atom if one can consider units using the Bohr radius for

the respective system. The exciton Bohr radius is aexB ¼ aHB ε
m0

τ
where the reduce exciton mass

τ ¼
memh

meþmh
; me and mh indicate the effective mass of electron and hole, respectively, and m0 is the

free electron mass. Exciton Rydberg energy is Ry∗ ¼ 13:6eV τ

m0

1
ε
2 [1]. In similar way, the Ham-

iltonian for a trion and a bi-exciton can be related, respectively, with the Hamiltonian Ps

negative ion and the Ps molecule. Wave functions for a trion or a bi-exciton could be similar

with the Ps atoms or the Ps molecule. So, it is expected that the spectroscopic properties of the

Ps atom, Ps negative ion, or Ps molecule might be useful to understand the spectroscopic

properties of an exciton, trion, or bi-exciton.

Let us describe other types of comparison with bound excitons which are well studied in

semiconductor, especially in gallium phosphide doped by nitrogen (GaP:N). The role and

application of bound excitons in nanoscience and technology have been discussed in the article

of Pyshkin and Ballato [104]. This investigation [104] observes something like neutral short-

lived atom analog—a particle consisting of heavy negatively charged nucleus (N atom with

captured electron) and a hole. Using bound excitons as short-lived analogs of atoms and

sticking to some specific rules, Pyshkin and Ballato have been able to create a new solid-state

media—consisting of short-lived nanoparticles excitonic crystal, obviously, with very useful

and interesting properties for application in optoelectronics, nanoscience, and technology. Note

that such specific rules include the necessity to build the excitonic superlattice with the identity

period equal to the bound exciton Bohr dimension in the GaP:N single crystal. This study [104]

also reports that the excitonic crystals yield novel and useful properties. These properties

include enhanced stimulated emission and very bright and broadband luminescence at room

temperature. With such development of bound excitons as short-lived analogs of atoms under

some specific rules, it is also important to mention here that the emission spectra of represen-

tatives of exciton and positronium negative ion families can be realized from the earlier articles

[104–108]. These articles support the usefulness of such comparisons of spectroscopic proper-

ties of excitons and the positronium negative ion. We hope that this chapter will provide a new

direction and would be a remarkable reference for the future studies on excitons, bi-excitons, or

trions as well as positronium, positronium molecule, and positronium negative ion.

Finally, we should also mention recent investigations on quantum information and quantum

entanglement in few-body atomic systems, including the positronium negative ion. Quantifi-

cation of Shannon information entropy, von Neumann entropy and its simpler form, linear

entropy, for the two entangled (correlated) electrons in Ps�, has been reported in the literature

[109–111].
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