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Abstract

Autogenous cancellous bone is the most effective material in promoting rapid healing
and still considered the “gold standard” for evaluation of bone graft substitutes. The
harvesting process to collect autologous bone is associated with complications and its
availability is limited. Allogenic bone is another alternative with osteoconductive
properties, and it act as a structural graft when applied in defects of long bones, but
some disadvantages are also associated. The development of the bone grafts substi-
tutes has gained tremendous popularity over the last two decades. Osteoconductive
materials act as scaffolds were cells from the surrounding tissues with osteogenic
capacities can lay new bone, and may be produced using different types of agents,
such as bone products, ceramics, bioactive glasses, collagen, polymers, and compos-
ites. Bonelike® is produced by the incorporation of P2O5–CaO glass-based system
within a hydroxyapatite matrix. Bonelike® Poro consists of polygonal granules with
2000–2800 μm and 4000–5600 μm of diameter with pore sizes range from 100 to 400 μm.
This chapter will focus on the different techniques were this ceramic synthetic bone
substitute was used to promote bone regeneration with special attention in both experi-
mental and clinical cases of veterinary orthopaedics in dogs and cats, horses and rumi-
nants, including results obtained with Bonelike®.

Keywords: bone regeneration, bone graft, bone substitutes, synthetic bone substitutes,
orthopaedics, veterinary, clinical cases
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1. Introduction

The bone healing process shares many similarities with soft tissues’ healing, but, in contrast,

the bone is the only tissue that has the capacity of healing without scar formation. Neverthe-

less, incomplete healing may occur, and the tissue other than the bone may be found at the

healing site. Bone healing depends on adequate vascular supply and stability of the bone

fragments. Proper bone healing can only occur after restoration of mechanical stability to

achieve an ideal biomechanical environment. Many clinical situations may require additional

osteosynthesis surgical procedures to acquire the biomechanical stability and immobilization

necessary for correct bone regeneration and future functional recovery. Intrinsic mechanisms

present unique histological characteristics that appear isolated or in association, depending on

the bone fragment mobility [1–4]. The amount of bone callus produced depends on the stability

of the fracture sides and usually increases with fracture instability. Spontaneous healing of

complete fractures often occurs with highly unstable fragment ends and high interfragmentary

strain (deformation occurring at the fracture site relative to the size of the gap), to a limit of 2%

strain [1, 4]. Fracture healing under restricted motion induces an initial reduced amount of

bone callus formation. This type of healing relies on fracture configuration and the implant’s

rigidity and may be achieved by external coaptation of the fracture or after gliding implant

fixation with intramedullary pins and nails. With these surgical reconstructive methods, the

amount of the callus produced is highly variable and dependent on the fracture configuration

and the rigidity of the frame used [1, 3]. When the fixation is performed with a bone plate, the

amount of callus formation will be different if the plate is not applied on the tension side of the

bone, if the reduction is not perfect or when the plate lacks rigidity. In stable fractures using a

rigid plate for osteosynthesis, there is significantly decreased callus formation between the

bone fragments [1, 2]. This phenomenon is called ‘primary healing’, referring to the direct

filling of the fracture site with the bone, without formation of significant callus (periosteal or

endosteal). Healing under these conditions occurs by direct osteonal proliferation with inter-

digitation of bone fragments providing a very stable union. In opposition when the bone ends

are separated by a gap inferior to 0.01 mm and the interfragmentary gap is less than 2%, the

primary osteonal reconstruction results in direct formation of lamellar bone, oriented in the

normal direction [1, 3]. This is termed contact healing and is initiated by osteoclasts from

osteons near the fracture line. Another context for direct bone healing is observed in gaps from

800 μm to 1 mm and interfragmentary strain less than 2%, and gap healing is designated.

Here, bone union and Haversian remodellation are separated by sequential process steps.

Fracture site is filled directly by intermembranous bone formation, but the newly formed

lamellar bone is oriented perpendicular to its long axis, and, later on, it undergoes secondary

osteonal reconstruction (remodellation). In this way, the fracture repair depends on two

important events: the rate of new bone growth (that replaces the stiffness and strength of the

bone) and the strength and duration of the implant (maintenance of its function until it

collapses and fails) [1–4]. When new bone formation is compromised and/or a risk of implant

failure is expected, promotion of fracture healing is indicated, in order to enhance new bone

formation, allowing for corrected bone structure formation and organization [1]. Fractures

with impaired bone repair mechanisms or fixation failure will result in a non-union condition.

Adequate bone repair depends on four crucial elements: an osteoconductive matrix, an
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osteoinductive signal, an osteogenic cell acting in response to that signal and an adequate

blood supply [1, 3, 4]. There are several clinical situations where it is important to promote

and enhance bone healing process in order to restore the original bone structure and function,

both in human and veterinary medicine. These include traumatic injuries or tumour resections

with substantial and irregular bone loss, gap filling following corrective osteotomy, arthrodesis

or arthroplasty, spinal fusion, non-union or delayed bone union, metabolic diseases and local

or systemic disease in aged patients. In these situations, bone regeneration is compromised,

and the bone defect exceeds the intrinsic biological restoration mechanisms. These clinical

cases occasionally result in unsatisfactory outcomes and are a challenging scenario to ortho-

paedic surgeons. When facing such clinical problems, different treatment strategies can be

used to improve new bone formation, avoiding the formation of bone with inferior quality to

the original [1, 3, 5–7].

Autogenous cancellous bone grafting (ACBG) is used in veterinary orthopaedic surgery as a

bone void filler to improve bone healing in the treatment of bone defects in low-grade

fractures in both mechanical and biological assessment score, arthrodesis, delayed unions

or non-unions, enhancement of fracture healing, periprosthetic coating, spinal fusion pro-

cedures and void filler of bone gaps resulting from fractures, osteotomy, ostectomy, arthrod-

esis or tumour resection [1, 7]. The ‘gold standard’ when evaluating bone graft substitutes is

still considered to be ACBG. Cancellous bone graft provides osteoconductive properties,

acts as a scaffold for osteoprogenitor cells and delivers viable cells without the risk of

immune reactions or infectious disease transmission. However, its use is associated with

some limitations including the need of an additional surgery for harvesting cancellous bone,

donor-site morbidity and limited amount of bone graft. The last point can result in an

insufficient amount to completely fill the defect which may implicate the need for

harvesting from more than one donor site. In humans, the second surgery for autologous

bone graft collections is associated with 25% of morbidity, with major complications

occurring in 3–4% of the patients. Complications include pain, sepsis, stress fractures,

intraoperative haemorrhage, increased anaesthetic and surgical times and limited sup-

ply [8, 9]. Limited supply is more critical in small dogs and toy breeds, in cats or in animals

that have been previously submitted to bone graft harvest. In those cases, the harvesting

from the humerus may be the best option, because higher amounts of bone can be collected

when comparing to the tibia while also presenting accelerated healing and complete resto-

ration cancellous bone. Another drawback is its lack of strength of ACBG, hampering its use

as a structural graft [1, 10]. Cortical allograft could be an alternative, which provides

structural strength along with osteoinductive and osteoconductive properties. Nevertheless,

the transmission of infectious diseases and adverse immune reactions are important risks to

consider [11].

In the case of human patients, demineralized bone matrix (DBM) is the most common source

of partially purified bone-inducting factors used. During the demineralization process, allo-

genic bone is chemically sterilized to preserve its osteoinductive properties from the original

bone collagen network and molecular signalling. Commercial forms of DBM are also available

for canine patients, where immune reactions are reduced by the removal of the periosteum,

cartilage and bone marrow and by freezing process [6, 7, 12–14].
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In the last decades, the well-known disadvantages of autografts and allografts have encour-

aged the development of bone synthetic substitutes to be employed as bone grafts, reflecting

in the increase of the clinical application of these types of biomaterials. An ideal bone

substitute should be biocompatible/safe; should be resorbable, with a similar mechanical

resistance as the cortical bone; should have osteoconductive, osteoinductive and osteogenic

properties; and should be easily handled and sterilized. The bone substitute should not

cause any adverse systemic or local reaction; should provide a favourable environment to

be colonized by blood vessels, cells and growth factors; and should be obtained at a low

cost [7, 9].

These biomaterials are available for use in veterinary orthopaedics, alone or in combination

with other strategies, such as osteoinductive bone morphogenetic proteins (BMPs) or cell-

based treatments [6, 7, 11, 14]. They are composed of different materials with osteoconductive

properties, such as bone products, ceramics, polymers and composites. The clinical applica-

tion of each material is defined by its properties, which depend on composition and phys-

ical characteristics (e.g. granulometry, shape, pore size and interconnective porosity). The

latter is determined by the manufacturing technique used [7, 9]. The synthetic bone sub-

stitutes offer an ideal substrate for bone cell colonization and consequent new bone forma-

tion [7].

Osteoconductive materials are grouped in two main categories. The first category includes

ceramic-based bone substitutes, and the second category includes polymer-based bone graft

substitutes (less commonly used). The most popular ceramic-based bone substitutes are

calcium sulphate, bioactive glass and calcium phosphate. Calcium sulphate was the first

material used as a bone graft substitute in clinical field, where it showed to be user-friendly,

inexpensive, readily available and stable for filling-in bone defects, without a negative

effect in bone healing. However, it presents fast absorption rates, leading to the loss of

mechanical properties before equivalent new bone formation, constituting its main disad-

vantage and limiting its use in relevant clinical cases. Bioactive glass was designed as a

bone graft for dental applications. Its use in orthopaedic surgery seems to be limited by its

brittleness, radiopacity (which compromises radiographic evaluation of bone healing) and

prolonged resorption times. Compared to bioactive glass, calcium phosphate is less radi-

opaque with faster reabsorption, but its osteointegration rate is highly variable, depending

on its crystal size and stoichiometry. Tricalcium phosphate compounds are available in

different presentations, including tricalcium phosphate, hydroxyapatite and a combination

of the two.

Regardless of the mineral detail of its composition, the final formulations/presentation forms

are of extreme relevance, concerning both its external shape and internal architecture. Exter-

nal shape and granule size will determine its suitability for particular lesion applications,

considering effective size and ease of access for implantation. Its architecture is determinant

for the resolution of the bone defect since bone ingrowth is dependent on the pore size.

According to Ragetly et al., a minimum pore size of 100 μm is required for bone ingrowth

and for optimal promotion of ingrowth pores should have a granulometry between 300 and

500 μm [7, 9, 15].
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2. Preclinical trials

A series of regulatory steps are essential in the development of biomaterials, requiring its physical-

chemical characterization; in vitro validation, and at an intermediate stage, in vivo suitability;

safety; and performance assessment: biocompatibility, osteoconduction, osteointegration and

osteoinduction [16]. In sight of the ethical issues associated to the use of animals for experimen-

tal purposes, extensive efforts aim at refining in vitro methods as valid alternatives. Unfortu-

nately, current in vitro models still underachieve in replicating the tissue response of a live

animal to a bone substitute [16–18].

The preparation and conduction of preclinical studies are bound to a number of sequential

phases. First, the proposed materials ought to be tested in noncritical-sized defects, allowing

for the preliminary assessment of multiple material samples’ behaviour in defined in vivo

conditions. This feature is very important on the initial screening of a biomaterial’s in vivo

behaviour, enabling the choice of the chemical composition and format of the biomaterial with

the most potential for more challenges [19–21]. Furthermore, noncritical-sized defect ensures

fast and reliable healing process, allowing for the observation of the various stages of bone

healing and biomaterial degradation [21, 22]. Once the ideal composition is chosen and bio-

compatibility is analyzed, the material may be used directly in clinical trials, or if found

necessary, in increasingly critical defects, to confirm the results obtained in the first approach

with noncritical defects, and to determine its limits of efficiency and performance [21].

One of the fundamental aspects when choosing the most adequate animal models to test bone

replacement materials is the size of the bone defect amenable to assess [23, 24]. A critical-sized

bone defect (CSBD) is defined as the smallest bone defect that will not heal spontaneously

during the lifetime in a particular bone and species of animal [23, 25]. In a more detailed

description, a CSBD has been referred to as a defect that has less than 10% bony regeneration

during the lifetime of the animal or duration of the experiment [26, 27]. Although the smallest

size that creates a defect designated as ‘critical’ is not a well-established concept, it has been

defined as a segmental bone deficiency of length exceeding 2–2.5 times the diameter of the

affected bone [28]. Some animal studies suggest that CSBD in sheep could be approximately

three times the diameter of the diaphysis. Therefore, a critical defect in long bone cannot

simply be defined by its size, but may also be dependent on the species phylogenetic scale,

the location in the skeleton, the surrounding soft tissue envelope and the load bearing on the

affected limb.

Bone colonization of macroporous biphasic calcium phosphate (MBCP) ceramics implanted in

different sites (femur, tibia and calvaria) on a critical-sized defect in two animal models (rats

and rabbits) showed bone ingrowth in all MBCP-implanted sites but with distinct rates. Bone

colonization appeared statistically higher in the femur of the rabbits (48.5%) compared to the

tibia (12.6%) and calvaria (22.9%) sites. As such, the comparison of results between animals or

different bone defect locations is subject to bias, so a well-conducted study and fully validated

animal models are essential in the development of new synthetic bone substitutes [29]. Fur-

thermore, the host’s age, metabolic and systemic conditions and comorbidities also affect the

defect’s healing potential [30].
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Attempts to repair a CSBD only lead to the formation of fibrous connective tissue rather than

the bone [31]. For practical purposes, if there is no more than 30% of the mineralization area

after 52 weeks, lifelong incomplete bone healing is to be assumed [32]. The incapacity of

natural healing when left untreated represents the negative control, so that the osteogenic

potential of the material being tested can be considered unequivocal. Furthermore, CSBD

should heal with appropriate treatment, and the autologous cancellous bone grafts are still

named as the gold standard or positive control. Any new treatment based on bone tissue

engineering should be tested and compared with these two landmarks [25]. Given the clinical

targets of such applications (mostly aged or health-impaired patients), animals should be

skeletally mature, in order to avoid misleading results deriving from the superior potential of

the young animals to regenerate bone defects [23].

Recently, the osteoinductive ability of porous calcium phosphate ceramics was studied in four

animal species through the implantation of cylinders of hydroxyapatite/tricalcium phosphate

(HA/TCP) (in the proportion of 60 and 40%, respectively) in dorsal muscles in dogs, rabbits,

rats and mice. After 1 year, the implants were removed, and histopathology tests were

conducted with haematoxylin/eosin staining and Masson’s trichrome staining to observe the

new bone tissue formation. The study concluded that the material is biocompatible and

biologically safe (no tumour or any atypical cells were present) and would be considered as a

potential for bone substitute. Apart from the rat’s groups, there was new bone and bone

marrow tissue development in large amounts. The osteogenic ability of the implant was

superior in mice, followed by dog and rabbit [33].

Small rodents, rabbits, dogs and small ruminants are the most popular model species for bone

regeneration studies, bracing several of the target species for veterinary clinical applications.

Allografts and bone graft substitutes have not been fully evaluated in cats, and for that reason,

Dorea et al. compared the efficacy and safety of a Bioglass® with that of autogenous and

allogeneic cancellous bone graft in this species. Four defects in the lateral diaphyseal cortex of

the femur with a diameter of 4.0 mm were created in each animal. One hole was filled with

autogenous CBG, another with allogeneic CBG and a third one with Bioglass®. The fourth

defect was left unfilled. The healing process was monitored every 2 weeks by X-ray. After 6

weeks, cats were euthanized, and the resolution of the defects was appreciated. The study

indicated an acceptable bone regeneration in all defects. Although with a slower healing rate,

Bioglass® showed to be an acceptable alternative to ACBG in cats [34].

3. Clinical cases

The use of synthetic bone grafts, in veterinary medicine, has been increasing in the last years, but

even so its application is substantially lower than in human medicine. This is mainly due to the

costs involved in the use of biomaterials, but nowadays with the development of society and

consequent attention given to the animals, there was an increase in the availability of owners to

invest in the treatment of their animals. Besides the sentimental value of certain animals, it is not

to be despised the growth of the economic valuation of certain types of animals.
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3.1. The use of synthetic bone grafts in small animal clinical cases

Some isolated case reports in small animals using ceramic-based bone graft substitutes have

been published in the last decades.

The application of β-tricalcium phosphate (TCP) has already stepped out of preliminary

preclinical assays to veterinary patients’ applications. Izumisawa et al. successfully solved pes

varus in two miniature Dachshunds using a wedge of synthetic β-TCP to fill the gaps created

by tibial corrective open osteotomies. According to the authors, 2 months after the surgery, the

edge of osteotomies was integrated with the bone. The bone plates and screws were removed

after 4 months, and, by then, the TCP wedges were completely resorbed and the osteotomy

bone was remodelled. In both cases the use of synthetic bone graft TCP avoided the need of a

second surgery to harvest autologous cancellous bone graft. In both cases, the postoperative

angles were corrected and maintained during the follow-up period, and, morphologically, the

body of the tibia in the affected hind limb nearly equalled that found in healthy limbs. Dogs

were able to walk a few days postoperatively, and the authors concluded that the corrective

transverse-opening osteotomy together with synthetic bone graft substitute β-TCP and veter-

inary T plate fixation is an effective method for the treatment of pes varus in small-breed

dogs [35]. A single case of tarsal joint fusion with β-TCP and platelet-rich plasma (PRP) was

reported by Hauschild et al., and ACBG, and hence the need of additional surgery to harvest

the bone graft, was successfully avoided. The healing process was uneventful and was com-

plete at 4 months after surgery, at which time the dog presented no signs of lameness [36].

Another report on the clinical use of β-TCP as synthetic cancellous bone graft in veterinary

orthopaedics was presented by Franch et al. They retrospectively studied 13 clinical cases,

where granules of β-TCP, with an irregular form and interconnected porous structure (without

dead ends, mean porosity of 60% and mean pore size of 250 μm), were mixed with fresh blood

and used as void filler in subcritical-sized bone defects in long bones. The β-TCP used in these

clinical series was commercially available in sterile vials containing 2 g of granules with 99% of

pure phase. The clinical cases are summarized in Table 1. All but one case achieved complete

bone union, and radiographic bone ingrowth was at 100% in 10 cases, 90% in 1 case and 75% in

another case. The publication reported excellent clinical results confirming the biocompatibil-

ity and usefulness of β-TCP as a synthetic bone graft for moderate to large subcritical bone

defects with initially expected good biological conditions (blood supply, cellular activity, etc.),

on which the main problem is to provide a structural scaffold to allow bone and capillary

ingrowth and the healing of the defect [37]. The same author described the treatment of a distal

radius atrophic non-union in a 1-year-old male Yorkshire terrier using a 3D-printed β-TCP

scaffold with rhBMP-2 (TruScient®) to create a scaffold with the same shape as the defect. After

the removal of the bone plate (10 months), load started to transmit along the bone axis,

reducing the potential risk of stress protection. Eighteen months after surgery, the scaffold

was no longer visible, and complete corticalization of the regenerated bone area was observed

on computed tomography (CT) scan evaluation. Given the results, the author suggests that the

3D-printed β-TCP scaffold with rhBMP-2 is an excellent bone substitute, due to good

osteoinductive properties given by rhBMP-2 complemented with good osteoconductive poten-

tial provided by the open-interconnected macroporosity from the β-TCP scaffold [38].
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Type of

treatment

Author Type of

macroporous

ceramic

No. of

cases

Species Breed Sex-age-

weight

Problem Reduction device Bone defect

grading

Results Removal of the

implant

Ref.

Consolidation

time (weeks)

Percentage

new bone

formation

Functional

recovery

β-TCP Izumisawa

et al. 2005

β-TCP wedge

shaped

1 Canine Dachshund ♂-10m Pes varus and grade 3

lateral patellar luxation

Open-wedge

osteotomy in the

distal tibia and

veterinary 1.5/2.0

T plate

NCSD About 6 100 Excellent 4 months [35]

2 Canine Dachshund ♂-9m Pes varus and grade 3

lateral patellar luxation

Open-wedge

osteotomy in the

distal tibia and

veterinary 1.5/2.0

T plate

NCSD About 6 100 Excellent 4 months

Franch

et al. 2006

Irregular

interconnected

granules of β-

TCP (60%

porosity)

3 Canine Shiba Inu ♀-7 y-12kg Traumatic carpal

hyperextension

Pancarpal

arthrodesis with

2.7 DCP plate

NCSD 12 100 Excellent [37]

4 Canine Shiba Inu ♀-7y-12kg Traumatic carpal

hyperextension

Pancarpal

arthrodesis with

2.7 DCP plate

NCSD 10 100 Excellent

5 Canine Crossbreed ♂-12y-10kg Fractures of the distal

radius (cranial bone

loss), ulna, III–IV–V

metacarpal bones and I

phalanx and

comminuted carpal

bone fracture-luxation

Pancarpal

arthrodesis, radial

and III metacarpal

fractures treated

together with 2.7

DCP plate

NCSD 8 (radius)

12 (carpus)

100 Excellent

6 Canine German

Shepherd

♂-2y-38kg Comminuted mid-shaft

femoral fracture

Interlocking nail

with four cerclage

wires

NCSD 9 90 Excellent

7 Canine German

Shepherd

crossbreed

♂-7y-37kg Tibial fracture 3.5 DCP plate NCSD 10 100 Good

8 Canine Belgium

Shepherd

♀-8y-34kg Distal radius fracture 3.5 DCP plate NCSD 10 100 Excellent

9 Canine English

Bulldog

♂-10y-11kg Tarsometatarsal

luxation

Cross pinning

tarsometatarsal

arthrodesis

NCSD 12 75 Good

Scaffolds in Tissue Engineering - M
aterials, Technologies and Clinical A

pplications
102



Type of

treatment

Author Type of

macroporous

ceramic

No. of

cases

Species Breed Sex-age-

weight

Problem Reduction device Bone defect

grading

Results Removal of the

implant

Ref.

Consolidation

time (weeks)

Percentage

new bone

formation

Functional

recovery

10 Canine Golden

Retriever

crossbreed

♂-3y-35kg Radius and ulna

comminuted fracture

3.5 DCP plate NCSD 8 100 Excellent

9 Canine Mastiff

crossbreed

♂-2y-48kg Hypertrophic femoral

non-union. Osteopenic

bone at surgery due to

disuse

Interlocking nail

with 4 screws

NCSD 12 100 Excellent

11 Canine Chihuahua ♂-2y-3.5kg Tibiotarsal fracture/

luxation

Cross pinning

tibiotarsal

arthrodesis +

temporary

transarticular

external fixator

NCSD 12 100 Good

12 Canine Yorkshire

Terrier

♀-7y-3.4kg II, III, IV and V

metacarpal atrophic

non-union

Intramedullary

pins

CSD / 0 Poor, the

patient

needs a

permanent

splint

13 Canine German

Shepherd

♀-5y-44kg Traumatic carpal

hyperextension

Carpal arthrodesis

stepped plate

NCSD 8 100 Excellent

14 Feline European

crossbreed

cat

♀-2y-3.8kg Highly comminuted

distal femoral fracture

2.7 DCP distal

femoral prebent

plate

NCSD 11 100 Excellent

β-TCP + PRP

300mg +

blood + 0.6

ml PRP

Hauschild

et al. 2005

15 Canine Beagle ♀-10m-?kg 3 weeks old traumatic

luxation of the right

intertarsal joint and

compressive fracture of

the fourth tarsal bone

Partial tarsal

arthrodesis with

lateral 2.0 DCP

plate and a K wire

plus coaptation

bandage for 4

weeks

NCSD 16 100 Excellent,

no sign of

lameness

7 months later and

leaved the K wire in

place

[36]

Collagen-

TCP sponges

+ rhBMP-2 +

monocortical

fenestrated

rib

Boudrieau

et al. 2004

Collagen-TCP

sponges

16 Canine Golden

Retriever

♀-14 month-

23.6kg

Mandibular

reconstruction after

partial mandibulectomy

for tumour resection

2.0 miniplate and

2.4 mandibular

reconstruction

plate in the right

side and 2.0

miniplate and 2.4

unilockin plate

2 CSBD

(1.5 cm � 1 cm

� 2 cm) and

(7 cm� 1 cm�

2 cm)

12 Excellent One exposed plate 1

year later

[47]
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Type of

treatment

Author Type of

macroporous

ceramic

No. of

cases

Species Breed Sex-age-

weight

Problem Reduction device Bone defect

grading

Results Removal of the

implant

Ref.

Consolidation

time (weeks)

Percentage

new bone

formation

Functional

recovery

β-TCP

+ACBG (1:1)

and a

titanium

mesh cage

Segal and

Shani 2010

β-TCP 17 Canine Crossbreed ♂-7y-25kg Highly comminuted

fractures (femur, radius

and ulna) that fail to

previous fixation

IM pin through

the cage and a

locking plate

2 CSBD 71mm

segmental

femoral bone

defect and

27mm

segmental

radial defect

22–63 70% of

femoral

cage at 22

weeks and

100% at 63

weeks

Successful

long-term

clinical

outcome

No due to the

associated costs

[41]

Contralateral

bone

widening

and transfer

and silicate

calcium

phosphate

Petazzoni

2016

Silicate

calcium

phosphate

18 Feline Maine

Coon

♀-5y-5kg Non-union and bone

loss

2.5 mm locking

plate

CSBD 60mm

corresponding

to 48% of

mechanical

axis on the

sagittal plane

At 13 satisfactory

healing. 22 weeks

non-union. 20

weeks post

revision surgery

with ACBG

healing of non-

union.

Excellent

long-term

follow-up

6 weeks–18 weeks

good; at 22 weeks

implant fails and

revision surgery

was done; the plate

was removed 20

weeks later

[43]

CRM +

rhBMP-2

Massie

et al. 2017

CRM 19 Canine Italian

Greyhound

3Y-3kg Non-union of left and

right radius/ulna

2.0 mm 14-hole

LCP

R 65 mm L 2.5

mm

R 9 and L 10 [46]

20 Canine Rat Terrier 1y-7.1kg Atrophic-oligotrophic

non-union of R tibia

2.0 mm 13-hole

LCP

32 mm 10

21 Canine Golden

Retriever

12y - 24.3kg Dystrophic non-union

of the L tibia

3.5 mm 10-hole

LCP

16 mm 10

22 Canine English

Pointer

11y - 29.7kg Atrophic-oligotrophic

non-union of R lateral

humeral condyle

5.5 mm cortical lag

screw + 2.4 mm 8-

hole LCP

1 mm 16

23 Canine Schipperke 2y - 7.1kg Atrophic-oligotrophic

non-union of R radius/

ulna

2.4 mm 10-hole

LCP

5 mm 6

24 Canine Border

Collie

9y - 16kg Atrophic-oligotrophic

non-union of L tibia

ESF hybrid 10 mm 10

25 Canine Cocker

Spaniel

10y - 12kg Atrophic-oligotrophic

non-union of L lateral

humeral condyle

3.5 mm cortical

screw and washer

+ 2.4 mm 4-hole

LCP

1 mm 20

26 Canine Miniature

Poodle

2y - 3kg Dystrophic non-union

of R an L radius/ulna

R 7-hole LC-DCP

and L 8-hole LC-

DCP

2 mm 8
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Type of

treatment

Author Type of

macroporous

ceramic

No. of

cases

Species Breed Sex-age-

weight

Problem Reduction device Bone defect

grading

Results Removal of the

implant

Ref.

Consolidation

time (weeks)

Percentage

new bone

formation

Functional

recovery

27 Canine Mixed

breed

4y - 12kg Dystrophic non-union

of R radius/ulna

2.4 mm 10-hole

LCP

10 mm 7

Arzi et al.

2015

CRM (collagen

sponge with

embedded

granules of HA

and TCP)

28–32 Canine – 8–9y (mean

8.8Y), 25-

37kg (mean

29kg)

Reconstruction of the

bone defects after

segmental

mandibulectomy for

tumour resection

Titanium 3.0 mm

locking plates

CSD 42–60

mm (mean,

50.5 mm)

8 100 Excellent

function,

occlusion

and quality

of life

[49]

Verstraete

et al. 2015

CRM (collagen

sponge with

embedded

granules of HA

and TCP)

32–38 Canine Small-

breed dogs

2–11 y

(mean,

7.3y), 3.4–

6kg (mean,

4.8kg)

Non-union mandibular

fractures

2.0 locking

titanium miniplate

CSD 5–18 mm

(mean,

9.2 mm)

4 to 12 Excellent

long-term

follow-up

[48]

CRM, compression-resistant matrix; CSD, critical-sized bone defects; DCP, dynamic compression plate; LCP, locking compression plate; LC-DCP, limited contact dynamic compression plate; ESF, external skeletal fixation; L, left;

NCSD, noncritical-sized bone defects; R, right.

Table 1. Description of reported clinical cases using ceramic-based bone substitutes in small animals, based on available literature.
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Treatment of long bones affected with large segmental defects is challenging in human and

veterinary medicine [39]. Different surgical approaches have been developed, but most of

these techniques present major complications. Cortical allografts are prone to infection and

are rarely fully incorporated [11, 39]. Distraction osteogenesis should only be used in docile

animals and cooperative owners because it needs a lot of adjustments and cleaning of the

fixator besides having to be kept in place for prolonged periods that could lead to loss of

stability and discomfort [40]. Osteoconductive materials and osteoinductive substances, such

as canine-demineralized bone matrix, canine autogenous bone grafts and bone morphogenetic

proteins, have been used for the treatment of bone defects and comminuted fractures, alone or

in combinations with bioceramics [6, 12]. Another alternative treatment that has been used

with success is the clinical application of titanium mesh cages [41], nevertheless with extreme

variable outcomes [42].

One case report in a dog with large segmental femoral and radial bone defects that failed in the

first attempt of surgical stabilization and finally treated with a combined approach with

titanium mesh, β-TCP, ACBG into the defects and fractures was stabilized with locking plates.

Titaniummesh allowedmaintaining bone fragments and grafts within the defect being further,

between 22 and 63 weeks, surrounded by a bony bridge. Clinical outcome was successful

without visible lameness in pace, but it was visible, while running and reduction in range of

motion with crepitation were noticed on the stifle joint. Those limitations could be associated

with original trauma or complications of fixation methods. Long-term follow-up (greater than

1 year) shows a satisfactory active mobilization of the limb. In this case, the technique has been

simple and should be an alternative for treatment of long segmental bone defects. However,

further systematic clinical studies are needed in order to evaluate the efficacy, complications

and spectrum of the clinical use of this method [41].

A case report of successful reconstruction of a long segmental tibial defect in a 5-year-old 5 kg-

spayed female Maine Coon cat were transverse distraction osteogenesis in the contralateral

tibia was used to create free autograft for filling the defect. After fixation of the bone fragments

with a locking plate, the autograft was transferred to the defect in the contralateral tibia, and

the remnant space was filled with silicate calcium phosphate bone graft substitute. By 27

months, both tibias were healed; implants had been removed with an excellent functional

outcome [43].

Combination of BMPs for augmentation of bone regeneration associated with bioceramics in

the treatment of non-union fractures of long bones was mentioned in a review as a single case

of non-union of the distal radius in a Pomeranian [44] and in a distal radius atrophic non-union

in a 1-year old male Yorkshire terrier by Franch [45]. A recent prospective longitudinal cohort

study of the use of compression-resistant matrix (CRM) immersed in rhBMP-2 in the treatment

of 11 non-union long bone fractures in 9 dogs was evaluated, and treatment was successful

with healing time from 7 to 20 weeks (median 10 weeks) and return to full or acceptable

function in all dogs [46].

Non-weight-bearing bone lesions can also greatly benefit from the application of synthetic bone

substitutes, such as those resulting from dental procedures. Boudrieau et al. published in 2004
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one case report of treatment of severe mandibular malocclusion after partial mandibulectomy in

a 14-month-old golden retriever using fenestrated, monocortical rib grafts with rhBMP-2 in a

collagen-TCP sponge that showed new bone formation after 3 months with reconstruction of the

defect. One year later, the bone was collected, and the new bone was robust with evidence of

continued remodelling. No major complications were noticed, and bony remodelling was evi-

dent at 4-year follow-up [47].

According to the authors’ knowledge, those are the first reports of the use of rhBMP-2 deliv-

ered via adsorption into a CRM for regenerating bone in chronic defect non-union fractures in

dogs. Its radiographic appearance seems to have a normal bone density and was integrated to

native bone. The combined surgical and regenerative strategies reported achieved predictable,

timely reconstruction of defect non-union fractures in small-breed, older dogs. The use of

rhBMP-2 should be done with caution due to its very potent effect that is very versatile and

with a wide range of functions and dose dependent. Finally, the incorporation of a regenera-

tive strategy into the surgical resolution of non-union fracture defects avoided the morbidity

associated with autologous bone grafting and provides fast return to normal function [48].

CRM is made of a collagen sponge with implanted granules of hydroxyapatite and tricalcium

phosphate generating a semi-rigid framework that can resist to compressive forces in vivo, and

it has been successfully used to fill bone defect in several studies [46, 48, 49]. In a prospective

case series published by Arzi et al., CRM was used with rhBMP-2 in immediate reconstruction

of segmental mandibulectomies (mandibular defects ≥5 cm) in four dogs for treatment of

benign or malignant tumours. After tumour recession, the critical-sized bone defects were

stabilized with titanium locking plates, and CRM, soaked with 0.5 mg/ml rhBMP-2 15 min

before implantation at a volume equivalent to half of the calculated volume of CRM (with a

half to three quarters of the mandibular height and a length 2 mm greater than the defect), was

tightly implanted. Radiographic evaluations were made postoperatively at weeks 2, 4, 8 and 12

after surgery. In two clinical cases, a CT scan of the mandible was acquired 3 months after

surgery. All dogs had proper occlusion after surgery and in the follow-up evaluation and

returned to normal activity. After 2 weeks the entire defect site was covered with gingiva, and

at 4 weeks, it was completely solid. There was no recurrence of the tumour or fractures during

the controls at 2 and 3 months after surgery, and all owners reported an excellent quality of the

life of their dogs [49]. The radiodensity of regenerated mandible increases throughout radio-

graphic controls from postoperative radiographs to 4 weeks after surgery. The CRM scaffold

had evidence of new bone formation connecting the adjacent mandible and smooth margins at

4 weeks post-surgery. At 8 weeks the scaffold continued to increase its radiodensity, and a

mineralized union with the mandible was noticed. New bone formation and complete integra-

tion of CRM material with native mandible tissue were evident on CT image evaluation. The

authors concluded that this surgical and regenerative approach achieved a rapid return to

normal activity, with normal anatomy and occlusion, bone regeneration and re-established

biomechanical function [49].

Verstraete published another case series in six dogs where CRM and rhBMP-2 were used as a

regenerative approach to fill non-union mandibular fracture defects stabilized with locking

titanium miniplate. All dogs were adopted from a shelter, and, apart from two dogs, it was not
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possible to know the duration of the non-union. In all cases the non-union defect was debrided

and cleaned from fibrous and devitalized tissues and old implant materials. The volume of the

defects was estimated with a CT with three-dimensional reconstruction, and an amount of

CRM enough to fill a half to three quarters of the mandibular height with a length of 2 mm

greater than the mandibular gap was prepared. The CRM was soaked with a volume of

rhBMP-2 (0.5 mg/ml) corresponding to 50% of the CRM volume used to fill the defect. As an

example, with a CRM piece of 2 cm length, 0.5 cm width and 1 cm height (2� 0.5� 1), the total

CRM volume is 1 cm3, corresponding to 0.5 ml of rhBMP-2 solution with 0.5 mg/ml concentra-

tion. An extra-oral approach was used to counter the plate in ventrodorsal position. The

wedges of the non-union were debrided to remove sclerotic and devitalized bone and attached

soft tissues, and the plate was then fixed to the bone with two to three locking titanium screws

in each segment of the mandible and CRM was implanted. Radiograph follow-ups of the

mandible were started immediately after surgery and 2, 4, 8 and 12 weeks after surgery. All

dogs healed the soft tissues over the defects and with immediate to normal function and

correct occlusion, and solid cortical bone formation was noticed within 3 months. There were

no recurrence fractures on the follow-up period [48].

Synthetic bone graft (Bonelike®) is produced by the incorporation of P2O5–CaO glass-based

system within a hydroxyapatite (HA) matrix. Bonelike® macroporous (BL® Poro) consists of

polygonal granules with 2000–2800 and 4000–5600 μm of diameter with pore size range from

100 to 400 μm (Figure 1). Its osteoinductive and osteoconductive properties have been con-

firmed in experimental models of bone regeneration in sheep, have been used in clinical

orthopaedic application and recently are being used in small animals [50–54].

We used Bonelike® in small granules and Bonelike® presenting macroporous structure (BL®

Poro) in vivo in combination with ACBG (Figure 2(A)), PRP (Figure 2(B)) and rigid internal

fixation with bone plates and screws to treat atrophic non-union of long bones in two adult

dogs that were referred to the veterinary medicine teaching hospital, Vasco da Gama Uni-

versity, Coimbra, Portugal, for surgical correction of atrophic non-union that fails in at least

one previous surgery. After clinical and orthopaedic examination, two orthogonal views of

the affected and contralateral bone were obtained with a standard marker to calibrate

magnification. Informed consent to use BL Poro® was obtained from all clients. Clinical cases

were classified according to Weber-Cech terminology, as defect, dystrophic, necrotic or

oligotrophic-atrophic non-union, and were labelled as infected if this was suspected due to

either radiographic evaluation or appearance and tissue culture at surgery. For both clinical

cases, autologous cancellous bone grafts were harvested from the uppermost proximal

humerus as described by Innes [5]. One dog had a large femoral diaphyseal bone defect and

is not able to apply loading to the affected pelvic limb. The second dog had an oligotrophic

non-union in the proximal radius and two non-unions in the ulnar diaphysis caused by a

gunshot trauma. Revision surgery was performed to remove all the failed implants, debride-

ment, ischemic bone fragments and other avascular soft tissues. Sclerotic and atrophic bone

ends of the biologically inactive non-unions were osteotomized with a bone. Rongeur until

bleeding is seen to expose medullary cavity and improve vascularity in a bone defect. Prior

to copious flushing, samples of the removed tissues and deep wound swabs were collected
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for bacterial culture and sensitivity antibiogram. Joints are aligned, bone segments are pulled

apart trying to restore original length of the bone and the fracture was stabilized with a bone

plate and screws maintaining a rigid fixation for a prolonged time with minimal discomfort

to the animal during postoperative period. The bone defect created after cleaning and the

fracture fixation was filled with a homogenous mixture of ACBG and BL® Poro in 1:1

proportion in a PRP gel to maintain the aggregation of the components. The mixture was

applied gently avoiding rupture and consequent collapse of the macroporous architecture of

BL® Poro (Figure 3). Soft tissues were closed routinely and contribute to maintain the bone

graft in situ with created soft tissue envelope. All the animals returned to acceptable or good

function and decrease lameness grades. All cases achieved bone union between 2 and

8 months without major complications [54].

Our research group also has been using Bonelike® and a BL® Poro mixed with fresh blood to

fill voids in noncritical-sized bone defects in dogs and cats with good clinical and radio-

graphical outcomes without any adverse local nor systemic reaction (Figures 4 and 5). A

Figure 1. Scanning electron microscope image of a Bonelike® Poro granule showing the interconnected pore architecture

with macropores and micropores.
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clinical case of an 8-year-old, 21 kg, female Collie with a mandibular fracture along the root of

canine teeth. The loose teeth exodontia and improved dental occlusion with an external

skeletal fixator where fixation pins were placed along the aboral bone surface avoiding tooth

roots were performed. The pins were bended and fixed together with a mouldable-stage

application of methyl methacrylate. After hardening of the acrylic, the bone gap was

approached directly from the oral mucosa and filled with mixture of Bonelike® (spherical

granules of 250–500 μm) and blood. The soft tissues were surgically routinely closed and

healed uneventfully. On radiographic evaluation 5 weeks post-surgery, the osteointegration of

the biomaterial was visible, and fracture line was no longer visible. The fixator was removed 4

months later, and there was no story of mandible retraction or other types of complications

(Figure 6) (unpublished data).

Figure 2. BL® Poro granules (white) mixed with autologous cancellous bone graft (red) (A). Mixture of BL® Poro granules

with autologous cancellous bone graft and platelet-rich plasma, ready for implantation (B).

Figure 3. Femoral bone defect after fracture bridging plate fixation (A). Careful filling of defect to avoid the collapse of

BL® Poro macroporous architecture (B).
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Figure 4. Immediate postoperative radiographs of the tibia of a 7-year-old 35 kg male german shepherd dog with a non-

union fracture stabilized with a 3.5 mm 12-hole broad DCP plate. Bone defect was filled with Bonelike® 250–500 μm,

autologous cancellous bone graft and platelet-rich plasma: cranio-caudal view (A) and mediolateral view (B). Radiolucent

lines were visible within the graft and between the graft and the edges of the bone defect.

Figure 5. Postoperative radiographic evaluation. Mediolateral view at 2 months of control showing complete bone union

on the caudal edge of the defect and not on the cranio-distal edge; here, a radiolucent line was noticed but with a grey

colour compatible with new bone formation (A). Cranio-caudal view at 2 months of control, complete bone bridge was

observed in lateral and medial cortices with irregular pattern within the bone defect (B). Mediolateral view at 8 months of

control (C) and cranio-caudal view at 8 months of control. In both radiographs completed, bone union and remodellation

were visible without radiolucent lines in the bone defects (D).
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3.2. The use of synthetic bone grafts in equine clinical cases

Besides the majorly emotionally driven small animal clinics, other veterinary medicine fields

are growing regarding the clinical application of the biomaterials, as economic implications are

added to the scenario. For example, equines are the ‘driving force’ of an industry that moves

enormous financial amounts, with competition prizes and price of some animals reaching

astronomical values. With this set of constraints, the use of biomaterials in animals no longer

restricts to preclinical trials carried out before their application in humans and is now part of

the procedures available to veterinary clinicians. These techniques can be used in a number of

clinical situations in veterinary medicine, where there is a bone defect, including fractures such

as comminuted fractures, filling of bone cysts and arthrodesis [6, 55–59].

Equine patients are challenging in terms of orthopaedic pathologies and viable treatment

options. While most of the small animal cases referred for orthopaedic treatment relate to

fractures, and surgical reduction leads to expected full recovery, but even if this is not possible,

they can survive with minimal complications with unsupported limb. Contrarily, in result of

their weight, equine patients with unsupported limb have a high risk of developed severe

secondary pathologies at contralateral limb, like laminitis. Other problems can surge in these

equine patients; these animals cannot spend long periods lying down due to complications of

myositis, nerve paralysis and decubital scars, so they weight injured limb for prolonged

periods. For all those situations, fracture cases are seldom amenable of medical or surgical

correction, often resulting in the decision of euthanasia. Other clinical situations are however

indicated for grafting and/or biomaterial application, such as arthrodesis procedures.

Arthrodesis techniques were developed for treatment of debilitating osteoarthritis. These are

also indicated for treatment of (stable) articular fractures, unstable joint injuries, septic arthritis

and osteochondrosis. It is a surgical procedure used to promote the fusion between opposite

bones in the joint, resulting in immobilization. Surgical arthrodesis involves the destruction of

Figure 6. Bone defect resulting from canine teeth exodontia and mandibular fracture along the root of canine stabilized

with a methyl methacrylate external skeletal fixator (A); immediate postoperative image of the defect filled with

Bonelike® 250–500 and blood. The biomaterial was noticeable due to its multiple radiopaque spherical structures inside

the bone defect. Radiolucent lines were visible within the spheres and between the graft and the edges of the bone defect.

Fracture line was visible near by the fixation pin (B); 5 weeks of radiographic control, loss of radiopaque appearance of the

biomaterial and radiopaque fracture lines was no longer visible due to new bone formation (C).
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the articular cartilage of the bones to promote a bone-to-bone contact and subsequent fusion.

Then, the joint must be aligned and stabilized into a stable, weight-bearing position [60–63].

Synthetic bone grafts can be used in the arthrodesis technique as void filler, improving the

bone contact, helping the joint stabilization and avoiding the autologous bone graft collection.

Since synthetic bone grafts deliver important osteoconductive and osteoinductive proprieties,

the healing process is improved and shortened [50, 52]. Surgical arthrodesis is used in clinical

situations that it is not possible recover the joint. With this technique the joint is stabilized,

relieving the pain and improving horse’s quality of life. In this species, the proximal

interphalangeal, the intertarsal and the tarsometatarsal joints are the joints where more

arthrodeses are performed, due to these joints that only have little range of movements, and

their permanent immobilization does not affect normal locomotion of the horse. In these cases,

the goal of the surgical procedure is to return the horse to its activity. Although the permanent

immobilization does not affect normal locomotion, this procedure can weaken the joint region,

due to loss of shock absorption capacity of the joint, and fracture risk may be increased [64–66].

Arthrodesis technique is also used in joints that have important movements (like metacarpo-

phalangeal joint), knowing that in these cases the horse will have a mechanical lameness. The

use of this technique in these types of joints allows to decrease pain and to increase comfort

and the use of the affected limb, thus preventing the appearance of lesions in the contralateral

limb overhead [64–66].

As examples of the use of synthetic bone grafts, it will be described in three clinical cases,

where Bonelike® was applied in the arthrodesis of metacarpophalangeal joint, in the proximal

interphalangeal joint and in the distal intertarsal joint together with tarsometatarsal joint.

The first clinical case is a newborn donkey, born with a severe metacarpophalangeal joint

flexural deformity. The flexural deformity is so severe that it is impossible to manipulate and

move the metacarpophalangeal joint and the dorsal surface of the fetlock supported the

animal’s weight. Due to this situation, the dorsal aspect of the fetlock presented an ulceration

that communicated with the joint (Figure 7). It was decided, as the first approach, the surgical

treatment, to quickly as possible resolve the situation and prevent the worsening of the

complications [67, 68]. In this type of surgery, to relieve flexor forces, the tightened tendons

can be cut [67, 69, 70]. In this clinical case, both the superficial flexor tendon and the deep flexor

tendon were involved in the contracture of the joint, as well as the extensor digital tendon,

which was displaced caudally, working as a flexor, further forcing the joint to adopt the flexor

position (Figure 8(A)). Tenotomy of the three involved tendons was undertaken, in order to

reposition the joint into a physiological alignment (Figure 8(B)). With this aggressive

approach, the metacarpophalangeal joint stayed without support; so, a surgical arthrodesis of

metacarpophalangeal joint was also performed to stabilize the joint in a physiological position.

To do the arthrodesis, first the joint cartilage was removed with a curette to promote a bone-to-

bone contact between the metacarpal bone and the first phalange; after that the joint space was

filled with Bonelike® spherical granules mixed with autologous blood. A plate with cortical

screws was used to stabilize the joint in a physiological position (Figure 8(C and D)) [68].

Although arthrodesis is not commonly used on flexural limb deformities, it was decided to

apply this technique in the described clinical case, considering the lack of structural support of

the joint after the tenotomy of the three tightened tendons. This approach was previously

described by [71] that performed arthrodesis in a llama, in a miniature horse and in a
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miniature donkey, with severe bilateral congenital flexural deformities of the metacarpo-

phalangeal joint. The arthrodesis of the fetlock joint was not aimed at full recovery for future

athletic activity but rather having in mind the animal’s life quality [68].

The second clinical case was an adult horse that suffered an accident that resulted in the

laceration of the medial aspect of the pastern. With this laceration, a medial ligament that

causes instability to the pastern joint and consequently lameness was damaged. In clinical

examination, a biomechanical instability of this joint was observed, and in X-ray examination,

radiologic signs of subluxation and an increase in the medial joint space can be seen. Towards

that it was decided to do the arthrodesis of proximal interphalangeal joint [68]. To approach

the proximal interphalangeal joint, an I-shaped incision was performed in the skin over the

dorsal aspect of the joint, and then a Z-incision was performed over the digital extensor tendon

to expose the proximal interphalangeal joint. During the procedure, it was confirmed that this

joint was not stable and there was an increased articular gap between the first and the second

phalange on the medial aspect of the joint (Figure 9(B)). The cartilage from proximal

interphalangeal was removed using a curette, and the joint space (Figure 9(A)) was filled with

Bonelike® (Figure 9(C)). Three lag screws 3.2 mm were placed from the first to the second

Figure 7. Newborn donkey with a severe metacarpophalangeal joint flexion deformity. The donkey supported the right

hind limb with the dorsal aspect of fetlock (A). Large cutaneous ulcer on dorsal aspect of fetlock (B).
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phalange crossing the joint space. The head screws stayed in a shelf made previously with an

osteotome (Figure 9(D)). On the follow-up X-rays performed after the surgery, an important

bone proliferation, with evidence of bone fusion and gradual reduction of the joint space, was

noticed (Figure 10) [68].

The third clinical case was a report of a horse with chronic and intermittent lameness of the

right hind limb, with a slight biomechanical instability of the tarsal region during walking,

posing clinical and radiological signs of bone spavin. After the confirmation of joint pain by

clinical examination with the positive nerve blocks, it was decided to do the distal intertarsal

joint together with tarsometatarsal joint arthrodesis. The surgical approach to those joints was

made by an incision over the medial aspect of the tarsus perpendicular to the cunean tendon.

The cunean tendon was transected, and joints were identified with two needles (Figure 11(A)

and (B)). A 3.2 drill bit was inserted into the joint space of each joint and forced in three

different directions, using a single entry point (Figure 11(C) and (D)) [68]. Drilling paths were

filled with Bonelike® (Figure 11(E) and (F)). The objective of drilling the joint space was to

destroy the cartilage and to promote the contact between the bones and subsequent bone

fusion. Due to the osteoconductive proprieties of Bonelike®, the application of this bone graft

Figure 8. Metacarpophalangeal joint arthrodesis. Extensor digital tendon (yellow arrow) displaced caudally (A).

Tenotomy of extensor digital tendon (yellow arrows) and flexor digital tendon (red arrows) (B). Removal of joint cartilage

with a curette (C). A plate and screws to stabilize the joint and fill joint space, using a syringe, with Bonelike® spherical

granules (D).
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Figure 10. X-ray analysis follow-up of the proximal interphalangeal joint arthrodesis. The X-rays were taken at day 0 (pre-

surgery), at day 155 and at day 250, with two projections. Lateral projection (A–C). Dorsoproximal projection (D–F).

Figure 9. Proximal interphalangeal joint arthrodesis. Removing cartilage from proximal interphalangeal joint using a

curette (A). A subluxation gap between the first and the second phalange at medial aspect of the joint (B). Applying with a

syringe Bonelike® in proximal interphalangeal joint space (C). Three lag screws were placed from the first to the second

phalange crossing the joint space (D).
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in the void space of the performed holes improved the biomechanical stability of the distal

intertarsal and tarsometatarsal joint, and the bone bridging was accelerated, improving the

joints’ ankylosis. At the arthrodesis technique, it should be removed as much joint cartilage as

possible to allow a greater bone-to-bone contact. But in this specific technique of the distal

tarsal joint arthrodesis, as no additional surgical fixation is advised, the excessive drilling

causes instability and severe pain [72]. It can be argued that the limited drilling of the distal

tarsal joints involved in the three-drill-tract technique does not induce complete arthrodesis,

but results in multiple focal areas of arthrodesis and the biomechanical stability of the distal

tarsal joints are usually observed, and lameness is eliminated [73]. Using Bonelike® as a bone

substitute that will fill the drilled paths, these focal areas of arthrodesis are improved and

reinforced [68]. Arthrodesis using Bonelike® as a bone graft promotes bone fusion that permit-

ted the horse to return to the athletic activity and improved the horse quality of life, decreasing

the pain and increasing the joint stability. The Bonelike® application can enhance the bone

production due to osteoinductive and osteoconductive proprieties, shortening the healing

period after the arthrodesis and promoting the joint fusion in a shorter period [68, 74].

Figure 11. Arthrodesis of distal intertarsal joint together with tarsometatarsal joint. Needle is placed to identify the

tarsometatarsal joint (A). Confirmation of correct position of the needle into joint space was made by X-ray (B). Create a

hole with 3.2 drill bit in both joints, in three different directions using a single entry point, with a continuous flushing in

order to minimize thermal damage (C) and remove any residual bone and cartilage (D). The hole created at the joint after

drilling (E). Lateral X-ray of the tarsus showing the created hole (F). Hole filled with Bonelike®.
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These three clinical cases were strongly evidenced that Bonelike® is an appropriate synthetic

bone graft substitute with osteoconductive and osteoinductive properties to be used in surgical

arthrodesis, as void space filler, associated or not with standard orthopaedic procedures of

stabilization of the joints, in order to promote a faster bone fusion without any local or

systemic adverse reaction. This procedure permits the horse to return to the athletic perfor-

mance faster or, at minimum, improves the horse’s quality of life, decreasing the pain and

increasing the joint stability with positive clinical outcomes [68].

3.3. The use of synthetic bone grafts in ruminant clinical cases

Although the use of synthetic bone grafts in companion animals and horses is becoming a

reality, its application in production animals is yet marginal.

Most of the surgery cases in large production animals (ruminants, mostly) are performed in the

field settings, and the number of surgical cases referred to specialized veterinary centres is

considerably small [75]. Constraints for orthopaedic surgery and bone grafts use in ruminants

include the economic (cost of the treatment) and legal issues, the value of the individual in

contrast to the group value and the size and weight of the animal [75, 76]. Nevertheless, the

high genetic performance and value of some of these animals and the recent improvements in

surgical management of production animals, concerning chemical restrain, pain management

and surgical techniques, could be accompanied by the use of some biomaterials.

Fractures commonly occur in ruminants. Limbs, digits and skull fractures are often reported in

bovine and small ruminants, often subsequent to trauma. The most common limb fractures

occur especially in calves, as consequence to incorrect handling of dystocia or injuries due to

falls on slippery floors in livestock facilities. Metacarpus and metatarsus fractures represent

50% of the limb fractures cases, tibia fractures represent 12% and radius and ulna almost 7%.

Humerus fractures are rare and represent less than 5% of the cases. Still, fractures of the femur,

of the pelvis and of the axial skeleton are more uncommon [75, 76].

The selection of the osteosynthesis procedure is influenced by the bone site of fracture, the

degree and severity of soft tissue and neurovascular trauma of the status of the environment

fractures (close or open), the patient temperament and the surgeon skills. The selected proce-

dure must provide the patient the return to weight-bearing and normal mobility [75–77].

In many cases, it’s advisable to do a prompt temporary fracture stabilization with external

coaptation (splints or casts), avoiding additional trauma and clinical status worsening

(preventing the closed fracture from becoming open or further fracture fragmentation and

reducing eburnation of the fracture ends) prior to fracture fixation or during convalescence [75–

77]. External coaptation is inadequate in oblique, spiral and comminuted fractures, and with

extensive soft tissue trauma. In these cases, surgical procedures are advisable (internal or

external fixation) [76].

In ruminants, the most common fractures’ surgical procedures include external skeletal fixa-

tion (transfixation pin casts and external skeletal fixators) and internal fixation (intramedullary

pinning, intramedullary interlocking nail and bone plates). The former procedure can be easily

done in the field settings; it’s less expensive and allows load bearing in the traumatized limb,
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and it’s indicated in open fractures and wounds, but fracture reduction and reconstruction

may fail and may not accomplish ideal fracture stabilization leading to non-union. The latter

procedure, although more expensive as it requires specialized equipment and surgeon perfor-

mance, allows more stability during the osteosynthesis process [76, 78, 79].

Autologous cancellous graft can be collected from the sternum, proximal tibia, proximal

humerus and ilium. However, in cattle with chronic non-healing fractures, the lack of move-

ment and the lack of alternating weight support, due to the strong lameness, lead to medullar

atrophy, which limits the amount of cancellous bone graft that can be harvested from long

bones. To perform the collection of a significant amount of cancellous bone graft from the

sternum, general anaesthesia is advised, to avoid thorax trauma [78]. The use of synthetic bone

grafts in ruminants’ fractures with impaired bone repair mechanisms due to compromised

vascular supply after severe trauma, with large long bone defect with septic non-union,

infected open fractures, or in fixation failure, will promote and enhance bone healing process

in order to restore the original bone structure and function.

The clinical case presented refers to a dwarf goat with sequence of a trauma event, resulting in a

tibia open fracture, with soft tissue trauma (Figure 12(A) and (B)). The patient was 2 months into

gestation, in risk of developing complications that could worsen the clinical situation. Surgical

treatment, with internal fixation was considered as a first-choice treatment option. Also, it was of

importance to restore normal weight-bearing function in a short period of time, as the gestation

was close to the end. To stabilize the fracture, an intramedullary pin was applied, and the defect

in the fracture ends was filled with Bonelike® spherical granules of 250–500 μm, mixed with

autologous blood collected from the jugular vein during the surgery (Figure 12(C)).

On the follow-up, X-rays were performed at 2 (Figure 13(A)) and 4 (Figure 13(B)) weeks after the

surgery; bone proliferation and bone fusion were noticed. The intramedullary pin was removed

at 5 weeks after surgery (Figure 13(C)), presenting complete bone union and good ossification.

The intramedullary pin was removed. The patient returned to its normal function. No local or

systemic adverse reaction or rejection of the material during the healing process was observed.

Figure 12. The patient was attended for consultation. The X-ray image showed a spiral fracture in the distal third of tibial

bone (A). After hair clipping an open wound was evident. An internal fixation was considered as a first-choice treatment

option to avoid additional tissue trauma and further fracture stress (B). An intramedullary pin was applied, and the defect

in the fracture ends was filled with Bonelike® spherical granules of 250–500 μm, mixed with autologous blood collected

from the jugular vein (C).
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4. Conclusions

Although ceramic-based graft substitute materials and calcium phosphate ceramics such as

hydroxyapatite, β-tricalcium phosphate and Bioglass® were used for a long time (since the

1970s in dentistry and 1980s in orthopaedics), its use alone or in combination with osteogenic

or osteoinductive strategies still has a place in veterinary surgery. Macroporous granular forms

with intrinsic osteoinductive properties could be a practical alternative to a customized 3D-

printed scaffold or edges that allow filling of different shapes of bone defects as naturally

occurs in the clinical cases. Another presentation of HA and TCP involved in a collagen

membrane that resists to compression and could be cut with defects’ size before the implanta-

tion is also available. Those synthetic bone substitutes offer an adequate alternative allowing

the replacement of autologous cancellous bone grafts in management of fractures, vascular

non-unions, noncritical-sized bone defects and arthrodesis. Nevertheless, basic surgical princi-

pals such as biomechanical stability, vascular preservation and infection control are still vital

for providing an ideal environment for bone healing. However, when the local biology is

compromised as previously mentioned, the bioceramics scaffold should be complemented

with growth factors, cell-based therapies or a combination of those, in order to provide

osteoinductive and osteogenic properties to increase the likelihood of bone healing. Experi-

mental and clinical examinations are needed in veterinary surgery, as well as in human field to

adequately compare the outcome of the novel treatment options and its combinations,

establishing the most appropriate treatment protocols for each clinical presentation.
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