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Abstract

Ultrasound has been widely used as a technological alternative way to analyse non-
invasively an assortment of materials. It includes liquids with dissimilar physical
characteristics, including mono- and multi-phasic mixtures, suspension formation and
dissolution, in-line processing, among other practical applications. Regardless the huge
spread of uses, so far ultrasound has not been proved to be able to quantify transester-
ification kinetics with a metrological approach. The aim of this chapter is to demonstrate
that a properly designed ultrasonic experiment can be developed to identify remarkable
stages of a transesterification reaction to produce biodiesel. The method was compared
both with gas chromatography and hydrogen nuclear magnetic resonance (1H NMR).
For an in-line application, ultrasound has been proved to work properly as a monitoring
tool for chemical reaction kinetics.

Keywords: ultrasound, metrology, chemical kinetics, monitoring, biodiesel production

1. Introduction

Currently, in the chemical, food, petrochemical and other industries, there is a considerable

demand for measuring instruments that are able to characterize liquids with high sensitivity,

robustness and precision. An instrument that is able to perform the process accurately, ranging

from chemical reactions (production) to quality control (final product), is necessary. Due to the

automation of processes, in-line measurements are increasingly being studied to ensure that

the product is in conformity to technical requirements [1–5].

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The competitiveness of companies for which the core business is the production of consumer

goods is directly linked to their production process. Quality and productivity, once seen as

dissociated elements, now are joined together, strongly impacting business competitiveness,

improving process performance, product quality and reducing costs. In this way, the study of

the kinetics of chemical processes allows the optimization of the process, avoiding the waste

not only of raw materials, but also of energy and time [6].

Establishing the kinetics of a chemical reaction can be very complex depending on the chem-

ical route. An in-depth study requires a series of experiments and simulations that can predict

when the reaction has reached the optimal state. For reactions in which the converting mech-

anism is not well established, several kinetic models may be proposed, arising from countless

reaction monitoring techniques. Thus, the combination of techniques, well described in the

literature and easily accessible, allows a more precise conclusion of the object of study [6, 7].

To illustrate, let us take one of the chemical reactions responsible for biodiesel production, the

transesterification reaction, disclosed in Figure 1.

Figure 1 discloses that an oil can react with a small chain alcohol in the presence of a catalyst

and produce biodiesel. Biodiesel, also known as fatty acid methyl ester (FAME), is nothing

more than a mixture of esters.

The transesterification reaction to produce biodiesel is reversible and, therefore, usually works

with excess of alcohol. A typical proportion is 6:1 (alcohol:oil) ratio, so that the equilibrium

displacement is forced towards the conversion of biodiesel. However, the oil and alcohol are

not miscible, establishing two phases. In this stage, when there are two phases within the

mixture, one can say that the mass transfer controls the kinetics of the reaction. Nevertheless,

as biodiesel (methyl ester) is formed, it works as a co-solvent, facilitating the miscibility. Upon

reaching the homogeneity of the system, the chemical reaction starts to control the system. A

reaction in which an exchange of mechanism occurs makes difficult to define the kinetics and,

consequently, the establishment of optimal reaction conditions [7–12].

Figure 1. Transesterification of vegetable oil for biodiesel production.
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Within this chapter, we will disclose the recent outcomes of a research in which ultrasound has

been used as a way of monitoring the progress of the reaction of transesterification of soybean

oil with methanol in the presence of KOH as basic catalyst. The pulse/echo technique was used

to monitor acoustic velocity throughout the reaction, composed as an in-line scheme. The

results were related to the reference method based on gas chromatography (EN 14103 stan-

dard) and to the 1H NMR technique [13–18].

2. Fundamental of the transesterification reaction

Let us consider the reaction TAG + 6 MeOH ! 3 FAME + G, where TAG (triglyceride) is

soybean oil, MeOH is methanol, FAME is the ester mixture and G is glycerol. To simplify the

study, there are some considerations before starting the process of monitoring the transester-

ification reaction by ultrasound. As there is excess alcohol, we can consider TAG as a limiting

reagent, i.e., when it is totally consumed the reaction will finish. With the excess of methanol,

the reaction becomes irreversible, which means that the whole equilibrium of the reaction is

displaced to produce biodiesel. Another important consideration is to admit a batch reactor in

which reagents are mixed at the beginning of the reaction, without any inlet or outlet flow of

reagents further than those mixed at time 0.

Thus, we determine the amount of TAG consumed ðNTAGc
Þ, quantified in mol, through Eq. (1),

in whichNTAG0
represents the amount of TAG inserted in the reactor at time 0 (in mol), andX is

the relationship between the TAG that reacted with the TAG inserted into the reactor at time 0.

NTAGc
¼ NTAG0

� X (1)

The TAG in a given time (NTAGt
) is obtained by the difference of the TAG inserted in the reactor

and the TAG consumed, according to Eq. (2) (all values expressed in mol).

NTAGt
¼ NTAG0

� NTAG0
� X (2)

Thus, Eqs. (1) and (2) lead to Eq. (3), as depicted elsewhere [6, 9].

NTAGt
¼ NTAG0

1� Xð Þ (3)

From stoichiometry, one can derive to CTAG ¼ NTAG

V
, and for liquids V = V0 (volume is constant),

evolving to Eq. (4).

CTAG ¼ CTAG0
1� Xð Þ (4)

The disappearance of the TAG must be accompanied by the appearance of the FAME. How-

ever, a question arises: how the actual concentration of FAME throughout the reaction can be

assessed? Complementary, one could ask how to know that in fact the reaction has ended and

it has already reached the maximum conversion? There are several techniques proposed in the

literature, but few can make this determination in an in-line scheme with an accurate way
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without demanding exorbitant expenses. To sort out that drawback, ultrasound methods

emerge as a tool capable of assisting in the biodiesel manufacturing process.

3. Ultrasound as a tool for liquid characterization

Ultrasound is a mechanical wave that propagates in fluids or solid materials at frequencies

greater than 20 kHz, i.e., out of the audible range for healthy humans [19–25].

An often used ultrasonic measurement method consists on a pulse/echo arrangement. Basi-

cally, it consists on

EMISSION! PROPAGATION! REFLECTION! PROPAGATION! RECEPTION

Two important quantities are easily assessed from the pulse/echo ultrasonic measurement

method: time of flight and pulse (or signal) amplitude. Both are measured after the reception

of the ultrasound wave. Whenever an acoustic impedance mismatch occurs, the ultrasonic

wave is partially reflected in the discontinuity boundary. The amount of reflection depends

on the acoustic impedance difference between the two media, due to what is called the

reflection coefficient of the interface. In a typical pulse/echo experimental set-up in

sonochemistry, the propagation medium is fluid and the reflection takes place in an interface

with a solid object, generically denominated reflecting target. Similarly, the liquid-air interface

is a reflecting target, as well.

Throughout the propagation, other physical phenomena diminish the ultrasonic amplitude

due to different mechanisms. Mainly, scattering and absorption are in charge for ultrasonic

attenuation, mitigating the capability of free propagation. All those phenomena are natural

and unavoidable. Nevertheless, a proper experimental ultrasonic set-up will either concern on

its quantification, or will deal with other quantities that are not undesirably affected.

The speed of sound is a quantity that is not related to attenuation phenomena, or at least is not

the case in a linear range of frequencies and in infinite-like three-dimensional propagation

medium, even if there is a constraint in one dimension. In the linear range of ultrasonic

propagation, the sound velocity in any determined medium or material varies as a function of

the temperature, density and viscosity. As a matter of fact, those quantities are not absolutely

correlated to each other, what makes the establishment of a mathematical function a virtually

unrealisable task for complex mixtures of fluids. For monophasic simple liquids, such as pure

water or hydro carbonates, it is easier to define a function relating those quantities, but it is not

the case for a transesterification process.

To assess the speed of sound, the typical approach is to measure the time of flight of an

ultrasonic pulse within a vessel with a pre-determined distance from the surface to the emit-

ting ultrasonic transducer and a properly designed reflecting target. It is the so-called pulse/

echo experimental method. Materials in different macrophysics states transmit ultrasonic

waves with different velocities. In general, but not in a universal way, the more rigid is a
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material, the faster the ultrasonic wave will propagate within it. It is important to keep in mind

that the ultrasonic velocity changes significantly with temperature [26–29].

Mathematically, the speed of sound is computed dividing the distance travelled by the pulse

by the time spent to travel it (time of flight), as disclosed in Eq. (5).

υ ¼

2 � ∆s

t
(5)

Here, Δs is the distance separating the ultrasonic surface and the reflecting interface (the

travelling distance is twice this value) and t is the time required for the ultrasonic pulse to

transpose that distance and return to the transducer. This process can be repeated many times,

depending on the attenuation and the distance from the transducer and the reflecting surface.

After each subsequent reflection, the pulse amplitude will decrease, as a consequence of

attenuation. The multiple reflections will remain until the sound energy is completely

absorbed in the process. Figure 2 exhibits that multi-reflection behaviour.

While planning the experimental set-up for the pulse/echo method, one must be aware about

the absorption of the liquid under investigation, as well as the distance between the transducer

and the reflecting surface. The pulse frequency plays a key role, as ultrasonic attenuation is

exponentially proportional to the frequency. In general, water is used as reference once its

behaviour both for attenuation and ultrasonic velocity are very well known [26–29].

Figure 2. Ultrasonic pulse and reflections.
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4. Validation of the experimental ultrasonic method

In previous studies, the value of the propagation speed in soybean oil in a range of 20–50�C

was determined [20]. For the practical application presented within this paper, all reactions

were performed at 40�C. At this temperature, soybean oil has a velocity of 1418.3 m s�1, with

expanded uncertainty (p = 0.95) Uexp = 5.2 m s�1 [21]. As soon as the oil starts to react with

methanol and the catalyst, variation on the speed of sound will indicate that something is

happening within the medium. Despite it is easy to measure speed of sound, it is not trivial to

relate this variation with anything that is going on in the reaction. The chemical kinetics is not

directly assessed, unless some methodological study is conducted. That was the case, insofar

we conducted an experimental method validation. The idea was to compare the speed of

sound measured throughout the transesterification process with a quantification of the reac-

tion stoichiometric situation at different moments. The worldwide accepted reference method

for determination of ester content is based on gas chromatography (GC), according to the

standard EN 14103. However, this method, besides being time-consuming, it is not applicable

in the process line and demands expensive equipment, supplies, and specific technical train-

ing. Thus, less costly methods have emerged as an alternative for determining the conversion,

as is the case with 1HNMR. Despite it is not a cheap technique, it is much less time-consuming

than the GC analysis [13, 14, 21, 22, 30–32].

In establishing parameters for the reactions that will be analysed, an isothermal batch reactor

(T = 40�C) is chosen. The validation experiment was restricted to two concentrations for the

catalyst (0.2% and 1.5% w/w) and two mechanical stirring rotational speeds (200 and 520 rpm).

The reaction time was set to a limit of 40 min.

There are several studies that propose equations that take into account the number of hydro-

gens present in the molecules consumed (TAG) in relation to the number of hydrogens present

in the formed molecule (FAME). Figures 3 and 4 disclose the 1H NMR spectra for the pure

soybean oil and the biodiesel made from this oil, respectively.

The formation of methyl ester (methylic biodiesel) can be noticed by the appearance of the

signal of the methylic hydrogen from the methoxyl group at 3.7 ppm (chemical shift

represented per B in Figure 4), while occurs the disappearance of the methylene hydrogens

from glycerol in the triacylglycerol from 4.0 to 4.4 ppm (chemical shift represented per B in

Figure 3). Eq. (6) presents a method described in the literature [14] used to determine the

conversion of TAG.

XTAG %ð Þ ¼ 100 �
2A1

3A2

� �

(6)

Here, XTAG (%) is the amount of TAG that has been converted into biodiesel, A1 and A2 are

areas of the methylic hydrogens (δ = 3.7 ppm) of methoxyl group, the methyl ester and the

glycerol methylene hydrogens (δ = 4–4.4 ppm), respectively. Calculation of the 1H NMR

conversion was compared to the reference method (GC) for the two reactions with 200 rpm

(see Figure 5).
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Figure 3. 1H NMR spectra for pure soybean oil: (A) HC]CH; (B) CH2dO; (C) C]CdCH2dC]C; (D) CH2dC]O;

(E) CH2dC]C; (F) CH2dCdC]O; and (G)dCH2d; (H) CH3.

Figure 4. 1H NMR spectra of methyl biodiesel obtained on the homogeneous transesterification of soybean oil: (A)

HC]CH; (B) CH3dO; (C) C]CdCH2dC]C; (D) CH2dC]O; (E) CH2dC]C; (F) CH2dCdC]O; and (G)dCH2d;

(H) CH3.
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Figure 5 shows that the 1H NMR method is very similar to the reference method (GC).

After this straightforward validation, comparing both technics, we used 1H NMR to assess the

conversion of analytical curves as described in Eq. (6) for the four reactions (see Figure 6).

As disclosed in Figure 6, one can note that each reaction reaches the maximum conversion at a

given moment. But how to know during the reaction that the maximum conversion has already

been reached and there is no longer any need to continue the process? NMR analyses, as well as

GC, require the sample to be pure, which means free of other substances that may interfere with

the analysis. In this way, ultrasonic monitoring stands out, being able to determine themaximum

point of the reaction even in the presence of excess reagents and by-products. Figures 7 and 8

depict a set of results for all chemical routes employed in the present study.

Figure 7 shows that each reaction has a propagation velocity configuration. They all start with

a value close to the pure soybean oil velocity. However, during the reaction time, the speed of

Figure 5. Variation of biodiesel conversion during the homogeneous transesterification of soybean oil with methanol and

200 rpm of mechanical stirring.

Figure 6. Conversion rate calculated by 1H NMR for four transesterification reactions of soybean oil using KOH as the

basic catalyst.
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sound decreases until stabilized, demonstrating that the maximum conversion was reached.

This variation can be better observed in Figure 8, which is a zoomed part of Figure 7 restricted

to the first few minutes. Considering that the idea is to obtain pure biodiesel, independent of

the reaction conditions, it is quite natural that the final velocities (when the highest concentra-

tion of biodiesel is present) are close to each other.

5. Looking into the results in details

Let us analyse the effect of each parameter (catalyst and rotation) on the final biodiesel

conversion.

Figure 7. Variation of the propagation velocity along the transesterification reaction of soybean oil with methanol in the

presence of KOH.

Figure 8. First 7.5 min of the variation of the propagation velocity along the transesterification of soybean oil with

methanol in the presence of KOH.
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5.1. Analysis of the effect of catalyst concentration

The presence of catalyst helps to accelerate the reaction, reducing the activation energy

required to start it. Thus, catalyst concentration is one of the main factors that can affect the

reaction kinetics.

In order to analyse the effect of the variation of the catalyst concentration, it is necessary to

separately analyse different rotation values.

For an initial concentration of soybean oil equal to 0.83 mol L�1 and by the Eqs. (4) and (6), the

consumption of TAG and conversion into FAME were calculated. The velocity (υ) was calcu-

lated according to Eq. (5).

Table 1 and Figure 9 disclose the results for the reactions with 200 rpm of rotational speed.

0.2% and 200 rpm 1.5% and 200 rpm

Time [min] XTAG [%] CTAG [mol L�1] υ [m s�1] XTAG [%] CTAG [mol L�1] υ [m s�1]

0 0 0.83 1428.1 0 0.83 1424.3

1 0.3 0.83 1385.7 8.3 0.75 1368.7

5 1.1 0.82 1355.8 71.5 0.24 1358.0

10 10.0 0.75 1347.9 81.6 0.15 1356.1

20 48.5 0.43 1353.2 82.5 0.15 1355.4

40 51.6 0.40 1355.2 83.4 0.14 1353.9

Table 1. Results for reactions at 200 rpm.

Figure 9. Variation of (a) TAG concentration, (b) propagation velocity and (c) TAG conversion for the reactions with

200 rpm of rotation.
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Looking at Table 1 and Figure 9, one can note that there is a large difference in CTAG and υ

decay between both reactions, what reflects in the conversion rate (XTAG). The uncertainty bars

calculated for the velocity are disclosed to determine the accuracy of the study [33]. The

behaviour observed in the reaction with 0.2% KOH and 200 rpm presents a slow decay in the

concentration of TAG in the first 10 min of reaction, which is expected for reactions in which

mechanism exchange occurs. That region on the graphics of Figure 9 (first 10 minutes of

reaction) is in which the rate of consumption and conversion rate are slow, and it occurs due

to the low miscibility between alcohol and oil. Thus, as the methyl ester is produced, the

chemical reaction starts to control the kinetics of the reaction and, therefore, a large jump

between 10 and 20 min of reaction is observed. After 20 min of reaction, it is clearly noticeable

that there is stability between the conversion values and propagation velocity. This result

indicates that the ultrasound can determine the maximum point of conversion even in the

presence of secondary substances (by-products).

On the other hand, when the reaction with 1.5% KOH and 200 rpm is on focus, yet in Figure 9, it

is observed an expressive consumption of TAG in the first 10 min of reaction. After that time, the

stability in the values of the conversion as well as in the propagation velocity is evident. Reac-

tions like that, in which there is a rapid conversion, the region controlled by mass transfer can be

considered insignificant. Here, it is observed that for reactions with 200 rpm stirring, the increase

in catalyst concentration not only accelerates the transesterification process but also increases the

final conversion as well, and consequently decreases the remaining TAG in the reactionmedium.

Let us check if the same will occur analysing the results presented in Table 2 and Figure 10, in

which the rotation speed was increased to 520 rpm.

For the reaction with 0.2% of KOH and 520 rpm of stirring, it is noticeable that there is a slow

decrease in the TAG concentration in the first 10 min and stability of the values after 20 min.

On the other hand, the reaction with 1.5% of KOH and 520 rpm reaches the maximum

conversion as fast as 5 min after the reaction had begun. In the same way as observed in

Figure 9, the mass transfer controls the start of the reaction for the reaction with 0.2% of

catalyst, independently of the rotational speed employed. With the increase of KOH concen-

tration by 7.5 times, there is a 300% decrease in reaction time for the reaction with 520 rpm of

0.2% and 520 rpm 1.5% and 520 rpm

Time [min] XTAG [%] CTAG [mol L�1] υ [m s�1] XTAG [%] CTAG [mol L�1] υ [m s�1]

0 0 0.83 1426.8 0 0.83 1421.3

1 0.3 0.81 1342.9 52.8 0.65 1363.2

5 5.5 0.78 1353.0 85.9 0.12 1358.8

10 8.7 0.76 1354.0 87.7 0.10 1357.6

20 78.6 0.22 1357.3 88.7 0.09 1356.3

40 82.1 0.18 1360.0 89.1 0.09 1356.9

Table 2. Results for reactions at 520 rpm.
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rotation. However, the maximum values reached by the conversion for the two reactions

described in Figure 10 are very close (89 and 82%).

5.2. Analysis of the effect of system stirring

If the same concentration of catalyst is used, would the stirring of the system interfere with the

kinetics of the reaction? The answer is: Surely enough!

Firstly, the lowest catalyst concentration, 0.2% KOH, will be analysed. The impact due the

change in rotational speed will be variable in those reactions. Table 3 and Figure 11 show the

results for the reactions with 0.2% catalyst.

From Table 3 and Figure 11, we note that the two reactions with 0.2% of catalyst need the same

reaction time to reach their maximum conversion, regardless of the rotation applied to the

Figure 10. Variation of (a) TAG concentration, (b) propagation velocity and (c) TAG conversion for the reactions with

520 rpm of rotation.

0.2% and 200 rpm 0.2% and 520 rpm

Time [min] XTAG [%] CTAG [mol L�1] υ [m s�1] XTAG [%] CTAG [mol L�1] υ [m s�1]

0 0 0.83 1428.1 0 0.83 1426.8

1 0.3 0.83 1385.7 0.3 0.81 1342.9

5 1.1 0.82 1355.8 5.5 0.78 1353.0

10 10.0 0.75 1347.9 8.7 0.76 1354.0

20 48.5 0.43 1353.2 78.6 0.22 1357.3

40 51.6 0.40 1355.2 82.1 0.18 1360.0

Table 3. Results for 0.2% (w/w) of KOH reactions.
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system. However, there is a significant increase in the conversion value from 52% (200 rpm) to

82% (520 rpm), which shows that for reactions like those, with low catalyst concentration, the

rotation does not interfere in the reaction velocity, but at the maximum conversion value.

And what happens increasing 7.5 times the concentration of the catalyst? Does this pattern

hold? Table 4 and Figure 12 show the answers.

Increasing the concentration of KOH clearly increases the rate of TAG consumption and,

consequently, formation of FAME. While the reaction with 200 rpm reaches the maximum

conversion and the equilibrium with 10 min of reaction, the reaction at 520 rpm only requires

half the time, 5 min. However, despite the decrease in time, we observed that the values for the

maximum conversion are very close.

Figure 11. Variation of (a) TAG concentration, (b) propagation velocity and (c) TAG conversion for the reactions with

0.2% (w/w) of KOH.

1.5% and 200 rpm 1.5% and 520 rpm

Time [min] XTAG [%] CTAG [mol L�1] υ [m s�1] XTAG [%] CTAG [mol L�1] υ [m s�1]

0 0 0.83 1424.3 0 0.83 1421.3

1 8.3 0.75 1368.7 52.8 0.65 1363.2

5 71.5 0.24 1358.0 85.9 0.12 1358.8

10 81.6 0.15 1356.1 87.7 0.10 1357.6

20 82.5 0.15 1355.4 88.7 0.09 1356.3

40 83.4 0.14 1353.9 89.1 0.09 1356.9

Table 4. Results for 1.5% (w/w) of KOH reactions.
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Thus, an economic analysis is necessary to evaluate to what extent an increase of the rotation

used, or of the catalyst concentration, to the detriment of the reduction in the reaction time, is

economically feasible. But the use of ultrasound as a tool for monitoring chemical reactions has

been shown to be efficient [33].

6. Final remarks

Ultrasound is widely used for more than a century for diagnosis applications. The state of

the technology is vast on applications for non-destructive testing and biomedical equipment.

The use of ultrasound in chemistry is more common as a tool to accelerate reactions or enhance

the performance of established methods. However, the technology is not so widely developed

and spread around regarding the use of ultrasound as a monitoring tool for chemical reactions.

As a tool, ultrasound is remarkably simple to use. Nevertheless, one must be aware that the

apparent straightforwardness undercovers a complex physical process that takes place in the

generation, propagations, reflection and reception of ultrasound in both the transmit/receive

and pulse/echo approaches. Unless an experiment is carefully designed, carried out, and

analysed, the outcome of any ultrasonic proposed method could be of no technical usefulness.

In the present chapter, the use of an ultrasound pulse/echo scheme was validated as a moni-

toring procedure of the transesterification kinetics of soybean oil into biodiesel. The sensibility

of the method was good enough to compare different catalyst concentrations (0.2 and 1.5%)

and different rotational speed of mechanical stirring (200 and 520 rpm). The comparison was

done using as gold standard the gas chromatography and 1H RMN. The validation leads to

quite interesting outcomes.

Figure 12. Variation of (a) TAG concentration, (b) propagation velocity and (c) TAG conversion for the reactions with

1.5% (w/w) of KOH.
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It was possible to observe purely from the ultrasonic velocity measurement that the faster the

mechanical stirring acts, the faster is the transesterification kinetics. Moreover, it is possible to

identify the elapsed time when the reaction reaches its maximum possible conversion, dictated

by the amount of catalyst. For all cases, ultrasonic monitoring has disclosed a causal relation to

the gold standard analytical methods.
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