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Abstract

Since its discovery, several chemical modifications in the testosterone molecule have 
been done by pharmaceutical industry in order to improve its pharmacological effects, 
resulting in the creation of anabolic steroids (AS). Despite the therapeutic benefits, AS 
abuse has spread among elite and recreational athletes in the search for improvements 
on physical appearance and physical performance. Illicit use of anabolic AS has been 
correlated with several adverse effects, such as cardiovascular, endocrine, reproduc-
tive, and neurobehavioral dysfunctions. Recently, declines on cognitive and mnemonic 
performance have been demonstrated clinically and experimentally. Experimental 
studies have demonstrated that these neurological dysfunctions are correlated to 
spread neuronal apoptosis throughout important areas of the central nervous system 
(CNS), such as hippocampus and cortex. Several pathophysiological mechanisms have 
been linked to the AS-induced neurotoxicity, including redox imbalance and recruit-
ment of pro-apoptotic downstream pathways. Furthermore, exposure to AS has arisen 
as a potential risk factor to the development of Alzheimer’s disease. Altogether, these 
evidences imply that AS abuse per se induces neurodegeneration and can aggravate the 
prognosis of neurodegenerative diseases.

Keywords: testosterone, anabolic steroids, neurotoxicity, neurodegeneration

1. Introduction

The history of anabolic steroids (ASs) inevitably passes through the discovery of endogenous 
androgens. Based on previous evidences of several renowned scientists, such as Arnold Adolf 
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Berthold, Charles Edouard Brown-Séquard, and Fred C. Koch, the group of the pharmacologist 
Ernst Laqueur purified and described the chemical properties of the testicular-derived sub-

stance called testosterone. Subsequently, de novo synthesis of testosterone from cholesterol was 
described by two different groups leaded by Adolf Butendandt and Leopold Ruzicka. Thus, 
testosterone became not only the first hormone to be described, but also the first drug to be 
genuinely synthesized in vitro, since predecessors were plant extracts, fungi, and other sources. 
Conceptually, ASs are synthetic testosterone derivatives that share a common molecular struc-

ture characterized by four aromatic rings of cyclopentanoperhydrophenanthrene with 19 car-

bon atoms [1]. Given the structural similarities, AS can bind to androgenic receptor (AR) and 
exert testosterone-like physiological effects.

1.1. General pharmacological aspects of AS

Despite the molecular similarities, ASs exhibit different chemical characteristics within their 
structure in comparison to testosterone, which determines the differences in the pharma-

cological properties and physiological effects between distinct compounds. So far, three 
classes of AS have been described. The first class includes injectable AS with esterification 
of the 17β-hydroxyl group on testosterone molecule, such as testosterone propionate. This 
chemical modification in the structure of testosterone down-regulates the rates of absorption 
and degradations, resulting in substantial prolongation of the biological effects [2]. Within 
bloodstream, the ester bonds are rapidly hydrolyzed by blood esterases, releasing the active 
compound.

Like the first class, the second class of AS is composed by injectable steroids, although the bio-

logically active compound is the 19-nor-testosterone, instead of testosterone. Furthermore, the 
side chain is significantly longer when compared to AS of the class I. In addition, class II ASs 
have a methyl group at C19 position, instead of a hydrogen atom [2]. Altogether, these chemical 
modifications prolong even more the rates of absorption and degradation when compared to 
the AS of class I. Class II includes mainly nandrolone esters, such as nandrolone decanoate and 
undecanoate. Basically, the longer the side chain, the prolonger the biological effect. Similarly, 
the esterification is rapidly hydrolyzed by blood esterases, releasing 19-nor-testosterone into 
the bloodstream.

The third class includes C17-alkylated AS, such as 17α-methyltestosterone, oxymetholone, 
methandrostenolone, and stanozolol. Given that these drugs can be orally administered, the 
alkylation is especially important to decrease the first-pass effect and, thus, hepatic metabo-

lism, which could result in decreased absorption [2]. The C-1 group can also be methylated 
and, thus, present oral activity, but the effects induced by these drugs are relatively weaker 
compared to C-17-alkylated compounds.

AS compounds can be carried throughout the bloodstream by plasma proteins, such as 
albumin and sexual hormone-binding globulin (SHBG), or they can circulate without being 
conjugated. Free AS can reach target tissues and, thus, promote physiological effects. The 
molecular structure of AS, rich in hydrocarbons, confers to them apolar characteristics and the 
capacity to easily cross hydrophobic layers composed by lipids. From the systemic point of 
view, this characteristic allows AS to permeate physiological barriers between capillaries and 
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target tissues, such as the blood-brain-barrier. Furthermore, from the cellular perspective, the 
high hydrophobicity gives AS the capacity to cross plasma membranes without necessarily 
binding to membrane-associated proteins.

Within target tissues, AS can undergo three different pathways. First, biological active com-

pounds can bind directly to the target receptors, promoting their physiological effects. Second, 
AS can undergo 5α-reduction, by the enzyme 5α-reductase, resulting in specific metabo-

lites [3]. This enzymatic reaction can substantially affect the physiological effects induced 
by the AS and must be taken into account in both therapeutic and toxicological conditions. 
For example, the α-reduced nandrolone-derived metabolite, 5α-dihydro-19-nor-testosterone, 
has a significant decreased binding affinity for the AR when compared to nandrolone, which 
results in decreased androgenic effects. On the other hand, dihydrotestosterone (DHT), a 
α-reduced testosterone-derived metabolite, has a binding affinity for the AR approximately 
10-fold higher than testosterone and, thus, impose profound androgenic effects. Third, AS can 
be converted into estrogen by aromatase enzyme, a reaction especially observed in AS from 
class I [4].

Classically, AS can exert their effects by binding to AR. This receptor is a member of nuclear 
receptors family, which also includes estrogen, glucocorticoid, mineralocorticoid, proges-

terone, thyroid hormones, and retinoic acid receptors. In general, ARs have four distinct 
molecular domains: ligand-binding domain (LBD), which presents a canonic molecular 
structure among nuclear receptors; N-terminal transactivation domain, which per se confers 
the capacity of ligand-independent activity in the case of estrogen receptors; DNA-binding 
domain (DBD); and hinge region [5]. In the absence of agonist, the AR remains in the cyto-

sol due to its bindings to specific chaperone proteins, such as the heat-shock-protein 90 
(HSP90). These interactions are thought to be necessary for the stabilization of the receptor in 
an appropriate conformation that enables the steroid molecule to bind with high affinity to 
the LBD. Furthermore, the interaction with HSP90 prevents the AR to dimerize and bind to 
co-regulators.

When AS binds to the LBD, the interaction between AR and HSP90 is lost. In such a condi-
tion, active AR dimerizes, resulting in the formation of a homodimer, which is translocated 
into the nucleus by cytoskeleton myofilaments [6]. The interaction between the homodimer 
and the chromatin occurs due to the binding of zinc fingers located in the DBD at the level of 
androgen-responsive elements, a complex process that involves the recruitment of a cluster of 
co-regulators to this site [7]. Co-regulators include co-activators and co-repressors which are 
crucial to the transcriptional activity of the complex AR steroid. It is generally accepted that 
the recruitment of co-activators results in increased transcription of a target gene [8].

Besides the bioavailability within target tissues, the extent of the physiological effects induced 
by each AS is also correlated to the binding affinity to the AR consonant with this view; pre-

vious studies have shown that nandrolone binding affinity to the AR is 2- to 3-fold higher 
than testosterone-related binding affinity for the same receptor [9]. As a result, nandrolone 
has a more potent anabolic effect in skeletal muscle compared to testosterone [9]. Further 
experimental studies compared the binding affinity of nandrolone, oxymetholone, stanozo-

lol, 17α-methyltestosterone, methenolone, methandienone, mesterolone, fluoxymesterone, 
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and ethyl estrenol for the AR in both skeletal muscle and prostate tissues of rodents [10]. 
Among these steroids, nandrolone has shown the highest binding affinity to the AR, followed 
by methenolone > testosterone > mesterolone. Interestingly, although the binding affinity of 
stanozolol, fluoxymesterone, and methandienone is thought to be significantly decreased 
compared with the above-mentioned steroids, the cell-based AR transactivation is compa-

rable [11]. This evidence suggests that the degree of activation of AR does not seem to be 
strictly dependent on the binding affinity, despite the clear influence exerted by the latest. 
Indeed, gene expression can be affected in different degree by structurally distinct AS. In this 
context, the different conformational changes induced by distinct AS in the AR and the subse-

quent impact in the recruitment of co-regulators might develop a more important role in the 
dimension of gene expression and biological effects, although more studies are necessary to 
demonstrate these pharmacodynamics aspects [12].

The classical mechanism of action of AS is the AR-mediated genomic effects; however, rapid, 
nongenomic effects were also demonstrated for several target organs. Nongenomic effects 
are generally thought to request faster responses, mainly in the range of seconds to minutes, 
besides activation of membrane protein–mediated signaling cascades and lack of direct tran-

scriptional/translational activation [13]. Given that rapid AS-induced responses have been 
observed in cell types that do not express the AR or in the presence of AR antagonists, it is 
reasonable to hypothesize that these effects might be triggered by mechanisms other than 
AR mediated. In keeping with this, experimental evidences have demonstrated that the com-

plex AS-SHBG can bind to membrane receptors and induce increases in intracellular levels of 
second messengers, such as cyclic-adenosine monophosphate and inositol 1,4,5-triphosphate 
(IP

3
), resulting in rapid cellular effects. Other studies hypothesized that AS can bind directly 

to noncharacterized G-protein-coupled-receptors or to nonreceptors tyrosine kinase c-SRC, 
which pharmacological aspects remain unclear. Furthermore, the recruitment of collateral 
signaling cascades by the AR activation, aside of the classical genomic mechanism, must also 
be taken into account [14].

Despite these divergences, evidences that AS can promote rapid changes in intracellular ion 
concentrations have been widely demonstrated elsewhere. Exposure of neuroblastoma cells 
to testosterone resulted in concentration-dependent increase of intracellular calcium in a time 
range of 50–100 sec [15]. Interestingly, knock down or blockade of endoplasmic reticulum 
IP

3
 receptor (InsP

3
R) abolished the testosterone-induced increase on intracellular calcium 

concentration, suggesting that InsP
3
R-mediated testosterone effect [15]. Similarly, it has been 

shown that the incubation of primary hippocampal neurons with DHT-increased baseline 
calcium concentration [16].

Testosterone and its synthetic metabolites can modulate several physiological aspects in a wide 
range of cell types, and their effects can be didactically divided in androgenic and anabolic. 
Androgenic effects include the development of primary and secondary male sexual charac-

teristics, the initiation and maintenance of spermatogenesis, and the maintenance of sexual 
behavior, such as the libido and spontaneous erections. However, as previously stated, several 
testosterone synthetic derivatives have lower androgenic capacity, especially those from class II.
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AS-induced anabolism has been observed in both experimental and clinical studies. These 
effects have been widely described in several target tissues and are basically related to cellu-

lar hypertrophy and hyperplasia. AS significantly potentiates nitrogen retention and protein 
synthesis, resulting in increased muscle mass, strength, and muscle healing, perhaps the most 
prominent effects aimed among bodybuilders, elite, and recreational athletes [17]. Skeletal tis-

sue is also affected by AS, in which they stimulate osteoblasts and chondrocytes maturation, 
leading to epiphyseal fusion, whereas the stimulation of osteocytes promotes increases in 
bone formation and density. In the bone marrow, ASs stimulate the proliferation of progeni-
tor hematopoietic cells and their maturation directly. Besides the classical androgenic/ana-

bolic effects, AS can induce a broad spectrum of physiological effects that have been widely 
described and reviewed elsewhere.

1.2. Therapeutic applicability of AS

ASs were rapidly adopted as the primary therapeutic approach to treat low-circulating testos-

terone conditions, such as hypogonadism and andropause. Moreover, AS-related therapeutic 
benefits were also observed in women with endocrine dysfunctions secondary to oophorec-

tomy and menopause. The hematopoietic effect in the bone marrow is frequently explored in 
the treatment of aplastic anemia and myelofibrosis. In addition, ASs are also indicated for the 
treatment of catabolic diseases, such as cachexia, sarcopenia, and osteoporosis correlated with 
malnutrition, HIV, and cancer.

ASs are considered controlled medical substances and must be used just for medical pur-

poses and under supervision of physicians. Due to their anabolic properties, the International 
Olympic Committee Medical Commission banned AS from the list of substances allowed in 
sports competitions [18]. Currently, the rules and technical documents regarding the use of 
AS in sports field are under regulation of the World Anti-Doping Association. Furthermore, 
commercialization and consumption of AS are illegal, such as in Brazil, in the United States of 
America (USA), and in Great Britain.

2. Epidemiological aspects of AS abuse

Despite the beneficial therapeutic effects, illicit use of AS by individuals aiming improvements 
in their physical performance and esthetics has been increasingly reported during the last 
century. Illicit use of AS is characterized by administration of doses 10 to 1000 times higher 
than the doses prescribed to treat medical conditions, such as hypogonadism [19]. Dose regi-
mens are mainly characterized by cycling, i.e., intercalation between period of time of admin-

istration and withdrawal, stacking, i.e., the combination of different types of AS, especially 
oral and injectable AS, and pyramiding, i.e., progressive increase of dose and frequency at a 
peak followed by a progressive decrease on both. Among AS users, these dose regimens are 
thought to supposedly reduce adverse effects associated with AS abuse, although so far, no 
scientific evidence supporting this hypothesis has been demonstrated.
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The misuse of testosterone was firstly reported during the World War II by Nazi German 
army with the purpose of enhancing soldier’s aggressiveness, and there has also been uncer-

tain reports about the administration of AS in Nazi athletes during the Olympic games of 
1936 [20]. During the 1940s, the use of synthetic testosterone for medical purposes spread, 
especially to increase sexual libido and to treat mood disorders, menorrhagia, dysmenorrhea, 
hypogonadism, and breast cancer [21–25]. Concomitantly, AS use was correlated with a sense 
of well-being and boosting of physical performance among AS users.

The reports about the relationship between the use of testosterone or its metabolites and 
the increase in muscle mass and strength resulted in great interest for these substances by 
elite athletes. It has been suggested that the first report of AS abuse by athletes was during a 
weightlifting championship in Vienna, 1954, by Russian weightlifters [26]. During the 1950s 
and 1960s, AS abuse skyrocketed among elite athletes of different countries in several cat-
egories, and obviously, it was followed by a rapid and significant increase in the athletic per-

formance in sports competition, such as shot, hammer, and high jump [27, 28]. Interestingly, 
some reports suggest that popular media supported the supplementation with AS, especially 
with methandrostenolone, with allegations that it had no side effects [29]. Probably, the 
most notorious case about AS abuse by athletes involved the State Plan 14.25 of the German 
Democratic Republic (East German). Although AS abuse had turned into a common practice 
among elite athletes worldwide, East German government together with both medical and 
scientific communities organized massive efforts to stimulate AS administration in young and 
adult athletes, in order to improve their performance in Olympic games [30]. A similar sort 
of “governmental program” happened in the former Soviet Union between 1960s and 1970s, 
where it has been believed that athletes as young as 8 years were included [31]. In general, 
1950s, 1960s, and 1970s decades were marked by the spread of AS administration among elite 
athletes. Finally, in 1974, the International Committee banned the use of testosterone and its 
derivatives in the Olympic games.

The first reports about AS use among bodybuilders occurred in the late 1960s and 1970s, but 
it was in the late 1970s and especially in the 1980s that this practice spread in this class [32]. 
Interestingly, this delay in comparison to elite athletes was mainly due to a current thinking 
that AS did not potentiate the gain of muscle mass [26]. Concomitantly, the recreational use 
of AS rapidly increased throughout the general population, especially in gyms. This scenario 
was further aggravated by the rising cult for a muscularized body shape among the general 
population, which was boosted by popular media [33]. Furthermore, given that this body 
shape paradigm has been even more complex in adolescents, AS abuse also reached high-
school students [34]. In this context, underground guidelines containing information about 
the ways to obtain and use AS have arisen and quickly gained popularity by pseudo-scientific 
reports [35]. Consequently, AS abuse became a major concern to public health organizations 
given the severe adverse consequences that frequently follow this practice, and first, epide-

miological studies have been conducted during the late 1980s and beginning 1990s showing 
that approximately 6.6% of 12th grade students reported AS use, and two thirds admitted its 
use when they were aged 16 years or less [34]. Among male Canadian adolescents, the aver-

age AS use was estimated in 5.5%, mostly stimulated by their coaches [36, 37]. In the USA, 
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approximately one million individuals reported AS use [38]. Furthermore, AS use was posi-
tively correlated to the use of other illicit drugs, cigarettes, and alcohol [38]. Interestingly, the 
perception of AS abuse-induced effects among college athletes has been inversely correlated 
with the academic performance. In retaliation to this practice, several countries sanctioned 
laws prohibiting nonmedical use of AS, such as the Anabolic Steroid Act, in the USA.

Despite the classical and still frequent AS abuse among elite athletes, recent reports have 
suggested that the biggest group of AS users are recreational athletes and individuals aim-

ing a supposed improvement on their esthetic appearance [39]. In the USA, epidemiological 
studies estimated that approximately 2.9–4.0 million Americans have used AS over their 
lives, a significant rise compared with data from early 1990s. Several epidemiological stud-

ies on the consumption of psychotropic drugs in Brazil have revealed that 0.9% of Brazilians 
have used AS, surpassing the prevalence of use of crack and heroin. Recently, it has been 
estimated that worldwide prevalence of AS use is approximately 3.3%, although the rate 
among males can reach 6.4% [40]. Middle East exhibits the highest rate of AS consumption 
at 21.7%, followed by South America, 4.8%; Europe, 3.8%; North America, 3.0%; Oceania, 
2.6%; Africa, 2.4%; and Asia, 0.2% [40]. However, recent reports suggest that the real epide-

miological extent of AS abuse might be overshadowed by the high rate of omission among 
AS abusers [41].

3. Adverse effects of AS abuse

Unsurprisingly, AS abuse can impose harmful adverse effects. The prevalence of these effects 
among AS abusers remains unclear, and recent reports have demonstrated that approxi-
mately 56% of AS users had never reported this practice to any physician, which turns the 
correlation between AS abuse and the adverse effects elicited by them underreported [41]. In 
sum, AS-induced adverse effects include reproductive, endocrinological, hepatic, cardiovas-

cular, dermatological, and neurological dysfunctions, as demonstrated by several clinical and 
experimental studies. Furthermore, many effects can be persistent or even irreversible after 
interruption of AS use, whereas other effects arise only after AS withdrawal.

3.1. Endocrine and reproductive dysfunctions

Among adverse effects, the most common are dysfunctions in the reproductive system. Given 
the substantial similarity between AS and endogenous androgens, chronic use of AS results 
in down-regulation of both follicle-stimulating hormone and luteinizing hormone and overall 
suppression of the hypothalamus-pituitary-testicular (HPT) axis. Consequently, endogenous 
production of testosterone can be dramatically reduced, which consists in the main cause of 
hypogonadism in former AS users [42]. Secondary hypogonadism recovers relatively rapidly 
after the interruption of AS abuse, although recent reports suggest that it can last for more 
than a year [42]. Altogether, these abnormalities underlie the significant dysfunction in the 
spermatic production in AS users. When aromatizable ASs are used, secondary effects linked 
to increased estrogen levels can be seen, such as gynecomastia [43].
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Important, but still poorly explored endocrine effects of AS abuse are those related to metab-

olism. In this context, abnormalities in the glucose metabolism have been reported during 
AS abuse, as evidenced by decreased glucose tolerance in powerlifters under AS abuse [44]. 
Even so, post-glucose insulin levels were increased in this condition, which suggests that AS 
can significantly reduce insulin sensitivity [44]. In addition, serum leptin can be significantly 
increased in AS abusers, without considerable changes in the adipose tissue content [45]. 
Interestingly, administration of nandrolone decanoate in rats can induce a significant decrease 
in proopiomelacortin (POMC) expression in the arcuate nucleus, despite the increased levels 
of leptin and insulin found in AS abusers evaluated in this study [46]. Given that anorexigenic 
POMC neurons can be directly activated by both insulin and leptin, these findings suggest 
that POMC neurons might become insensitive to these hormones, which is a common dys-

function observed in obesity and metabolic syndrome.

AS abuse has been correlated with overall down-regulation of HPT axis activity. In particular, 
decreased serum concentration of thyroid-stimulating hormone (TSH), thyroxine (T4), triio-

dothyronine (T3), free thyroxine, and thyroid-binding globulin have been found in AS abusers 
[47, 48]. In addition, the stimulatory effect induced by parenteral thyrotropin-release hor-

mone (TRH) injection in the secretion of T3 can be significantly decreased by AS administra-

tion, despite the increased level of TSH observed after TRH bolus, suggesting that secondary 
hypothyroidism can be a prominent consequence of indiscriminate AS use [49]. On the other 
hand, the level of T3 can be significantly increased after AS withdrawal [47]. Experimentally, 
rats chronically exposed to nandrolone decanoate can also present significantly decreased 
serum TSH, T3, and free-T4, besides reduced hepatic deiodinase type 1 activity, followed by 
secondary thyroid hypertrophy [50].

3.2. Cardiovascular effects

AS abuse and cardiovascular adverse effects have long been correlated and reviewed [51]. 
Cardiovascular effects are marked by dyslipidemia, higher serum low-density-lipoprotein, 
interstitial fibrosis, cardiac hypertrophy, increased thrombogenesis, arterial hypertension, 
dysautonomia, and cardiac arrhythmias, as evidenced by clinical and experimental studies 
[52–58]. Importantly, clinical evidences suggest that some of these abnormalities, such as 
hypertension and dyslipidemia, are reversible after AS interruption, but others can persist 
for long periods or are likely irreversible. Notwithstanding in increasing the susceptibil-
ity to myocardial infarction and stroke by the above-mentioned abnormalities, chronic 
administration of AS has been shown to increase the damage induced by myocardial isch-

emia and reperfusion, which per se can aggravate the post-infarction prognosis [59–61]. 
Furthermore, recent evidences have demonstrated that therapeutic efficacy of cardiopro-

tective maneuvers against the myocardial ischemia/reperfusion injury can be abolished 
by chronic exposure to AS [62]. Biochemical and molecular analyses revealed that sup-

raphysiological doses of AS are related to redox imbalance, increased proinflammatory 
signaling, and overactivation of renin-angiotensin system in the heart, which seems to be 
closely correlated to the loss of cardioprotection after myocardial ischemia/reperfusion 
injury [55, 60, 61, 63].
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3.3. General neurological consequences

Neurological effects of AS abuse include a broad spectrum of neurobehavioral disturbances. 
Increased aggressiveness and violence and abnormal sexual behavior have been widely 
described in AS abusers, whereas anxiety and depression have been observed after AS with-

drawal [64]. The behavioral abnormalities found in AS abusers seem to be correlated to pro-

found changes in the neurochemical profile of important limbic regions, such as amygdala, 
hippocampal, cortical, and hypothalamic regions. These changes are probably promoted by 
direct bindings to the AR, which is widely expressed throughout the central nervous system, 
allosteric modulation of neurotransmitter receptors, or by conversion into estrogen and acti-
vation of estrogenic receptors.

Experimental studies have demonstrated that the levels of serotonin and catecholamines are 
closely associated with mood phenotype, motivation, anhedonia, and attention. Specifically, 
down-regulation of these neurotransmitters throughout limbic regions can increase the sus-

ceptibility to depression and anxiety. Interestingly, chronic exposure to AS elicited signifi-

cant decrease of serotonin levels in the hippocampus, hypothalamus, cortex, and amygdala 
of rats [65], whereas norepinephrine and dopamine levels are up-regulated in these regions 
[66, 67]. In the amygdala and hypothalamus, ASs modulate the main excitatory and inhibi-
tory neurotransmitters, namely glutamate and GABA, respectively. ASs have been shown to 
potentiate glutamate signaling, increasing its excitatory potential in these regions, whereas 
GABAergic signaling is mainly down-regulated [68, 69]. These limbic regions are associated 
to a broad spectrum of neurobehavioral functions that include the process of environmental 
information and memories, as well as the elaboration of a behavioral phenotype in response 
to these inputs. Therefore, the set of neurochemical alterations elicited by AS within these 
regions can impose remarkable neurobehavioral manifestations frequently observed in AS 
abusers.

Besides the neurobehavioral disturbances, AS abuse has been recently linked to loss of cogni-
tion and mnemonic performance. These evidences have been widely demonstrated in animal 
models of AS abuse, but so far, cognitive performance in human AS abusers remains poorly 
investigated. It has been reported that decline of cognition is the major consequence of the 
neurotoxic effect of AS, and consequently, neuronal loss in pivotal areas, such as cortex and 
hippocampus. Altogether, the changes in the neurophysiology elicited by supraphysiological 
doses of AS can substantially increase the susceptibility to neurodegenerative diseases.

4. Neurodegenerative diseases

Neurodegenerative diseases are a heterogeneous group of disorders that affect the nervous 
system, being primarily characterized by degeneration and dysfunction of several neural 
structures. Despite the efforts to develop therapeutic approaches and the significant num-

ber of studies published in this area, such findings have not resulted into development 
of an effective treatment so far. This lack of success is mainly attributed to the unclear 
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pathogenesis underlying neurodegenerative diseases, despite the well-known pathophysi-
ological aspects, such as redox imbalance, autophagy, inflammation, and accumulation of 
neurotoxic substances.

In sum, it has been proposed that genetic and/or environmental factors can trigger early 
pathophysiological changes, such as aggregation of amyloid-β (Aβ)-protein, a common fea-

ture throughout the progression of Alzheimer’s disease, resulting in primary neural damage. 
Subsequently, these early events can evoke secondary damages, due to inflammation, redox 
imbalance, and endoplasmic reticulum stress, leading to synapse dysfunctions, which has 
generally been accepted as a reversible process, and culminating in neuronal death and irre-

versible neuronal damage. Consistent evidences have implied that the accumulation of Aβ 
correlates—temporally and pathophysiologically—with decreased synaptic function early in 
the progression of Alzheimer’s disease [70]. The occurrence of these events in the hippocam-

pus has been correlated with impaired hippocampal-dependent memory consolidation. Thus, 
synapse dysfunction and the consequent neuronal death are the cornerstones during the pro-

gression of neurodegenerative diseases.

Conceptually, synaptic function can be modulated by distinct but correlated mechanisms. 
Changes in the physiological regulation of these mechanisms can lead to marked neurologi-
cal effects, including cognitive impairments. First, the bioavailability of neurotransmitters is 
crucial to an effective synaptic function, thereby neurochemical imbalance can lead to impair-

ment of synaptic transmission. Furthermore, post-synaptic expression of neurotransmitter 
receptors is equally important in the maintenance of synaptic transmission. For example, 
down-regulation of acetylcholine signaling in the hippocampal and cortical neuronal net-
works results in cognitive deficit, as observed during the progression of schizophrenia and 
Alzheimer’s disease [71, 72]. In Parkinson’s disease, loss of dopaminergic neurons located in 
the substantia nigra, and the consequent interruption of neural transmission in the nigrostria-

tal pathway results in a substantial drop on dopamine bioavailability in the dorsal striatum 
(i.e., the caudate nucleus and putamen), and decreased activity of GABAergic neurons located 
in the striatum [73]. Taken together, these disturbances culminate with loss of locomotor con-

trol, the most prominent characteristic of Parkinson’s disease. Moreover, the pathophysiologi-
cal development of neurobehavioral dysfunctions and loss of cognitive performance found 
in major depression are related to a decrease on the bioavailability of noradrenaline, dopa-

mine, and 5-hydroxytryptamine [74]. Thus, drugs that enhance the bioavailability of these 
neurotransmitters are the first-line therapeutic approach to treat this condition.

All the above-mentioned conditions are examples of how down-regulation of synaptic 
transmission can induce severe degeneration in cognitive, locomotor, and behavioral con-

trol. However, synaptic function is not only negatively affected by down-regulation of neu-

rotransmitters but also by an up-regulation of those molecules and their signaling. In some 
conditions characterized by increased circulating levels of glucocorticoids, such as stress and 
major depression, glutamatergic signaling can be significantly potentiated in hippocampal 
neuronal networks by cortisol and corticosterone [75]. Overactivation of glutamate recep-

tors promote a significant increase in intracellular calcium concentration, resulting in recruit-
ment of several downstream signaling that culminate in neuronal death, an event known as 

Sex Hormones in Neurodegenerative Processes and Diseases234



excitotoxicity. As a result, depressive patients generally have loss of hippocampal mass and 
mnemonic deficit. Furthermore, the extent of dendritic arborization, the density of dendritic 
spines, and the process of synaptogenesis are crucial aspects in the consolidation of synaptic 
transmission [75]. During the progression of major depression, increased levels of glucocor-

ticoids elicit a decrease on these events in hippocampus, which contribute to the previously 
mentioned decline on learning and mnemonic capacities. When neurotransmitter bioavail-
ability, receptor expression and extent of dendritic arborization are chronically up-regulated, 
synaptic transmission is substantially facilitated. This process is called long-term potentiation 
(LTP), which is thought to exert a pivotal role in the process of memory consolidation [75]. On 
the other hand, chronic down-regulation of these properties can elicit a process denominated 
long-term depression, culminating in long-term cognitive impairment.

It is important to note that all the synaptic abnormalities mentioned above can develop slowly 
and progressively, being frequently asymptomatic. Overtime, the spread damage culminates 
in functional deficit. Unfortunately, the lack of sensitive biomarkers to diagnose and to esti-
mate the extent of these changes makes the early diagnostic of neurodegenerative diseases 
very difficult. As a result, this set of functional abnormalities is most commonly noted only 
in elderly individuals, in which the prevalence of neurodegenerative diseases is higher. 
Furthermore, several environmental factors can progressively increase the susceptibility to 
neurodegenerative diseases over lifetime, such as chronic stress and drug abuse. In this con-

text, recent clinical and experimental findings suggest that long-term AS abuse can induce 
neurotoxic effects that might increase the susceptibility to loss of cognitive capacity and neu-

rodegenerative diseases.

4.1. Pathophysiological mechanisms associated to AS-induced neurotoxicity

Studies performed in animal models and cell cultures have demonstrated a broad spectrum 
of pathophysiological mechanisms underlying the neurotoxicity induced by AS, and all of 
them seem to culminate in cell apoptosis. Apoptosis is a programmed cell death in which cell 
volume is progressively decreased, chromatin is condensed, and cell nucleus is fragmented 
[76]. Generally, apoptosis can be triggered by several distinct intracellular and extracellu-

lar stimuli, such as DNA damage, redox imbalance, calcium overload, and excitotoxicity. 
Naturally occurring apoptosis has been thought to exert a pivotal role in the development 
of multicellular organisms; moreover, it is considered a defense mechanism in several con-

ditions, such as metabolic imbalance, infections, and neoplasia [77]. However, unbalanced 
apoptotic process can induce harmful effects into target tissues. In the case of cancer, for 
instance, the decreased apoptotic rate among neoplastic cells results in growing and spread 
of tumors. Conversely, increased cell death in cases of neurodegenerative diseases has been 
attributed to the uncontrollable apoptotic process among neuronal cells [77]. Apoptosis is 
triggered by two main pathways—the extrinsic, also called death receptor pathway, and the 
intrinsic, namely mitochondrial pathway. The extrinsic pathway is stimulated by activation 
of death receptors family, which includes the tumor necrosis factor (TNF)–related apoptosis-
inducing ligand (TRAIL-R1 and TRAIL-R2), FAS and TNF receptors TNF)-related apoptosis-
inducing ligand TNF)-related apoptosis-inducing ligand. The activation of these receptors 
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results in recruitment of pro-apoptotic proteins, such as BAX, BID, BAK, BAD, besides down-
regulation of anti-apoptotic proteins, like Bcl-2, and culminates in activation of caspases, a 
family of cysteine protease enzymes, leading to cleavage of caspase substrates and cell death 
[77, 78]. The intrinsic apoptotic pathway is mainly triggered by intracellular stimuli, such as 
DNA damage, endoplasmic reticulum stress and redox imbalance. Irrespective of the central 
cause, these events lead to mitochondrial inner-membrane permeabilization, mainly through 
opening of mitochondrial permeability transition pore, culminating in mitochondrial swell-
ing and release of apoptosis-triggering factors, such as cytochrome c [78].

Experimental studies have demonstrated that exposure to high concentrations of AS can elicit 
both extrinsic and intrinsic apoptosis. Long-term administration of nandrolone decanoate 
results in increased activation of caspase-3 and apoptosis throughout hippocampal and cortical 
structures [79]. Several in vitro studies have also demonstrated that exposure of neuroblastoma 
cells, primary hippocampal cells, and pheochromocytoma cells to AS can result in increased acti-
vation of caspase-3 [15, 80, 81]. Caspase-3 can be activated in both extrinsic and intrinsic apop-

tosis pathways and exerts a pivotal role in the execution of the apoptotic process by proteolytic 
cleavage of several proteins and chromatin condensation, resulting in DNA fragmentation and 
other changes throughout the apoptotic process. In the context of neurodegenerative diseases, 
caspase-3 has been shown to have a prominent role in the proteolytic cleavage of amyloid-β 
precursor protein and neuronal death during the progression of Alzheimer’s disease [82].

Interestingly, in neuroblastoma cell culture, exposure to testosterone-induced concentration-
dependent sustained increase in intracellular calcium concentration that involved up-regulation 
of inositol-triphosphate receptor (InsP

3
R) type I-induced calcium release [15]. As demonstrated 

elsewhere, prolonged calcium overload can trigger apoptosis in several cell types [83]. Indeed, 
exposure to testosterone can induce caspase-3 activation in these cells, an event that can be 
prevented by pharmacological inhibition or knock down of InsP

3
R [15]. The increased activa-

tion of caspase-3 by testosterone and its synthetic metabolites induces the cleavage of poly 
(adenosine diphosphate-ribose) polymerase (PARP), a nuclear protein involved in DNA repair 
signaling [81]. In response to single-strand DNA breaks induced by cellular stressful condi-
tions, PARP initiates the synthesis of polymeric adenosine diphosphate-ribose and leads to 
recruitment of DNA-repairing enzymes, such as DNA ligase and DNA polymerase [84]. As a 
result, cleavage of PARP by caspases can substantially increase DNA damage and apoptosis. 
Conversely, co-exposure with flutamide prevented the activation of caspase-3 and proteolytic 
cleavage of PARP, demonstrating that activation of AR is crucial to the process of DNA dam-

age and apoptosis after exposure of neuronal cells to high concentrations of AS [81].

Furthermore, testosterone-induced activation of caspase-3 can induce proteolytic cleavage and 
activation of protein-kinase Cδ (PKCδ) in different cell types, including neuronal dopaminer-

gic cell line [85]. Although the precise role of PKCδ remains controversial and experimental 
studies have shown both protective and pro-apoptotic effects, testosterone-induced coronary 
smooth muscle cell apoptosis was prevented by PKCδ and caspase-3 inhibition [86]. In addi-
tion, PKCδ has been shown to have a prominent role in the aging-related decline on hippo-

campal and mnemonic performance, as well as in the apoptosis of dopaminergic neurons in 
experimental models of Parkinson’s disease [87–89]. Thus, it seems reasonable to hypothesize 
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that PKCδ might have a pathophysiological role in AS-induced neuronal apoptosis. In con-

trast, the activation of ERK and Akt, two key proteins involved in the recruitment of cellular 
pathways linked to cell survival can be considerably decreased in neurons exposed to AS [81].

4.1.1. Redox imbalance

Redox imbalance has long been reported as a prominent mechanism underlying the apoptotic 
process in several pathophysiological conditions. At low concentrations, reactive oxygen spe-

cies (ROS) can act as second messengers, especially hydrogen peroxide. In the thyroid gland, 
ROSs have been shown to have a crucial role in thyroid hormones synthesis and overall thy-

roid homeostasis [90]. However, in high concentration, ROS can induce oxidative damage of 
several cellular structures, culminating in cell death by apoptosis or necrosis [91].

Redox homeostasis is characterized by cellular antioxidant activity, such as the enzymes 
superoxide dismutase, catalase, thioperoxidases and glutathione complex, and ROS produc-

tion by the mitochondria, nicotinamide dinucleotide phosphate oxidases (NOX), and xan-

thine oxidases. Thus, redox imbalance can arise in conditions of down-regulation of cellular 
antioxidant defense and/or ROS overproduction [90]. In the context of neurodegenerative 
diseases, redox imbalance has been shown to have a pivotal role in synaptic dysfunction and 
neuronal loss, which is observed in the brain during the development and progression of 
neurodegenerative diseases [92, 93]. Moreover, the hallmarks of apoptosis, including caspase 
activation, DNA damage, and binding of pro-apoptotic transcription factors, and cytoskeletal 
alterations can be strictly affected by ROS.

Redox imbalance has been reported as a prominent mechanism underlying the AS-induced 
cell damage and apoptosis. Experimental studies have demonstrated that chronic administra-

tion of AS can up-regulate the activity of NOX in several cell types, resulting in increased ROS 
production, whereas antioxidant activity seems to be substantially decreased in this condition 
[63, 94]. In the CNS, chronic administration of nandrolone decanoate in rats has been shown 
to decrease glutathione peroxidase (Gpx) activity in the hippocampus and pre-frontal cor-

tex [79]. Gpx catalyzes the oxidation of two monomeric glutathione molecules by hydrogen 
peroxide into H

2
O and glutathione disulfide, thus reducing the concentration of hydrogen 

peroxide. Thus, down-regulation of Gpx activity by AS increases hydrogen peroxide bioavail-
ability, which is correlated to increased lipoperoxidation and reduced thiol residues induced 
by AS exposure in the brain [79, 95].

Interestingly, pretreatment of neuronal dopaminergic cell lines with testosterone has also been 
shown to protect them against oxidative damage induced by hydrogen peroxide [95]. The neu-

roprotective effect was correlated with a slight increase in the calcium-induced mitochondrial 
ROS production. In contrast, in conditions of sustained redox imbalance, post-exposure of 
dopaminergic neurons to testosterone can further increase the oxidative damage and decrease 
cell viability by mitochondrial calcium overload, an effect mediated by membrane-attached 
receptor [95]. Furthermore, activation of membrane-attached receptors has also been shown to 
be involved, as co-exposure with flutamide did prevent neither mitochondrial calcium over-

load nor decreased cell viability [95].
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Altogether, these evidences imply that ROS might be a “switch” in the neuronal effects 
induced by AS, as they can determine whether exposure of neuronal cells to AS can result in 
neurotoxic or neuroprotective effects. In physiological concentrations, testosterone and AS 
can slightly increase the concentration of ROS, which might induce neuronal preconditioning, 
protecting these cells against further increases in ROS concentration [96, 97]. However, in sup-

raphysiological concentrations, AS can significantly increase the ROS bioavailability by mito-

chondrial and nonmitochondrial mechanisms, resulting in oxidative damage and neuronal 
apoptosis. Interestingly, the increased susceptibility of dopaminergic neurons to AS-induced 
redox imbalance and oxidative damage suggests that administration of supraphysiologi-
cal doses of these drugs might also increase the susceptibility to Parkinson’s disease. These 
effects can be modulated by both membrane and cytosolic receptors, although the precise 
contribution of each one remains unclear. Furthermore, it remains unclear, though, whether 
AS exposure can induce long-term increased neuronal susceptibility to redox imbalance, as 
evidenced in cardiac cells [59]. Given that neurodegenerative diseases occur more frequently 
in elderly people, the elucidation of this aspect can develop an important role in the diagnosis 
and prognosis of neurodegenerative diseases in former AS abusers.

4.1.2. Excitotoxicity

The neurotoxicity induced by AS can be further complicated by the induction of excitotox-

icity effect. This phenomenon occurs after a massive release of glutamate, an event called 
glutamate storm, or exogenous compounds, such as N-methyl-D-aspartate (NMDA) and 
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA). In such a condition, glutamate 
ionotropic receptors (i.e., NMDA and AMPA receptors) are overstimulated. Physiologically, 
activation of these receptors triggers calcium influx and plasma membrane depolarization 
and exerts a pivotal role in the neurotransmission and LTP process. However, overactiva-

tion of NMDA and AMPA receptors results in calcium overload, mitochondrial dysfunction, 
redox imbalance, and recruitment of pro-apoptotic pathways [98]. Excitotoxicity is thought to 
develop a prominent role in the cellular damage and tissue injury during the progression of 
neurodegenerative diseases, as well as major depression-associated loss of neuronal viability 
and decline on cognitive capacity [98].

Within physiological ranges, testosterone exhibited neuroprotective effects against neurotox-

icity induced by kainic acid, an agonist of AMPA receptors and its conversion into estrogen 
by aromatase is thought to have a key role in this protection [99]. However, as previously 
stated, most of ASs are poorly converted into estrogen by aromatase, especially class II and 
III AS. Furthermore, the abusive characteristic of AS illicit consumption can dramatically 
increase the concentration of testosterone and its metabolites within neural tissue. In keeping 
with this, it was shown that one administration of nandrolone decanoate in rats can increase 
the phosphorylation of NMDA receptor subunits NR2A and NR2B in the hippocampus, sug-

gesting that acute exposure to AS is enough to increase the activity of NMDA receptor [100]. 
In addition, chronic administration of AS in rats can increase the expression of vesicular glu-

tamate transporter 2 (VGLT2) [101]. VGLT2 exerts an important role in the uptake of gluta-

mate into synaptic vesicles, suggesting that exposure to high concentration of AS can increase 
not only the activity of glutamate receptors but also increase the release of glutamate into 
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synaptic cleft. Both changes dramatically increase the susceptibility of glutamate storm and 
glutamate-induced excitotoxicity. Noteworthy, the increased expression of VGLT2 can persist 
until 3 weeks after interruption of AS administration, implying that these effects might be 
induced by genomic mechanisms [101].

Exposure of mixed cultures of mouse cortical cells to testosterone induced concentration-
dependent increase in NMDA-induced neurotoxicity, as demonstrated by increases on trypan 
blue-labeling and the release of lactate-dehydrogenase [99]. This effect was further increased 
when aromatase inhibitors were co-administered to the culture medium, corroborating the 
hypothesis that testosterone-induced neuroprotection was at least partially mediated by fur-

ther conversion into estrogen. In addition, co-administration of flutamide significantly attenu-

ated the increased excitotoxicity induced by high concentrations of testosterone, highlighting 
the role exerted by the overactivation of AR in this regard [99]. In keeping with this, expo-

sure of neuronal cells to nor-testosterone (i.e., nandrolone) and stanozolol increased NDMA-
induced neurotoxicity in a concentration-dependent and aromatase-independent way, given 
that inhibition of aromatase did not attenuate this effect [99]. As a result, AS-induced poten-

tiation in the glutamate signaling substantially increased the peak of calcium concentration 
induced by glutamate, whereas the return to calcium baseline levels was prolonged [16]. 
Conversely, inhibition of AR with flutamide completely abolished this effect. These evidences 
imply that ASs potentiate excitotoxicity induced by overactivation of glutamate receptor 
exclusively via classic AR pathway.

Besides the potentiation of glutamate-induced excitotoxicity, experimental studies have 
shown that exposure of neuronal cells to AS can also modulate the neurotoxic effects of Aβ. 
These oligomers are physiologically generated by cleavage of amyloid precursor protein 
(APP) by β- and γ-secretases, and the β-site APP-cleaving enzyme 1 (BACE1) is the most 
prominent β-secretase throughout the brain. The most common isoforms are Aβ40 and Aβ

42
, 

where the shorter (i.e., Aβ40) is produced in the trans-Golgi apparatus and is the most promi-
nent, whereas the longer is produced in the endoplasmic reticulum and has the most notori-
ous fibrillogenic capacity. The clearance of Aβ is performed by several pathways, including 
activation of degrading enzymes and receptor-mediated cellular and vascular clearance.

Under unclear circumstances, though, Aβ generation and clearance can be unbalanced, 
resulting in accumulation and aggregation of Aβ [102]. In this context, presenilin 1 (PS1) and 
presenilin 2 (PS2) regulate the proteolytic function of γ-secretases, and recent studies have 
demonstrated that mutations in both protein can result in accumulation of Aβ

42
, which is the 

hallmark of Alzheimer’s disease [103]. Aggregated Aβ can induce neurotoxic effects by sev-

eral mechanisms, including induction of calcium overload and redox imbalance, culminating 
in synaptic deterioration and neuronal apoptosis [102]. Furthermore, soluble Aβ, also known 
to induce neurotoxicity, is increased in the cerebrospinal fluid of patients with Alzheimer’s 
disease [104, 105]. Noteworthy, Aβ can bind to NMDA and AMPA receptors, and these inter-

actions can further increase excitotoxicity induced by glutamate [106].

Recently, it has been demonstrated that Aβ levels can be substantially increased in the whole 
brain and cerebrospinal fluid, but especially in the hippocampus, after short-term exposure 
to 17β-trenbolone in male rats [80]. Similarly, exposure of primary hippocampal neurons 
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to 17β-trenbolone, but not to DHT, can significantly elevate the levels of Aβ
42

. Interestingly, 
this effect was seen only in male rats. Even so, administration of 17β-trenbolone in pregnant 
female rats resulted in accumulation of Aβ

42
 in the fetus brain [80]. In keeping with these find-

ings, exposure to 17β-trenbolone also resulted in a concentration-dependent down-regulation 
of PS1 levels in primary hippocampal neurons [80]. These evidences have demonstrated that 
AS abuse can induce accumulation of Aβ

42
 in the hippocampus, which can induce long-term 

susceptibility to Alzheimer’s disease, especially in the offspring of female AS abusers.

Notwithstanding the effects with respect to the synthesis of Aβ, AS can modulate the toxicity 
induced by these oligomers. In this context, testosterone per se can induce neuroprotective 
effect against the toxicity induced by Aβ, an effect observed in mixed cortical neuronal cell 
cultures [107]. This effect was completely abolished by co-exposure with aromatase, suggest-
ing that aromatization and the local generation of estrogen can underlie the testosterone-
induced neuroprotection. Interestingly, co-exposure with the AR antagonist flutamide can 
also attenuate the neuroprotection induced by testosterone against Aβ-induced toxicity, 
implying that activation of classical AR can attenuate the toxicity induced by Aβ oligomers 
[107]. In addition, the exposure of neuronal cells to nandrolone, a poorly aromatizable AS, 
did not affect the neurotoxicity induced by Aβ, whereas it was significantly potentiated by 
exposure to methandrostenolone [107]. However, nandrolone-BSA (bovine serum albumin) 
conjugate significantly potentiated the Aβ-induced neurotoxicity, whereas the conjugation 
of BSA further increased the neurotoxic potentiation induced by methandrostenolone per se.

Taken together, these evidences have demonstrated that AS not only increases the genera-
tion of Aβ oligomers in crucial areas of CNS associated with the cognitive and mnemonic 
capacities but also increases the neurotoxic effect of these molecules, which can substantially 
increase the susceptibility to Alzheimer’s disease. The mechanism underlying the elevated 
level of Aβ remains unclear but might involve disturbances in the organelles, where Aβ is 
produced (i.e., endoplasmic reticulum and Golgi apparatus); moreover, the role of endo-
plasmic reticulum stress must be investigated in this regard. Furthermore, the downstream 
signaling underlying the AS-induced potentiation in the neurotoxic effect promoted by Aβ 
seems to involve membrane receptors instead of the classical cytosolic AR. Thus, this effect 
might be more pronounced in drugs that exhibit increased binding affinity for the membrane 
receptor and that are poorly converted into estrogen by aromatase.

4.2. Long-term AS abuse and cognitive impairments

Testosterone and other endogenous androgens per se have been shown to exert a pivotal 
role during the development of CNS. In keeping with this, recent evidences have demon-
strated that the development of central nervous system exhibits sexual dimorphic differences, 
including the size of cortical and sub-cortical structures. In addition, cognitive and mnemonic 
performances can be strikingly influenced by the levels of testosterone and estrogen within 
CNS. Indeed, decreased levels of testosterone have been correlated to a poor performance 
in cognitive tests, increased levels of Aβ throughout the brain, and increased susceptibility 
to Alzheimer’s disease [108]. Conversely, testosterone replacement can significantly restore 
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these abnormalities [109, 110]. Despite these evidences regarding endogenous testosterone 
levels, consistent data have shown that long-term administration of supraphysiological doses 
of AS can significantly impair the cognitive capacity. Evaluation of cognitive capacity involves 
mainly standard tests including attention and psychomotor tests, functional executive tests, 
memory tests, and emotional/social cognition tests.

In recent studies, long-term AS users submitted to cognitive analysis have performed signifi-

cantly worse in visuospatial memory tests and learning capacity compared to nonusers [111, 

112]. Basically, AS users made more mistakes in the attempt to recognize visual patterns they 
had seen immediately before the test. The capacity to distinguish between new and already 
seen visual pattern was also impaired in AS users when compared to nonusers. In addition, AS 
users showed a tendency to make more mistakes in the attempt to memorize verbal patterns 
30 minutes after the presentation. Interestingly, cognitive impairments were significantly 
correlated to the total lifetime of AS dose consumption [112]. In another recent study, AS 
users had worse results in tests evaluating attention and inhibitory control skills [111]. Taken 
together, these findings evidence that AS abuse can elicit substantial cognitive loss and raise 
the question of whether the effects of long-term consumption can be even more remarkable 
with aging. Noteworthy, adolescents have exhibited more sensitivity to AS-induced cognitive 
impairments when compared to adult AS users, which suggest that chronic AS abuse during 
pubertal and pre-pubertal phases might induce more severe neurological impairments [111]. 
Importantly, these individuals might be more susceptible to aging-associated loss of cognitive 
capacity when compared to individuals that started AS abuse in adulthood.

Studies focused in animal models of AS abuse have shown conflicting findings, depending on 
the test and dose regimen used. In the passive avoidance test, rodents undergo fear-motivated 
analyses of short-term and long-term memory, as they learn to avoid their innate tendency for 
preference dark environments, instead of bright areas, by exposure to aversive stimulus (i.e., 
electric shock) in the dark area. Long-term administration of nandrolone decanoate (4 mg/week) 
for 10 weeks significantly increased the extinction of learned responses (i.e., avoidance of the 
learned aversive stimulus) when compared to vehicle-treated rats, suggesting that nandrolone-
impaired mnemonic performance, whereas rats administered with testosterone enanthate per-

formed better than control rats [113]. In contrast, one injection of nandrolone decanoate (1–6 mg/
rat) or testosterone enanthate (5–30 mg/rat) significantly improved the mnemonic performance 
of rats in the passive avoidance test [114]. These evidences suggest that long-term exposure to 
poorly aromatizable AS, such as nandrolone, can considerably impair learning and memory 
consolidation, whereas treatment with aromatizable AS might improve these aspects, probably 
by increasing local production of estrogen in the CNS.

In the Morris water maze test, visuospatial memory is evaluated by repeated presentations of 
rats to the maze in daily training trials, in which rats must find the target platform. In the day 
of the test, the latency time spent to find the central platform, the time spent within the target 
platform, and the time spent in the surrounding areas of the maze are compared between 
experimental groups. In this context, administration of AS cocktail (2 mg/kg testosterone cyp-

ionate, 2 mg/kg nandrolone decanoate, and 1 mg/kg boldenone undecylenate) or 0.375 mg/kg 
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methandrostenolone for 10 weeks did not affect the performance, as the latency time to find 
the target platform was statistically equivalent to the level of vehicle-treated rats. In contrast, 
after 4 training trials, rats chronically treated with nandrolone decanoate (15 mg/kg each third 
day, for 14 days) exhibited increased latency time to reach the target platform, whereas the 
time spent within the target platform was significantly decreased when compared to the con-
trol group [115]. Interestingly, long-term AS administration per se not only impaired learning 
and mnemonic performances but also abrogated the well-known improvements in these skills 
elicited by chronic treadmill exercise. In sum, treadmill exercised rats chronically adminis-
tered with nandrolone decanoate spent significantly more time to find the target platform in 
the Morris water maze when compared to exercised control rats, whereas the time spent in the 
target platform was significantly decreased [116].

Besides the impairment of spatial memory, exposure to nandrolone decanoate also reduces 
the social memory capacity of rats [117]. In social memory capacity evaluation, adult rats are 
allowed to investigate and recognize juvenile rats for 5 minutes. During this period of time, 
adult rats frequently demonstrate investigatory-like behavior, such as head and body sniff-
ing, anogenital exploration, grooming, close pursuing, touching the flanks with the snout, 
and manipulation with the forepaws. After an interval of time, the same juvenile rats are 
reintroduced to the adult rat. In this context, long-term administration of nandrolone dec-
anoate (15 mg/kg, daily, for 6 weeks) significantly increased the recognition time in the sec-
ond exposure, when compared to control rats [117]. Importantly, this effect was completely 
abolished when flutamide, an AR antagonist, was co-administered with nandrolone. These 
findings suggest that long-term exposure to nandrolone impaired the mnemonic capacity by 
stimulation of AR within CNS.

Taken together, these evidences corroborate the findings in AS abusers that the loss on mne-
monic capacity might be proportional to the dose and time of AS exposure, as well as the com-

pound administered (i.e. aromatizable or nonaromatizable). More studies are necessary to 
elucidate whether longer exposure to AS and more cycles can further impair cognitive capac-
ity in experimental models. Furthermore, the impact of chronic administration of AS in aging 
rats should be investigated, given that the majority of oldest AS abusers in general population 
(i.e., that started to use AS in the 1970s and 1980s) are entering the age of risk of ND now [112].

Despite the evidences about decline of cognitive and mnemonic capacities after AS admin-
istration, the underlying mechanisms are complex and remain unclear so far. Experimental 
studies have shown that high concentrations of AS can elicit apoptosis of several cell types, 
including cardiomyocytes, endothelial, and skeletal muscles cells. Even so, the overall con-
sequences of AS exposure on neural cells viability remain poorly explored in in vivo studies. 
In vitro studies have demonstrated decreased cell viability in neural cell cultures exposed to 
AS, suggesting that neuronal loss might be the central event in the cognitive decline during 
supraphysiological AS intake. These neuronal adverse effects are especially critical in the case 
of AS abuse, given the capacity of these drugs to cross the blood-brain barrier and accumulate 
in the neural tissue. In keeping with this, short-term administration of 17β-trenbolone, a class 

Sex Hormones in Neurodegenerative Processes and Diseases242



II AS, in adult males and females, and pregnant female rats, resulted in accumulation of AS 
throughout the brain and cerebrospinal fluid, but especially in the hippocampus [80].

Hippocampus is a sub-cortical region that develops a pivotal role in the consolidation of new 
memories and spatial cognition. Bilateral destruction of hippocampus impairs the forma-

tion of new episodic memories and induces anterograde and retrograde amnesia in epileptic 
patients [118]. Hippocampus has also been correlated to the consolidation of episodic and 
declarative memories through the process of LTP [119]. Interestingly, experimental studies 
have demonstrated that specific neuronal clusters within the hippocampus are activated 
when rats and monkeys pass through particular locations, which suggest that there is a “neu-

ronal mapping” associated with distinct environments [119]. Noteworthy, studies have dem-

onstrated that in several conditions characterized by cognition and memory decline, such 
as Alzheimer’s disease and other forms of dementia, the hippocampus is one of the earliest 
structures to exhibit synaptic dysfunctions [120].

The density of AR in the hippocampus is the highest of CNS; thus, it is particularly sensitive to 
oscillation in circulating levels of testosterone [121, 122]. Exposure of neuroblastoma cell cul-
ture to different testosterone concentrations induced a concentration-dependent decrease on 
cell viability [15]. This effect was also observed in primary culture of hippocampal neurons, 
in which the incubation for 48 hours with 17β-trenbolone significantly decreased cell viability 
[80]. Furthermore, administration of nandrolone decanoate (15 mg/kg, daily) for 5 days in 
adult males, females, and pregnant female rat (embryonic day 15) resulted in a significant 
decrease of BrdU-labeled cells in the dentate gyrus of the hippocampus, indicating that AS 
overdose decreased cell proliferation [123].

The dentate gyrus is a hippocampal area at the interface of entorhinal cortex and CA3 region of 
hippocampus [124]. Excitatory inputs from the layer II of the entorhinal cortex project to the den-

tate gyrus, which send neuronal projections to the CA3 region via mossy fibers. This trisynaptic 
circuit exerts a particular role in the process of spatial memory and cognition. In keeping with 
this, experimental studies have demonstrated that neuronal death in the dentate gyrus granule 
cells resulted in significantly decreased performance on hippocampal-sensitive memory tests, 
such as the Morris water maze, acquisition of reference, and working memory tests [125, 126]. 
Worth of noting long-term administration of nandrolone decanoate (10 mg/kg/week, for 8 weeks) 
in rats significantly decreased neuronal density not only in the dentate gyrus but also throughout 
CA1, CA2, CA3, pre-frontal cortex, and parietal cortex [79].

Noteworthy, the dentate gyrus is one of the few regions of the adult brain to exhibit neuro-

genesis and acute nandrolone administration decreased the number of newly born neurons 
within dentate gyrus of adult rats in approximately 75%, implying that short-term adminis-

tration of AS is enough to significantly impair neurogenic processes [123]. Furthermore, neu-

ronal loss and impaired neurogenesis in the hippocampal and cortical structures have been 
correlated to the development of Alzheimer’s disease-related cognitive decline, as well as to 
increased number of Aβ plaques in this region [127]. Conversely, experimental evidences have 
demonstrated that both aerobic and anaerobic exercises can significantly increase neuronal 
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proliferation in these regions, an effect that has been correlated to the improved mnemonic 
capacity and neuronal survival [128, 129]. In this context, rats submitted to strength exercise 
in a vertical ladder showed up-regulation of Ki-67 throughout the dentate gyrus, which is 
considered a marker of neurogenesis [130]. However, chronic administration of nandrolone 
decanoate abolished this effect, suggesting that AS abuse can decrease the neurogenic effect 
induced by exercise.

In cortical neuronal and astrocytic cultures, 48 hours of exposure to 10 mM of testosterone, 
nandrolone, or methandrostenolone significantly increased neuronal death [107]. Interestingly, 
when these ASs were conjugated to BSA, which impedes the AS to cross the plasma membrane 
and to bind to the cytosolic AR, the neurotoxicity was further increased. Even so, co-exposure 
of flutamide prevented both testosterone- and nandrolone-induced neurotoxicity, suggesting 
that the membrane-attached AR shares pharmacological similarities with the cytosolic recep-

tor [107]. Furthermore, these evidences suggest that activation of membrane-attached AR can 
recruit distinct downstream signaling pathways that culminate in enhanced cell death, when 
compared to the cytosolic AR.

Taken together, these clinical and experimental evidences imply that chronic exposure to 
supraphysiological doses of AS can severely impair cognitive and mnemonic capacities. This 
paradigm might be worsened by aging-related neurophysiological effects, which can increase 
the susceptibility to neurodegenerative diseases, besides the well-described neurobehavioral 
effects.

5. Conclusions

The growing misuse of AS is a major concern worldwide due to its harmful effects, includ-

ing cardiovascular, endocrine, reproductive, behavioral, and neurological abnormalities. 
Unfortunately, there are several unclear aspects regarding the consequences of AS abuse, 
such as the prevalence of adverse effects, the repercussions in aging-related dysfunctions, 
such as neurodegenerative diseases, and if these effects are reversible. Even so, experimental 
studies have provided consistent evidences that the short-term and long-term exposure to AS 
can induce neuronal apoptosis throughout important neural regions, such as hippocampus 
and pre-frontal cortex. As a result, this phenomenon can severely impair cognitive and mne-

monic capacities, as evidenced by clinical studies with AS abuses. In addition, exposure to 
AS can significantly increase the susceptibility to Alzheimer’s disease. Taken together, these 
evidences support the hypothesis that administration of supraphysiological doses of AS is an 
important risk factor to the development of neurodegenerative diseases, and that the progno-

sis of these conditions might be worsened by AS abuse. Given the rising misuse of AS among 
elite athletes and recreational users, these neurological consequences should not be under-

estimated by physicians and researchers. The understanding of these aspects is particularly 
important to provide the diagnostic and prognostic of neurological diseases in active and 
former AS abusers.
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