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Abstract

We review our theoretical and experimental studies on a class of liquid crystal (LC)
photonic devices, i.e., terahertz (THz) phase gratings and beam steerers by using LCs.
Such gratings can function as a THz polarizer and tunable THz beam splitters. The beam
splitting ratio of the zeroth-order diffraction to the first-order diffraction by the grating can
be tuned from 10:1 to 3:5. Gratingswith two different base dimensionswere prepared. The
insertion loss is lower by approximately 2.5 dB for the one with the smaller base. The
response times of the gratings were also studied and were long (tens of seconds) as
expected because of the thick LC layer used. Accordingly, the devices are not suitable for
applications that require fast modulation. However, they are suitable for instrumentation
or apparatuses that require precise control, e.g., an apparatus requiring a fixed beam
splitting ratio with occasional fine tuning. Schemes for speeding up the device responses
were proposed. Based on the grating structure, we also achieved an electrically tunable
THz beam steerer. Broadband THz radiation can be steered by 8.5� with respect to the
incident beam by varying the driving voltages to yield the designed phase gradient.

Keywords: liquid crystals, liquid crystal devices, diffraction, phase grating, grating
arrays, polarizer, beam splitter, submillimeter wave, THz radiation, tunable circuits and
devices, ultrafast optics, beam steering

1. Introduction

Terahertz (THz) science and technology have advanced significantly over the last 3 decades.

Applications are abundant in topics such as material characterization, data communication,

biomedicine, 3D imaging, and environmental surveillance [1–5]. These developments were

hampered as crucial quasi-optic components such as phase shifters [6–9], phase gratings [10–12],

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



modulators [13, 14], attenuators [15], polarizers [16, 17], and beam splitters [18–21] in the THz

range are still relatively underdeveloped.

To control the properties of electromagnetic waves at all wavelengths, periodic structures such

as gratings are frequently employed. In the THz frequency range, gratings with various

periods have been used for tailoring few-cycle pulses [22]. Gratings have also been used as

couplers and filters [23]. Tunable THz devices based on an optically and electrically controlled

carrier concentration in quantum-well structures have been demonstrated. However, these

devices have a limited range of tunability and must be operated at cryogenic temperatures far

below room temperature [24–26]. The potential of gratings with liquid-crystal-enabled func-

tionalities was recognized 2 decades ago [27]. Recently, the focus has been on various tunable

THz devices, such as phase shifters, filters, and switches that are controlled electrically or

magnetically, employing liquid crystals, primarily nematic liquid crystals (NLCs) [6–10, 15,

16, 18, 27–33]. Previously, we demonstrated a magnetically controlled phase grating for manip-

ulating THz waves [10]. This is based on magnetic-field-induced birefringence of the NLCs

employed [34]. Nonetheless, electrically controlled phase gratings are generally regarded as

desirable for many applications. Therefore, we also proposed and demonstrated an electrically

controlled phase grating involving NLCs for THz waves [11]. However, the theoretical analy-

sis was not described in detail and the issue of insertion loss was not touched upon in the

previous communication.

Besides, there is an urgent need for THz beam steering devices for scanning the THz beam

over the surface of targets to get full topological and spectral information, a metamaterial-

based beam steerer has been demonstrated and achieved a maximal deflection angle of 6� [35].

Other groups employed highly-doped semiconductors, such as Indium antimonide (InSb) [36]

and GaAs [37], so that the propagation properties of surface plasmons mode in highly-doped

semiconductor slits can be tailored by changing the carrier density there [36]. On the other

hand, the development of a reconfigurable THz antenna [38], which can electrically steer the

THz beam or vary the beam shapes, are useful for applications, such as adaptive wireless,

satellite communication networks, and automobile radar systems. The use of LC to construct a

phase array for beam steering in millimeter wave range has also been reported recently [39].

In this chapter, we report our comprehensive experimental studies on a phase grating for THz

waves. In particular, we analyzed the insertion loss in such gratings and devised an approach

for improving the loss by 2.5 dB over existing designs. Further, we demonstrated an electri-

cally tunable phase shifter array to modulate the phase of THz beam. By applying different

voltages on each part of the phase array, we can achieve a gradient in phase shift. Finally, it is

shown that the incident THz wave can be steered toward a selected direction.

2. Theoretical and experimental methods

2.1. Operation principles of the phase grating

We designed a binary phase grating consisting of alternating sections of two materials (fused

silica and LCs) with different refractive indices. Figure 1 shows the schematic of a generic
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binary phase grating. The grating is periodic along the x-direction. The THz wave is assumed

to be polarized along the x-axis and propagates along the y-direction. Each section of the

grating can be considered a retarder that introduces a phase shift. The Jones matrix [40]

associated with a particular retarder can be written as

bR ¼
eiδx 0
0 eiδy

� �
, (1)

where δ is the phase retardation and a function of x. The Jones vector associated with the

incident THz field is given by

Ei ¼ E
1
0

� �
, (2)

where E is a constant amplitude factor. The transmitted fieldEt emerging from the retarder is then

Et ¼ cW � Ei ¼ E
eiδx

0

� �
: (3)

For our design, we set δx = nNkd, where nN = n1 + κ1 or n2 + κ2 is the complex refractive index of

the corresponding section, k is the wave number, and d is the thickness of the binary phase

grating. The total transmitted field ET is then the superposition of the field transmitted through

all the alternating phase elements. We further write E = E0e
ikysinϕ, where ϕ is the diffraction

angle. Therefore, the total transmitted field can be written as

ET φð Þ ¼
Xeven

m¼0

ð mþ1ð Þl

ml

E0e
iky sinφei n1þκ1ð Þkddy

þ
Xodd

m¼1

ð mþ1ð Þl

ml

E0e
iky sinφei n2þκ2ð Þkddy:

(4)

Figure 1. Schematic of a generic binary phase grating consisting alternating sections with refractive indices of n1 and n2.

The width and height of each section of the phase element is respectively, l and d. P is the polarization direction of the THz

wave.
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In Eq. (4), l is the width of each section (all sections are assumed to have identical widths) of the

grating. The diffraction intensity I(ϕ) can then be expressed as

I φð Þ ¼ ET φð Þ � ET
∗ φð Þ: (5)

For an ideal binary phase grating, the diffraction efficiency ηm of themth-order diffracted wave,

defined as the intensity ratio of the diffracted beam to that of the incident beam, is given by

ηm ¼
1

Λ2

ðΛ=2

�Λ=2

eiδe�i 2πmy=Λð Þdy

�

�

�

�

�

�

�

�

�

�

2

, (6)

where δ is the x-dependent phase shift of the grating with grating period Λ [18, 41]. Following

[41], we can write

ηm ¼
cos 2

ΔΓ=2ð Þ if m ¼ 0

2=mπð Þ sin mπ=2ð Þ½ �2 sin 2
ΔΓ=2ð Þ if m 6¼ 0

,

(

(7)

where ΔΓ is the relative phase difference between two adjacent sections in the phase

grating. For ΔΓ = (2 N + 1)π (where N is an integer), the diffraction efficiencies of the odd

orders (m = �1, �3, �5, …) are maximal. Eq. (7) reveals that the diffraction efficiency of

the third order η�3 (4.5%) is nine times smaller than that of the first-order η�1 (40.5%).

Therefore, in this study, we considered only the zeroth and the first orders of the diffracted

beam. Eqs. (6) and (7) were used as guides for designing the parameters of the grating. In

practice, insertion loss causes the experimentally observed efficiencies to be lower than

expected.

Because of the THz wavelength and THz beam size, the grating can have only a finite number

of grooves. Further, the number of grooves N affects the angular resolution of the diffracted

beam [42]. The angular width Δϕ is given by

Δφ ¼
λ

NΛ cosφ
: (8)

Let the frequency of the THz be centered at 0.3 THz or a wavelength of 1 mm, we designed Λ

to be 2 mm in our devices. The relative phase difference between adjacent sections is designed

to be π. Therefore, the diffraction angle for the first order is 30�. Figure 2 shows a plot of the

diffraction efficiency as a function of the diffraction angle (for the first order). It illustrates

clearly the angular resolution achievable for a grating with 10 periods and a grating with 40

periods. According to Eq. (8), the angular widths for the first-order diffracted wave for 10 and

40 periods are 3.3 and 0.8�, respectively.

When the relative phase difference between adjacent groves is tuned between π and 2π, the

diffracted signals between the zeroth order and the first order have the maximal tunable range.

This is illustrated in Figure 3 for a grating with 10 periods. For ΔΓ = π, the diffracted signal lies

mainly in the first-order, and η�1 ≈ 0.4. By contrast, for ΔΓ = 2π, the diffracted signal mostly
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concentrated in the zeroth order, and η0 ≈ 1. These predictions are valid provided the insertion

losses can be ignored.

2.2. Construction of the grating

The design of the grating was based on the structure of the electrically controlled THz phase

grating reported in our previous study [11]. This is shown schematically in Figure 4. The

incident THz wave was assumed to be polarized in the y-direction. Orientations of the LC

molecules for two possible configurations are shown (See Figure 4). The device was designed

0 10 20 30 40 50
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0.2

0.4

0.6

0.8

1.0

(deg.)

10 periods

40 periods

1
st
-order

Figure 2. The diffraction efficiency of a phase grating with 10 (black dashed curve) and 40 periods (red solid line) is

plotted as a function of the diffraction angle (for the first order).
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Figure 3. Diffraction efficiencies of a 10-period phase grating are plotted as a function of the diffraction angle for relative

phase differences of π and 2π.
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such that the frequency band of 0.3–0.5 THz would exhibit the highest zeroth-order diffraction

efficiency.

Parallel grooves with a period of 2.0 mm, width of 1.0 mm, and groove depth of 2.5 mm were

formed by stacking indium tin oxide (ITO)-coated fused silica substrates; the refractive index

of these substrates is 1.95 in the sub-THz frequency region (0.2–0.8 THz). The surfaces of the

fused silica substrates were coated with polyimide (SE-130B, Nissan) and then rubbed for

homogenous alignment. The grooves were filled with NLCs (E7, Merck) and sealed with a

sheet of fused silica coated with N,N-dimethyl-N-octadecyl-3-aminopropyltrimethoxysilyl

chloride. At room temperature, E7 is a birefringent material with positive dielectric anisotropy.

The LC molecules tend to be aligned parallel to the direction of the applied electric field when

the applied voltage is greater than a threshold voltage. The effective refractive index of E7 [43],

neff can be tuned from the refractive index for ordinary waves (no = 1.58) to that for extraordi-

nary waves (ne = 1.71) by varying the applied voltage. A stack of ITO-coated fused silica plates

with dimensions identical to those of the grating was prepared as a reference. Bases of the

phase grating with two different dimensions (h1 = 17.5 mm and h2 = 7.5 mm) were fabricated

for analyzing the effect of dimension of the base on insertion losses of the phase grating.

2.3. Transmission measurements

A photoconductive (PC) antenna-based THz time-domain spectrometer (THz-TDS) [32, 44],

was used for measuring the zeroth-order diffraction spectra of the device. Briefly, the pump

beam from a femtosecond mode-locked Ti:sapphire laser was focused on a dipole antenna

fabricated on LT-GaAs for generating a broadband THz signal, which was collimated and

collected through the THz phase grating by using off-axis parabolic gold mirrors. A pair of

parallel wire-grid polarizers (GS57204, Specac) was placed before and after the device under

test. The zeroth-order diffraction of THz radiation was coherently detected by another PC

antenna of the same type as that of the THz-TDS and grated by ultrafast pulses from the same

laser.

Figure 4. Structure of the electrically controlled THz phase grating using nematic liquid crystals. ITO: Indium tin oxide;

PI: Polyimide; LC: Liquid crystal molecules; no: Ordinary index of refraction; ne: Extraordinary index of refraction; Vth:

Threshold voltage.
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In the second set of experiments, the broadband THz signal was filtered by using a metallic

hole array to obtain a quasi-monochromatic wave centered at 0.3 THz and with a line width of

0.03 THz [45]. The diffraction pattern of this beam produced by a grating with various nematic

LC orientations was detected and mapped by a liquid-helium-cooled Si bolometer, which was

at a distance of 20 cm from the device and located on a rotating arm that could be swung with

respect to the fixed grating. The bolometer had an aperture with a diameter of approximately

2.5 cm.

2.4. Insertion loss

To estimate the insertion loss of the THz grating, we regarded the device as a stack of parallel-

plate waveguides. The ITO conductive film was not an ideal conductor. We recently showed

that for a conductivity of 1500–2200Ω�1
�cm�1, the complex refractive indices of ITO are 20�70

for n and 20�70 for κ in the THz range [46]. On the basis of the manner of waveguide

excitation, we can assume the mode of the propagating THz wave is transverse. The cutoff

frequency of the parallel-plate waveguides can be written as fc = c/2 nl, where c is the velocity of

light, l is the distance between two conductive layers, and n is the refractive index of the

dielectric material within a waveguide. The attenuation constants αc and αd corresponding to

conductor loss and dielectric loss, respectively, are given by [47, 48]

αc ¼

ffiffiffiffiffiffiffi

πfε

σc

s

2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f c=f
� 	

1� f c=f
� 	2

h i

r , (9)

and

αd ¼
πf tan δ

ffiffiffiffi

εr
p

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f c=f
� 	2

q , (10)

where f is the frequency, ε is the permittivity of the dielectric material, σc is the conductivity of

the electrode, tanδ is the loss tangent, and εr is the relative permittivity of the dielectric

material. In practical applications, the insertion loss of the THz grating should be minimal.

2.5. Electrically controlled steering of the THz beam

We have also designed an electrically tunable phase shifter array which can function as the

THz beam steerer. Figure 5 shows the structure of the phase shifter array, which is constructed

by alternately stacking a number of NLC layers and electrodes. Voltage sources are connected

to the electrodes to apply control voltages to each NLC layer. The effective refractive index,

neff (V), of each NLC layer can be electrically tuned by applying appropriate voltages. The

polarization of the THz wave was assumed to be along the z-direction while the wave was

normally incident to the device.

The device was designed such that, when no voltage was applied, the NLC molecules are

aligned along the y-direction. In this case, the effective refractive index equals to that of the
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ordinary component of light in the LC, no. If sufficient control voltage is applied, the NLC

molecules will orientate toward the direction parallel to the polarization direction of the THz

wave (z-direction). The effective refractive index then equals to that of the extraordinary

component of light in the LC, ne. The traversing time, which the THz wave takes to pass

through the NLC layers, can be changed by applying voltages. The corresponding phase shift

Δϕ(V) in the applying voltage V is given by

Δϕ Vð Þ ¼ kd no � neff Vð Þ
� 	

, (11)

where k is the wave number in free space and d is the propagation length of the NLC layer.

When a certain phase gradient was created across the aperture of the device by adjusting the

phase shift in each NLC layer, the wavefront of the transmitted wave was inclined against the

aperture. According to the limited voltage source channels, we divided two NLC layers as a

block. The steering angle θ can be determined by the aperture size A and the optical length

delay Δd between the top NLC block and the bottom NLC block. The optical length delay Δd

was according to the phase shift between the top and bottom NLC blocks Δϕmax. Therefore,

the relationship between steering angle θ, optical length delay Δd, and the phase shift Δϕmax,

was shown in Figure 5(a), and can be written as,

Figure 5. Schematic structure of the electrically controlled THz phase shifter array for beam steering. (a) Set-up of the

beam steering experiment. The relationship between the steering angle, θ, optical delay length, Δd, and aperture, A, are

shown. (b) Structure of the device with arrangement for voltage applied to each layer. Dimensions of the structure are also

shown.
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Δd ¼
Δϕmax

2π
λ, and tanθ ¼

Δd

A
, (12)

where λ is the corresponding wavelength of THz wave. Accordingly, the THz wave can be

steered by the control voltage. The phase shift Δϕi in the certain ith NLC block, in our case can

be written as,

Δϕ
i
¼ i� 1ð Þk 2hð Þ tanθ, (13)

where 2h was the thickness of the ith NLC block and θ was the steering angle against the

normal of the aperture. We can see the construction of the device in Figure 5(b), in which each

NLC block includes two NLC layers and two electrodes.

In this work, we used the 550-μm-thick Teflon sheet as the spacer and the 100-μm-thick copper

foil as the electrode. The copper foil was coated with PI Nissan SE-130B on both sides and

rubbed for homogeneous alignment along y-direction before applying the voltage. The 18

NLC layers and 19 electrodes were stacked up alternately. The total thickness of the device

was 12.1 mm, which corresponded to the size of the aperture, A, along z-direction. The size of

the aperture along x-direction was designed to be 20.0 mm, and the propagation length, d, of

the THz wave was designed to be 10.0 mm. Control voltage sources connected to the elec-

trodes provided 1 kHz-sinusoidal waves to the NLC layers.

The threshold voltage Vc can be estimated by Vc = π (k/ε0Δε)
1/2 = 1.20 Vrms. The complex

refractive indices of NLC MDA-00-3461 for ordinary and extraordinary in THz range are

no = 1.54, ne = 1.72, κo = 0.03, and κe = 0.01, respectively [49]. At a frequency of 0.3 THz, the

Figure 6. Improved THz-TDS. Probe beam is guided with a 1 m long optical fiber directly to the antenna. The detection

assembly is located on a rotatable arm and can be moved without changing the optical path.
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estimated maximum phase shift applied to a propagation wave passing through NLC layer

would be 11.31 rad, which is calculated by Eq. (11) and the refractive indices of NLC MDA-00-

3461. The maximum steering angle was estimated to be approximately 9� from Eq. (13) taking

the maximum phase shift and aperture size into account.

For studying THz beam steering, we modified the THz-TDS by employing a 1 m-long single

mode fiber (F-SF-C-1FC, from Newport Corp.) to guide the femtosecond laser directly to the

detecting antenna. This way, the optical path remained fixed when the detecting arm was

moved as the THz beam was steered. The schematic diagram of the setup is shown in Figure 6.

The detection assembly was 20 cm away from the device and located on a rotation arm that can

be swung with respect to the fixed device. This system was much more stable and convenient

to use than the one employing the bolometer.

3. Results and discussions

3.1. Phase grating

We studied zeroth-order diffracted THz pulses by the phase grating for both ordinary and

extraordinary waves were described in Ref. [11].

Experimentally, the diffraction efficiency of diffracted signals, η, in the frequency domain was

determined by normalizing the diffracted signals in the frequency domain to the diffracted signals

of the reference phase grating. To compare, a finite-difference time-domain (FDTD) algorithm

(RSoft DesignGroup, Inc.) was used for simulating the diffraction of THzwaves by a phase grating.

In the FDTD simulation, we analyzed the grating structure as a stack of rectangular-shaped

waveguides. Neglecting conductive and magnetic loss of the materials involved, the Maxwell-

Faraday and Maxwell-Ampere equations can be expanded in the Cartesian coordinates as

∂Hx

∂t
¼

1

μ0

∂Ey

∂z
�

∂Ez

∂y

� �

,

∂Hy

∂t
¼

1

μ0

∂Ez

∂x
�

∂Ex

∂z

� �

,

∂Hz

∂t
¼

1

μ0

∂Ex

∂y
�

∂Ey

∂x

� �

,

(14)

∂Ex

∂t
¼

1

ε0

∂Hz

∂y
�

∂Hy

∂z

� �

,

∂Ey

∂t
¼

1

ε0

∂Hx

∂z
�

∂Hz

∂x

� �

,

∂Ez

∂t
¼

1

ε0

∂Hy

∂x
�

∂Hx

∂y

� �

,

(15)

where Hx, Hy, Hz, Ex, Ey, and Ez are components of the magnetic field and electric field,

respectively. We set the refractive indices of the waveguides as those of fused silica and LCs.
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The two types of waveguides were made to alternate (black and yellow sections in Figure 4) in

the structure. The grating device extended from z = 0 to z = 2500 μm. The incident wave was set

to have a Gaussian shape, and the beam size was 19.0 mm, as large as the device aperture. The

wave was normally incident in the z-direction from a source at z < 0 and was polarized in the

x-direction. The dimensions of the grid in the FTD analysis were 10 μm� 10 μm in the xy-plane,

while the time step was 1.67� 10�14 s. Figure 7 shows the simulation results for an incident THz

wave that is yet to enter the device (a), THz waves at two positions in the grating (b and c), and a

THzwave that has emerged from the grating. The false color (in 256 levels) indicates the strength

of the electric field at a given spatial point. In Figure 7(b, c), we show THz waves transmitted

through the grating with different velocities at different x-positions because of the difference in

the refractive indices. After the THz signal emerged from the device (Figure 7(d)), we set the time

monitor to obtain the superposition signal.

To illustrate performance of the grating, experimental and FDTD simulation results of the

zeroth-order diffraction efficiencies of the phase grating operated at four values of applied

voltage are plotted as a function of frequency in Figure 8 (reproduced from [11] with permis-

sion). Note that the experimentally measured diffraction efficiency was the highest near

0.3 THz, in agreement with the designed frequency. For an ordinary wave at 0.3 THz, the

phase difference between fused silica and E7 was close to 2π. Therefore, the transmission of the

(a) (b)

(c) (d)

Figure 7. Simulation results for (a) an incident THz wave that is yet to enter the device, (b) and (c) THz waves at two

positions in the grating, and (d) a THz wave that has emerged from the grating.
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grating was higher. The THz wave was mainly concentrated in the zeroth order. By contrast,

for extraordinary waves, the phase difference was close to π. Furthermore, the diffraction

efficiency was lower for the zeroth order because the THz wave was mostly diffracted into

the first order.

The experimental and FDTD simulation results are in general agreement. In Figure 8(a, b),

there are, however, some discrepancies in efficiencies and peak positions. This is expected as

the thickness of the fused silica plates in the grating assembly varies by �0.1 mm. To check, we

calculated diffraction efficiencies of gratings with dimensions of 2.4, 2.5, and 2.6 mm using the
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Figure 8. (a) FDTD simulation and (b) experimental results of the frequency dependence of the zeroth-order diffraction

efficiencies of the phase grating operated at four values of applied voltages. (Figure 3 of Ref. [11], reproduced by

permission of the authors and IEEE).
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FDTD software for the o-ray and e-ray, respectively. Further, a structure with random arrange-

ment of sections with deviations of 0.1 mm centered around 2.5 mm was also studied. The

results are shown in Figure 9. Clear shifts are observed in the curves. Therefore, we inferred

that the experimental results are reliable.

Because of the periodically arranged ITO films in the grating, our device could be consid-

ered a wire-grid polarizer for the THz wave. Only a THz wave polarized perpendicular to

the grooves could pass through the electrically tuned phase grating. The measurement

result is shown in Figure 10. The extinction ratio of the device shows the ratio of the

transmitted THz signals polarized parallel and perpendicular to the grooves is better than

1:100 at ~ 0.3 THz.
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Figure 9. FDTD simulation result showing the diffraction efficiency as a function of the frequency for the phase grating of

different thicknesses (see text): (a) o-wave and (b) e-wave.
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3.2. Bolometer measurement results

In Figure 11, we present the intensity profiles of the diffracted 0.3 THz beam polarized in the

y-direction. Data are shown for the grating biased from 0 to 90 V. The corresponding effective

indices of refraction vary from 1.58 to 1.71. A diffraction maximum was detected at ϕ = 30�,

which corresponds to the first-order diffracted beampredicted by the grating equationΛsinϕ =mλ,

whereΛ is 2.0mmand thewavelength λ is 1.0mm for the 0.3 THzwave. Themeasured diffraction

efficiencies for the zeroth and first orders are in accord with the predictions of Eq. (5), considering

the finite dimensions of the grating and the acceptance angle of the bolometer (�3�).

When the E7 molecules were aligned such that the refractive index was no, the phase difference

was close to 2π. Most of the THz signal propagated in the direction of the zeroth-order diffrac-

tion. Experimentally, the diffraction efficiencies were determined to be 0.62 and 0.06 for the

zeroth and first orders, respectively. The diffraction efficiencies were tuned by increasing the

applied voltage (Vappl) gradually. When the refractive index of E7 was varied from 1.58 to 1.71,

the diffraction efficiency of the zeroth order decreased; by contrast, the diffraction efficiency of

the first order increased. When the E7 molecules were aligned such that the refractive index was

ne, the phase difference was close to π. The THz wave propagated mostly as a first-order

diffracted beam. The diffraction efficiencies were 0.16 and 0.26 for the zeroth and first orders,

respectively.

Figure 12(a, b) show the diffraction efficiencies of the zeroth and first orders as a function of

the refractive index of E7 and Vappl. The experimental results, shown by dot symbols, are in

good agreement with the theoretical predictions. Such results indicate that the grating func-

tions as a variable beam splitter. The beam splitting ratio of the zeroth order to the first order

can be tuned by varying the applied voltage.

Alternatively, these results indicate that the beam splitting ratio can be tuned and varied as a

function of the refractive index of the nematic liquid crystal, E7. This is illustrated in Figure 13.
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Figure 11. Diffraction efficiencies of the grating biased at several values of applied voltages are plotted as a function of

the diffraction angle for the 0.3 THz beam. Solid lines are theoretical curves.
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The theoretical calculation results and the experimental results are shown by the curve and dot

symbols, respectively in Figure 13. The results indicate that the beam splitting ratio of the

zeroth order to the first order can be tuned from 10:1 to 3:5.

3.3. Insertion loss

Insertion loss is a critical parameter for THz devices. We have experimentally and theoretically

studied the insertion loss of two classes of devices. Figure 14(a) shows the diffraction efficiency
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Figure 12. Diffraction efficiency as a function of the refractive index of E7 and the applied voltage for the (a) zeroth order

and (b) first order. The theoretical calculation results and experimental results are shown by the curves and dots,

respectively.
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of a grating with a thicker base (h = 17.5 mm), obtained by normalizing the diffracted signals

for the o-ray and e-ray to the reference THz signal for which the grating was removed. The

experimentally measured diffraction efficiency for the o-ray at 0.3 THz is approximately 0.07.

The diffraction efficiency for the o-ray at 0.3 THz predicted by the classic diffraction theory or

evaluated by performing an FDTD simulation was approximately 0.45. The loss of the device

was thus �8.0 dB for the o-ray at 0.3 THz. Similarly, the diffraction efficiency for the e-ray at

0.5 THz was approximately 0.046, whereas the theoretical prediction was approximately 0.45.

The loss value of the grating for the e-ray at 0.5 THz was therefore �10 dB. A grating device

with a smaller base component (h = 7.5 mm) was prepared to compare the insertion loss

(Figure 14(b)). The experimentally measured diffraction efficiency for the o-ray at 0.3 THz

was approximately 0.11, and the loss was �6.1 dB. The diffraction efficiency for the e�ray at

0.5 THz was approximately 0.083 and the loss value was �7.4 dB. The diffraction efficiency of

the device with a smaller base is obviously higher than that of the device with a larger base.

The thickness of the ITO film we used was approximately 200 nm. According to [46], the

conductivity σ of the film was 1.5 � 103 Ω�1
�cm�1. The parameters of fused silica and LC with

different refractive indices in the frequency range of 0.2�0.8 THz are used for the insertion loss

calculations shown in Table 1.

The estimated loss value was obtained from Eqs. (9) and (10). For the grating with a larger base

component (h = 17.5 mm), the total loss for the o-wave at 0.3 THz and for the e-wave at 0.5 THz

were estimated to be �9.0 and �13 dB, respectively. Similarly, for the grating with a smaller

base component (h = 7.5 mm), the total loss for the o-wave at 0.3 THz and for the e-wave at
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Figure 14. Diffraction efficiency of the devices with bases of (a) h = 17.5 mm and (b) h = 7.5 mm.

Material Fused silica E7 (n
o
) E7 (n

e
)

εr 3.80 2.50 2.92

εi 0.008 0.095 0.041

tanδ 0.0021 0.038 0.014

Table 1. Parameters of fused silica and the NLC E7.
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0.5 THz were estimated to be �5.5 and �6.9 dB, respectively. Table 2 shows the estimated

and measured values of the two devices. The discrepancy between the estimated insertion loss

and measured data could be due to the finite collection efficiency of the detection system and

nonideal assembly of the grating. The experimental results indicate that by reducing the

thickness of the thick fused silica plates in the base of the device by10 mm, the insertion loss

can be reduced by approximately 2.5 dB.

Therefore, if a grating device without a base (h = 2.5 mm) can be fabricated, the insertion loss

can be as low as �2.5 dB. Such a device would be more attractive for practical use. Further-

more, the performance of the grating can be improved by using electrodes with higher con-

ductivity. The thickness of the electrodes affects the conductor loss, as detailed in Ref. [50].

3.4. Device response times

For gratings using LCs, the response time of the device is a concern. The voltage-on and

voltage-off times were measured by subjecting the device to a pulse signal. Figure 15(a, b)

shows the normalized power as a function of the driving voltage in the voltage-on and

voltage-off states, respectively. We defined the rise time as the duration for which the driving

voltage was turned on for reducing the power to 37% of the maximum. The fall time was

defined as the duration for which the driving voltage was turned off for increasing the power

Phase grating h = 17.5 mm h = 7.5 mm

Driving voltage 0 V (no) at 0.3 THz 90 V (ne) at 0.5 THz 0 V (no) at 0.3 THz 90 V (ne) at 0.5 THz

(Estimated insertion loss)

Conductor loss

Dielectric loss

Total

4.7 dB

4.3 dB

9.0 dB

7.8 dB

4.9 dB

13 dB

2.3 dB

3.2 dB

5.5 dB

3.8 dB

3.1 dB

6.9 dB

Measured value 8.0 dB 10 dB 6.1 dB 7.4 dB

Table 2. Insertion loss of phase gratings.
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Figure 15. Response times of a phase grating: (a) voltage-on state and (b) voltage-off state.
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to 63% of the maximum. The rise and fall times of the grating were found to be approximately

23 and 290 s, respectively. The phase grating responded slowly because of the thick LC layer

used. Consequently, the present device is not suitable for applications that require fast modu-

lation. However, the device is appropriate for instrumentation or apparatuses that require, for

example, a fixed beam splitting ratio with occasional fine tuning.

The response time of the voltage-off state depended only on the material properties and cell

thickness. Therefore, it cannot be shortened by applying a higher electric field. To shorten the

response time, LCs with birefringence than E7 can be used. Alternatively, dual-frequency LCs

can be employed; the use of dual-frequency LCs has been discussed in previous papers [51–54].

Dual-frequency LCs show high dielectric dispersion, and their dielectric anisotropy is fre-

quency dependent, resulting in a change in sign at the crossover frequency. Dual-frequency

materials in which the crossover frequency is a few kilohertz and changes markedly over the

range are commercially available. Dual-frequency LCs would enable the operation of phase

gratings in a nonzero applied voltage state.

3.5. Phase shifting and beam steering

We have studied the phase shift experienced by the THz wave propagating through the

grating in which the control voltages were applied equally to all NLC layers. Figure 16 shows

the measured THz waveforms for biasing voltages varied from 0 to 28.8 Vrms. It is obviously that

the pulses delay increase as applying voltages increased, as the NLC molecules re-orientate

gradually from ordinary to extraordinary refractive index.

By applying Fourier transform on the waveforms in Figure 16, we obtained the phase shift as a

function of frequency. This is shown in Figure 17. The phase shift increased with increasing
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Figure 16. THz signal delay in time domain. Delay time increases as applying voltage increases.
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applying voltages as expected. Figure 18 is a plot the phase shift at 0.3 THz as a function of the

control voltage. Above the threshold voltage, 1.20 Vrms, the phase shift rapidly increases with

the applying voltage. The maximum phase shift reached approximately 11.24 rad. This value is

in close agreement with the calculated value.

We measured the beam steering characteristics of the phase-shifting array with the modified

THz-TDS shown in Figure 6. Although the applying voltage should be adjusted layer-by layer

for beam steering, only nine values of control voltages were available to be applied to each

NLC block consisting two NLC layers. As the phase shift Δϕi in each NLC block needed for

beam steering is given by Eq. (12), the control voltage corresponding to phase shift can be

determined from the experimental results in Figure 18, and are tabulated in Table 3.
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The experimental results demonstrating beam steering are shown in Figure 19.

In the above figure, (a) shows the THz signal before transmitted to the device, and (b) and (c)

show the THz signal transmitted through the device with ordinary and extraordinary refrac-

tive indices at θ = 0�, respectively. The main beam was steered in the direction of θ = 8.5� as the

control voltages were varied to yield the phase gradient as shown in (d). The signal vanishes as

we removed the device as shown in (e). Applying FFT analysis, the corresponding THz spectra

Applied voltage (Vrms) Phase shift (rad) at 0.3 THz

V1 0 0

V2 1.32 1.41

V3 1.44 2.81

V4 1.57 4.22

V5 1.77 5.62

V6 2.18 7.03

V7 2.96 8.43

V8 4.88 9.84

V9 28.80 11.24

Table 3. Control voltage and corresponding phase shift at 0.3 THz.
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Figure 19. THz signals before steered at θ = 0�: (a) without sample; with sample (b) at no-state, (c) at ne-state; steered

signals at θ = 8.5�: (d) sample applied voltage to yield gradient phase, (e) without sample.
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in frequency domain are shown in Figure 20. According to the results, the device can steer the

broadband THz signal up to about 0.5 THz.

4. Summary

In this work, we review our theoretical and experimental studies on electrically controlled LC-

based phase gratings for manipulating THz waves. This device can be used as a tunable THz

beam splitter, and the beam splitting ratio of the zeroth-order diffraction to the first-order

diffraction can be tuned from 10:1 to 3:5. An FDTD simulation was performed to investigate

the diffraction effect of the phase grating. The experimental and simulation results were in

general agreement. The signal losses of the device were discussed. It was observed that the

insertion loss could be reduced by reducing the thickness of the fused silica plates in the base

component of the device. The rise and fall times of the grating are approximately 23 and 290 s,

respectively. The slow response could be accounted for because of the thick LC layer

employed. Consequently, it is not suitable for applications that require fast modulation. How-

ever, the device is appropriate for instrumentation or apparatuses that require, for example, a

fixed beam splitting ratio with occasional fine tuning. The use of highly-birefringent NLCs or

dual-frequency LCs could alleviate the problem somewhat. Besides, we demonstrated a
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grating-structured phase shifter array that can be used as the THz shifter and THz beam

steerer. A phase shift as large as 11.24 rad was achieved. Using a designed voltage gradient

biasing on the grating structure, broadband THz signal below 0.5 THz can be steered by as

much as 8.5�. The experimental results are in good agreement with theoretical predictions.
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