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Abstract

Cell phone call location data has been utilized for the study of travel patterns, but the
underlying activities that originate the movement are still at a less explored stage.
Resulted from routine and automated features of decision-making processes, human
activity and travel behaviour exhibit a high level of spatial-temporal periodicities as
well as a certain order of the activities. In this chapter, a method has been developed
based on these regularities, which predicts activities being conducted at call locations.
The method includes four steps: a set of comprehensive variables is defined; feature
selection techniques are applied; a group of state-of-the-art machine learning algo-
rithms and an ensemble of the above algorithms are employed; an additional enhance-
ment algorithm is designed. Using data gathered from natural communication of 80
users over a period of 1 year, the proposed method is evaluated. Based on the ensem-
ble of the models, prediction accuracy of 69.7% was achieved. Using the enhancement
algorithm, the performance obtained 7.6% improvement. The experimental results
demonstrate the potential to annotate call locations based on the integration between
machine learning algorithms and the characteristics of underlying activity and travel
behaviour, contributing towards the semantic interpretation and application of the
massive data.

Keywords: cell phone location annotation, activity and travel behaviour, machine learning
algorithms, feature selection techniques, sequential information

1. Introduction

1.1. Problem statement

Nowadays, cell phones are frequently used as an attractive means for sensing human behaviour

on a large scale. They provide a source of real and reliable data, enabling automatic monitoring

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



call and travel behaviour of users. Studies have been conducted to discover statistical laws that

govern the key dimensions of human travel, e.g. travel distance and time spent at different

locations [1]. These studies provide a modelling framework capable of describing general

features of human mobility.

However, despite the discovery of these general features, previous studies do not provide

further insights into the motivation or activities behind the identified mobility features. In

general, most of the current research on cell phone data has focused on spatial-temporal

dimensions. The behavioural aspects associated with the mobility features, e.g. travel mode

and activities being conducted at the locations, are still at a less studied stage. Due to privacy

concerns, cell phone data provided by phone operation companies usually does not have

contextual information, leading to a wide gap between the raw data and the semantic inter-

pretation of the traces. If a method can be found which helps to bridge this gap, the potential

applications of the semantically enriched phone data are immense. They include inferring

people’s travel motivations in activity-based transportation modelling, mining individual life

styles and activity preferences in urban planning, and providing activity tailored services in

the cell phone environment [2].

1.2. Related state of the art

Methods have been developed to derive activities being conducted at a location from global

positioning systems (GPS)-based data or from multi-modal data recorded by cell phones.

The GPS-based methods first decompose continuous GPS points into a chain of stops, where

the individual stays for a minimum period of time conducting activities, and moves that are

the points between two consecutive stops. The stops are then compared with a geographic

map by matching them in space, and interesting places that are relevant to the studies are

subsequently found. The GPS-based methods have received much attention during the past

years [3], but are still faced with a number of limitations. (1) The data collection process is

expensive in terms of battery consumption of GPS devices. (2) Linking a GPS trajectory to

detailed geographic information on all interesting places in a study area needs a lot of

computational work. (3) The methods are location-specific, and the quality of the annotation

process depends on the study area, making the process not transferable to other areas.

(4) The matched location alone may not disclose a particular reason of why an individual

travels there. A person could go to a place (e.g. a shopping mall) with different purposes

(e.g. working, shopping or having a lunch). (5) The matching of exact GPS positions raises

privacy concerns, as some of the places visited by an individual may be highly privacy-sensitive.

Some of the above-described limitations have been addressed by the annotation process based

on multi-modal data recorded from sensors equipped on cell phones [4]. This process is

composed of two steps. In the first step, data from GPS and other sensors (e.g. Wi-Fi and

accelerometer) is collected from each individual. The data is then clustered into a number of

visit places, each of which is represented by an ID number rather than geographic positions of

the cluster points. In the second step, the obtained places are annotated based on contextual
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information from the sensors and phone applications, as opposed to GPS data. In this process,

various machine learning methods are proposed, and different sets of features are defined [5].

These studies achieved good prediction performance without the need of additional geo-

graphic information and GPS data. Nevertheless, while the machine learning methods elimi-

nate the need for a map, this entire annotation process still partly relies on GPS data for the

identification of visit places in the first step. Thus, this process as a whole does not fully

address the privacy concern. On top of that, while these studies mainly focus on selecting

efficient classification models and relevant features, none of them have conducted post-

processing analysis to examine how the predicted results are consistent with the sequential

information that is embedded in daily activity and travel sequences. In-depth examination into

the prediction errors is also lacking in these studies.

1.3. Research contributions

Extending the current research on annotating people’s movement traces, our study proposes a

new approach. The method utilizes data collected from simple cell phones, and it combines

machine learning methods with the characteristics of underlying activity and travel behaviour

that originates the traces. It has the following advantages over the existing studies. (1) The

method is based on spatial-temporal regularities as well as sequential information intrinsic to

human activity and travel behaviour. (2) It does not depend on additional sensor data and map

information, reducing data collection costs and increasing transferability. (3) An enhancement

algorithm has been developed to improve the prediction results by machine learning methods.

(4) A set of extensive experiments and in-depth examination into the classification errors have

been conducted. (5) Compared to GPS points, the wide coverage of a cell ID allows the process

to reduce privacy concerns considerably.

The rest of this paper is organized as follows. Section 2 introduces the cell phone data and

Section 3 elaborates on the annotation process. Experiments are conducted in Section 4 and

examination into the experiment results is carried out in Section 5. Finally, Section 6 ends this

chapter with major conclusions and discussions for future research.

2. Data

The cell phone data is composed of full mobile communication patterns of 80 users over a

period of 1 year, collected by a European phone company for billing and operational purposes.

The data records the location and time when each user performs a call activity, including

initiating or receiving a voice call or message. The locations are represented with cell IDs, each

of which has a coverage ranging from a few hundred square metres in cities to a few thousand

in rural areas. The users along with their phone numbers and the corresponding cell IDs are all

anonymized. Table 1 illustrates typical call records of an individual identified as ‘10027534’ on

a day.
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Among all the users, 9132 distinct call locations were detected and 259 (2.8% of the total

identified locations) were labelled with activities conducted at these places. These labelled

locations are used as the ground-truth data for training and validating our models. Activities

are divided into five types, including ‘work/school’, ‘home’, ‘social visit’, ‘leisure’ and ‘non-

work obligatory’, accounting for 30, 29, 15, 14 and 12% of the training data, respectively. The

type of ‘work/school’ represents all work- or school-related activities outdoors; while ‘home’

accommodates all time spending at home. ‘Social visit’ refers to all visit activities, ‘leisure’

includes recreational activities outside home, e.g. sports and eating/drinking, and ‘non-work

obligatory’ consists of activities like bringing/getting people, shopping and personalized ser-

vices. If activities in multiple types are executed in the same location for a particular individ-

ual, the most frequent activity is selected, such that each location is uniquely linked to an

activity type for the individual.

3. Methodology

3.1. Overview of the approach

The approach incorporates basic knowledge about human activity and travel decision-making

processes and their resultant activity and travel behaviour. As Liu et al. [6] underlined, human

activity and travel decision-making processes demonstrate routine and automated features.

People do not generally schedule their activities on a daily basis; but rather depend on fixed

routines or scripts executed during the day without much alteration. This leads to a high level

of spatial-temporal regularities in activity and travel behaviour as well as a certain sequential

order of the activities [6]. The spatial-temporal recurrences of the locations can be adequately

reflected in the movement traces of cell phone users through a long period of call records. In

addition, the spatial-temporal constraints of locations, stemming from the characteristics of

various activities, which are performed in their own daily, weekly or monthly rhythms, can

thus suggest the possible activities carried out at the locations. This enables the annotation for

the third dimension, i.e. travel motives (activities). Furthermore, evidence also suggests that

activity and travel behaviour differs across various time periods of a day, between weekdays

and weekends, and between normal days and holidays [7].

The method consists of four major steps. (1) A set of variables characterizing call locations in

the spatial-temporal dimensions is defined. (2) Feature selection techniques are applied to

choose the most effective variables. (3) Upon the obtained variables, a set of classification

User ID Cell ID Time Duration Call type Direction

10027534 10163 10:18 12 Voice call Outgoing

10027534 10269 12:40 0 Message Incoming

aThe columns, respectively, denote the user, cell ID, time and duration (in minutes) of the call, the call type including

‘voice call’ and ‘message’ and the direction including ‘incoming’, ‘outgoing’ and ‘missed calls’.

Table 1. Call records of a user.a
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models and an additional ensemble method to combine these prediction results are employed.

(4) An enhancement algorithm is developed to improve the annotation performance based on

sequential constraints of the activities.

3.2. Variable definition

For each user, all distinct locations, where the person has performed at least a call activity

during the entire data collection period, are extracted. Let N as the total number of these

locations. At each location Loci (i = 1…N), a set of variables is defined from two perspectives,

including the call behaviour and the underlying travel behaviour. The call behaviour defines the

variables that are directly related to call communication activities. Most of the variables are

also used in the multi-modal data annotation process, as described in Section 1. The travel

behaviour, however, approximates the spatial-temporal features of a location. The difference

between these two perspectives can be illustrated by two groups of major variables. The first

group includes the call frequency CFreqR and visit frequency VFreqR. CFreqR depicts how

often calls are made at a location; by contrast, VFreqR reveals how often the location is

reached, irrespective of the number of calls that are made at each visit. The second is the call

duration CDur and visit duration VDur. CDur describes the duration of the call; while VDur is

defined as the time interval between the first and last calls at the location. Apart from the

different perspectives, all the variables are also divided based on spatial-temporal factors,

including spatial repetition, temporal periodicity, day types and day segments. All the vari-

ables are listed in Table 2.

In terms of day segments, different definitions of time periods have been adopted, depending

on the context of the study area [8]. Instead of making such an a priori assumption, a method

that is proposed in this study estimates the splitting points of the day from empirical data. The

resultant splitting points delimit the largest difference in the distribution of various activity

types across these time intervals. Specifically, the segment process starts with a full day of 24

hours, and each hour is examined independently. An hour under investigation divides the day

into two time intervals, e.g. 0–10 am and 10 am to 24 pm at 10 am. A contingency table is then

constructed, in which these two time intervals and the five activity types are the row and

column variables, respectively. The frequencies of the aggregated observations from the

labelled call locations that fall into the corresponding time intervals and activity classes are

the cell values. A chi-square statistics is subsequently calculated for this table. After chi-square

statistics is obtained for each of the 24 hours, the hour with the largest statistics is chosen as the

first splitting point, denoted as S1. This point divides the day into two intervals between 0 and

S1 as well as between S1 and 24. This process is repeated for each of the latest formed intervals,

until further splitting does not generate substantial difference or until a pre-specified number

of intervals is reached.

3.3. Feature selection

Due to the small size of the training dataset, particularly relative to the large number of

defined variables, over-fitting is a potential problem. To address this issue, feature selection

techniques are employed in order to decrease the number of predictors actually utilized by the
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classification models. Two methods including wrapper [9] and filter [10], which have shown

effectiveness in the multi-modal data annotation process, are chosen for feature selection.

Wrapper searches for an optimal feature subset using the classification model itself. In contrast,

filter examines each feature separately and selects the feature that has high correlation with the

target variable, but low relation with the features that have already been chosen.

3.4. Machine learning

A group of state-of-the-art machine learning algorithms, including decision trees (DTs) [11],

random forests (RF) [12], multinomial logistic regression (MNL) [13] and multiclass support

vector machines (SVMs)[14], are employed. These algorithms have demonstrated compara-

tive performance for multi-category classification problems. These methods mainly differ in

terms of the way the classification question is formulated, the learning function and the

solution to deciding the optimal function parameters. As each learning algorithm has its

strength and weakness, it is often challengeable to identify a single algorithm that performs

best for a particular classification problem [15]. Thus, in this study, a fusion process is

Travel behaviour

Spatial repetition. (1) VFreqR: the visit frequency at the location divided by the total visit frequencies to all locations by

the individual.

Temporal variability. (1) TotVDurR: the total duration of all the visits to the location divided by the duration of visits to

all locations by the individual. (2) [Ear/Lat]VTime: the earliest and latest call time of all calls at the location. (3) AveV

[StartT/ EndT], VarV[StartT/EndT]: the average and variance of the first and last call time over all visits at the location.

(4) [Longest/Ave/Var]VDur: the longest and average duration of all visits to the location, and the variance of the duration.

Day type. (1) VFreqR[Week/Weekend/Sun/Sat/Hol],TotVDurR

[Week/Weekend/Sun/Sat/Hol]: ‘VFreqR’ and ‘TotVDurR’ at weekdays, weekend, Sunday, Saturday, or public holidays.

Day segment. (1) VFreqR[1/…/m], TotVDurR[1/…/m]: ‘VFreqR’ and ‘TotVDurR’ are segmented during different time

periods of a day.

Call behaviour

Spatial repetition. (1) CFreqR: the call frequency at the location divided by the total call frequencies at all locations by the

individual. (2) [VoiC/Mes]FreqR: ‘CFreqR’ is segmented between voice calls and messages. (3) [Inc/Mis/Out]CFreqR:

‘VoiCFreqR’ is divided into incoming, missed and outgoing (4) [Inc/Out]MesFreqR: ‘MesFreqR’ is divided into incoming

and outgoing.

Temporal variability. (1) TotCDur’: the total call duration of all calls at the location by the individual. (2) CInt[Max/Ave]:

the maximum and average time interval between 2 consecutive calls at the location. (3) [Ave/Var]CTime: the average and

variance of call time of all calls at the location. (4) [Longest/Ave/Var]CDur’: the longest, average and variance of duration

of all calls at the location.

Day type. (1) CFreqR[Week/Weekend/Sun/Sat/Hol], TotCDur’R

[Week/Weekend/Sun/Sat/Hol],VoiCFreqR[Week/Weekend/Sun/Sat/Hol], MesFreqR[Week/Weekend/Sun/Sat/Hol]:

‘CFreqR’, ‘TotCDur”. ‘VoiCFreqR’ and ‘MesFreqR’ at weekdays, weekend, Sunday, Saturday, or public holidays.

Day segment. (1) CFreqR[1/ …/ m], TotCDur’R[1/ …/ m], VoiCFreqR[1/ …/ m], MesFreqR[1/ …/ m]: ‘CFreqR’,

‘TotCDur”, ‘VoiCFreqR’ and ‘MesFreqR’ are segmented during different time periods of a day.

aThe symbol [] denotes different variables, e.g. [Ear/Lat]VTime for variables ‘EarVTime’ and ‘LatVTime’. Each day is

divided into m segments, and m is decided by the method described as follows.

Table 2. Variable definition.a
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developed, which integrates the results of these algorithms, in order to utilize the strength of

one while complementing the limitation of another. In this process, the four individual

model prediction results (i.e. the probabilities of different possible activity types) for each

call location are used as predictors, and the observed activity types are still as the dependent

variable. The correlation between these predictors and the observed activity types can be

built again by a classification model.

3.5. The enhancement algorithm

While machine learning methods provide an effective solution to annotating each single

location, they disregard the activity orders and transitions embedded in daily activity and

travel sequences. When the annotated locations on a day are linked according to the temporal

order, they should follow a certain sequential constraint. The interdependencies of daily

activities have been considered as a crucial factor in activity and travel decision making, as

discussed in Section 3.1. By considering sequential information, the activity locations that are

accessed by an individual on a day are viewed and tackled as a whole, rather than isolated

participation in activities.

The enhancement algorithm takes the preliminary inference results as well as the sequential

knowledge as inputs and aims to improve the prediction. The method is composed of two

components: transition probability-based enhancement and prior probability-based enhance-

ment. Figure 1 illustrates how the prediction is improved using a daily location sequence of a

user.

According to the training data of the user, he/she has conducted the chain of activities of

‘work-social visit-work’ at the respective call time on a day. But the prediction from the

classification models is ‘work-non-work obligatory-work’. A prediction error occurs at the

second location. In this case, if a location (e.g. the second location) has a prediction probability

P (0.443) smaller than a threshold T1 (0.72 in our case study), it is assumed that the location is

likely to be wrongly annotated. The enhancement algorithm is then applied to the false

location to improve its prediction in the following steps. (1) If there is an additional location

adjacent to the false one (including backwards and forwards) in the predicted sequence for that

day and if this location has P larger than a threshold T2 (0.9), it is considered as possibly correct

prediction. The additional location is thus used to fix the prediction of the false one, using the

The

enhancement

Inference

models

Ground

Truth

P(work)=0.91

Work at

11am

Social visit at

12:30pm

Work at

16pm

P(work)=0.83P(non-work obligatory)=0.44, P(visit)=0.29,

P(leisure)=0.26 P(work)=P(home)=0

P’(visit)=0.03, P’(non-work obligatory)=P’(leisure)=0.01, P’(home)=P’(work)=0

Figure 1. A daily call location sequence.
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transition probability-based enhancement. (2) Otherwise, if no other locations in the neighbouring

areas are predicted with a high probability, the prior probability-based enhancement method is

employed to increase the prediction accuracy based on the call time at the false location. After

recalculation, the activity type with the largest enhancement probability P’ is chosen as the

annotation result of the false location on that particular day. As a location may be repeatedly

visited on multiple days, the multiple days’ enhancement results are integrated by majority

voting rules as the final annotation for the location. Under the appropriate parameters T1 and

T2, the false prediction is likely to be corrected while accurate inference results are maintained.

Figure 2 demonstrates the details of the enhancement process.

3.5.1. Transition probability-based enhancement

The sequential information is represented in a 5 � 5 transition probability matrix between

different activities. Let ai and aj (ai, aj = 1,…5) as the activities performed at the previous

location i and current location j, respectively; Tr(aj|ai) as the transition probability from ai to

aj, calculated from the training data as follows:

Yes

Yes

Yes

Transition probability-based enhancement is applied

Yes

No

No

No

No

If P<T1 for the location k?

For each individual, fill the annotated locations into daily sequences; let D represent the total of such sequences.

For each sequence d (d=1…D), k and N(d) denote a location and the total number of locations in d (k=1… N(d)).

Next location k=k+1

Prior probability-based

enhancement is applied

Obtain the final classification

based on multiple days’

enhancement results

If exists a second adjacent

location with P>T2?

A revised probability P’ for

the location k is calculated

If d<D?

Remain P of the location

untouched

d=1 and k=1

d=d+1

End

If K £ N(d)?

Figure 2. The enhancement algorithm.
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Tr ajjai
� �

¼
F ajjai
� �

X

5

ak¼1

F akjaið Þ

(1)

F(aj|ai) is the frequency of aj followed by ai. The probability of the location j being annotated as

aj conditioned by ai at the previous location i can be recalculated as P0(aj|X) according to

Eq. (2).

P0 ajjX
� �

¼ P ajjX
� �

� Tr ajjai
� �

(2)

P(aj|X) is the result of the classification model. It is noted that P0(aj|X) is biased towards

frequently visited locations, e.g. home and work/school places, as transitions to these places

are more likely than to other less visited locations. Consequently, most of the locations under

Eq. (2) will be redirected to these two activity types. To overcome this, Tr(aj|ai) is divided by

the frequency of aj, resulting in the probability Qr(aj|ai).

Qr ajjai
� �

¼
F ajjai
� �

X

5

ak¼1

F akjaið Þ �
X

5

ak¼1

F ajjak
� �

(3)

P0(aj|X) can be revised as P’ (aj|X).

P0 ajjX
� �

¼ P ajjX
� �

�Qr ajjai
� �

(4)

In the user’s case, as shown in Figure 1, since the transition probability Qr from work to non-

work obligatory activities is very small, after the enhancement, P’ (non � work � obligatory)

(0.008) drops behind P’ (visit) (0.033), we get the visit activity as the revised annotation.

3.5.2. Prior probability-based enhancement

The above-described transition probability-based enhancement involves at least two locations,

which are adjacent in time, and one of which has a prediction probability larger than T2.

However, such daily trajectories derived from the classification models are not always avail-

able for each day. For example, one of the neighbouring locations has a probability smaller

than T2. Or, in the case where people may stay at a location (e.g. home) during an entire day,

engaging only in a single (home) activity. This is particularly true with cell phone data. People

may not make calls when travelling to an activity location, resulting in the daily movement

traces not being fully revealed by their call data. In these cases, we utilize the typical activity

and travel behaviour at different time of a day through the prior probability distribution of the

activity aj at different call time t, i.e. P(aj|t). By applying Bayesian methods, we compute the

posterior probability of aj based on X and t, i.e. P’ (aj|X, t). This probability can be computed as

follows, with the assumption that X is independent of t.
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P0 ajjX, t
� �

¼
P aj;X; t
� �

P X; tð Þ
¼

P X, tjaj
� �

� P aj
� �

P Xð Þ � P tð Þ

¼
P ajjX
� �

� P Xð Þ

P aj
� � �

P ajjt
� �

� P tð Þ

P aj
� � �

P aj
� �

P Xð Þ � P tð Þ

¼
P ajjX
� �

� P ajjt
� �

P aj
� �

(5)

P(aj|X) is the output of the classification model, i.e. the probability of aj performed at the

location j conditioned on the previously defined variables X. When P(aj|X) is compared with

the new probability P’ (aj|X, t), since t is added in the conditional part of P’, the new probabil-

ity is more discriminative and informative than P.

P(aj|t) and P(aj) can be derived from the training data as follows:

P ajjt
� �

¼
F ajjt
� �

X

5

ak¼1

F akjtð Þ

P aj
� �

¼
F aj
� �

X

5

ak¼1

F akð Þ

(6)

Here, F(aj|t) refers as the occurrences of aj at t and F(aj) refers as the occurrences of aj at all time.

It should be noted that from the theoretic perspective, the above enhancement process has two

weak assumptions. One is the replacement of P(aj|X) with the result of the classification model

and the other concerns the hypothesis of the independence between X and t. Nevertheless,

based on Eq. (5), the preliminary prediction probability is complemented with the prior

probability distribution.

4. Case study

In this section, adopting the proposed method and using the cell phone data described in

Section 2, a set of experiments is presented. The results of these experiments are discussed

and the performance of the annotation process is evaluated.

4.1. Day segments

Table 3 lists the optimal points for each of the intervals, based on the method described in

Section 3.2. The first splitting point over an entire day was found at 9 am, generating two

intervals of 0–9 am and 9 am to 24 pm. This process was iterated for each of the two newly

obtained intervals. If the largest chi-square value over all potential points of an interval was

lower than a predefined threshold, i.e. 200 in this experiment, this search stops.
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Figure 3 further shows the evolution of the chi-square statistics, in which the first 3 orders

yield much higher values than the remaining ones. From the fourth order on, the statistics

starts to decline sharply. Thus, the first 3 optimal points were extracted and 4 time periods

were generated including 0–8:59 am, 9–13:59 am, 14–18:59 pm and 19–23.59 pm. After each

day was segmented into the four periods, all the variables defined in Table 2 were obtained

and used as candidates for subsequent feature selection and machine learning. Weka, an open-

source Java application consisting of a collection of machine learning algorithms for data

mining tasks [16], was used for the implementation.

4.2. Results of individual classification models

The original training dataset is randomly divided into 10 subsets. In each model run, one of

these subsets is used as the validation data and the remaining subsets combined as the training

data. The number of correctly annotated locations in the validation subset is denoted as

Ci(i = 1…10). Let Num as the total number of locations in the training dataset; the prediction

accuracy can be defined as follows:

Accuracy ¼

X10

i¼1

Ci

Num
(7)

Current interval [0,24] [0,9] [9,24] [9,19] [19,24] [9, 14] [14,19]

S 9 am 7 am 19 pm 14 pm 20 pm 10 am 16 pm

Chi-square 3302 139 1603 855 75 194 30

If split? Yes No Yes Yes No No No

New intervals [0,9], [9, 24] X [9,19], [19,24] [9, 14], [14,19] X X X

Order 1 5 2 3 6 4 7

aThe rows, respectively, denote the current interval (hour) under investigation, the optimal splitting point S, the chi-

square value, the decision on whether or not the interval is split (if it is ‘Yes’ then two new intervals are formed and if it is

‘No’ then the symbol ‘X’ is used), and the order of the optimal points according to the chi-square values.

Table 3. The optimal points of a day.a

Figure 3. The evolution of chi-square statistics of the optimal points.
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The individual classification models are built on the features of locations drawn from the

perspectives of both travel and call behaviour as well as on the features profiling only call

behaviour, respectively. In addition, the models are also run separately on all candidate vari-

ables as well as on the variable subsets that are chosen by filter or wrapper. The prediction

results with the best parameter setting in each case are presented in Table 4.

From the prediction results, the following observations can be drawn. (1) The models running

on a subset of variables perform better than those operating on all predictors. The average

improvement is 0.85% for wrapper and 2.13% for filter. This demonstrates the importance of

feature selection techniques in dealing with a large number of predictors relative to a small

training set. (2) There are no general conclusions on which feature selection methods are better,

depending on specific classification models. SVM performs better with filter, DT and RF do not

show much difference between these two feature selection techniques, while MNL gains

remarkable improvement of 4.8% with wrapper. (3) When the different models are compared,

it is noted that MNL produces the best results with 68.98% accuracy. This is followed by

accuracy of 66.06% from RF, 65.69% from SVM and 60.95% from DT. (4) Variation is also

exhibited between the variables drawn from different perspectives. In most cases, the predic-

tion accuracy derived from the combination of both travel and call behaviour is higher than

that from solely call behaviour. The average accuracy increases by 2.96 and 1.20% for filter and

wrapper, and 2.09% for all variables included. This underlines the added value of the variables

built based on underlying activity and travel behaviour.

Apart from different model performance, the feature selection techniques combined with

various classification models also yield divergent optimal subsets of features. Eight vari-

ables are picked up by the multiple selection processes and they are regarded as important

predictors, including VFreqRWeek, TotVDurRSun, VarVEndT, VarVStartT and AveVEndT

describing activity and travel behaviour, and AveCallTime, IncMesFreqR and MesFreqR3

related to only call behaviour.

Classification models DT RF MNL SVM-poly SVM- RBF

Parameters N = 4 N = 0 C = 1 c = 100, degree = 1 c =100, Gamma = 0.01

Travel and call behaviour

Filter 60.95 65.33 64.23 63.50 65.69

Wrapper 1.1. 60.58 1.2. 66.06 1.3. 68.98 1.4. 59.26 1.5. 56.57

1.6. All Variables 1.7. 59.12 1.8. 64.60 1.9. 63.50 56.93 1.10. 59.85

Call behaviour

Filter 58.76 62.77 62.77 59.85 60.58

Wrapper 59.85 63.50 65.69 59.49 58.39

All variables 56.57 62.04 60.58 57.30 59.85

aThe highest prediction accuracy for each model is in bold.

Table 4. Prediction accuracy of the individual classification models (%).a
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4.3. Results of fusion models

In this fusion process, the four individual classification models are, respectively, employed as

the fusion models to predict the activity types, while the results from each of the classifiers

with the best parameter performance shown in Table 4 are used as the predictors. The predic-

tion with the two best performances for each fusion model is presented in Table 5. The results

reveal that a fusion model does not necessarily outperform the individual models; the perfor-

mance depends on the choice of the selected individual classifiers as the predictors. For

instance, MNL obtains 68.98% accuracy as an individual classifier, while it achieves 69.71%

when used as the fusion model built on the integration of all the four individual models’

results. However, the accuracy drops to 61.68% when only DT and SVM-RBF are employed as

the predictors.

4.4. Enhancement algorithm

4.4.1. Transition matrix

Similar to the temporal variables, the transition matrix is also built for weekdays, weekend and

holidays separately as well as for different periods of a day. The identification of optimal cutting

points for the matrix is the same as the previously described method, except the time intervals.

For each potential dividing point, two intervals but three scenarios are obtained depending on

the time of the two concerned activities in the transition. The first and second scenarios occur

when both activities take place in the first interval or in the second. The third scenario is when

the first activity takes place in the first interval and second activity in the second interval. Given

the small size of the training set, only the first significant cutting point was identified, which is 18

pm. Under this time division, the largest difference in the distribution of activity transitions is

among the three scenarios: transitions within 0–17:59 pm or 18–23:59 pm, and transitions from

0–17:59 pm to 18–23:59 pm. Table 6 shows the transition matrix in the first scenario during

weekdays.

Predictor DT RF MNL SVM - RBF Accuracy

Fusion models

DT X X 69.71

DT X X 67.15

RF X X 68.98

RF X X 68.24

MNL X X X X 69.71

MNL X X 68.98

SVM-RBF X X X X 67.52

SVM-RBF X X 67.15

aThe rows represent the fusion models, and the columns include the individual classifiers and the prediction accuracy.

X indicates the corresponding individual models being chosen as the predictors.

Table 5. Prediction accuracy of fusion models (%).a
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As expected, for the probability Tr(aj|ai), the highest values are dominated by the transitions to

either home or work/school activities. With Qr(aj|ai), however, the dominance of these two

activities is reduced by their high frequencies, and transitions to other less represented activi-

ties are exposed. This can be manifested by the high transitions from home to non-work

activities and from social visit to second social visit locations.

4.4.2. Activity distribution at different time

The activity distribution is also differentiated between weekdays, weekend and holidays. The

weekday distribution at each hour P(aj|t) is shown in Figure 4(a) and the distribution of the

Transition probability Activity type Home Work/school Non-work Social visit Leisure

Tr Home 0.008 0.546 0.700 0.197 0.797

Work/school 0.883 0.328 0.300 0.701 0.153

Non-work 0.032 0.010 0.000 0.000 0.000

Social visit 0.017 0.081 0.000 0.080 0.051

Leisure 0.061 0.036 0.000 0.022 0.000

Transition probability Activity type Home Work/school Non-work Social visit Leisure

Qr Home 0.002 0.159 0.204 0.057 0.232

Work/school 0.060 0.022 0.020 0.047 0.010

Non-work 0.066 0.019 0.000 0.000 0.000

Social visit 0.023 0.114 0.000 0.113 0.072

Leisure 0.059 0.035 0.000 0.021 0.000

aThe row and column represent the current and previous activities respectively; the maximum probability for each

column is in bold.

Table 6. Transition matrix.a

Figure 4. Absolute activity distribution (a) and relative activity distribution at each hour (b).
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ratio between P(aj|t) and the overall probability of the activity P(aj) is depicted in Figure 4(b).

These two distributions show remarkable deviation: in Figure 4(a) either home or work/school

types dominate the activities, whereas in Figure 4(b) the most likely activity shifts across

various types as the day unfolds.

4.4.3. Selection of T1 and T2

Based on the previous results, two fusion models, including MNL built on all the four individ-

ual classifiers and RF on the combination between this model and MNL, are selected for the

enhancement algorithm. To decide the threshold T1, the correlation is examined between

different values of T1 and the prediction rates of the fusion models, as shown in Figure 5. It is

observed that for both models, when T1 is below the crossing point of 0.72 in Figure 5(a) and

0.8 in Figure 5(b), the number of false prediction is higher than that of the correct one. Thus,

0.72 and 0.8 are selected as T1 for MNL and RF, respectively. T2 is set as 0.9, above which the

prediction rate is 69.7 and 66.4% for these two models.

4.4.4. Enhancement results

Table 7 presents the prediction results by the enhancement algorithm (in the column ‘After’),

along with the results before the enhancement (in the column ‘Before’) as well as the difference

between these two prediction results (in the column ‘Difference’). Overall improvement of 4.4

and 7.6% for MNL and RF is achieved. The examination into the results across various

activities discloses that the enhancement algorithm particularly performs better on less repre-

sentative activity types, e.g. non-work obligatory, social visit and leisure activities. This could

be originated from the fact that the machine learning algorithms usually favour majority types

if the prediction accuracy is used as the evaluation criterion, while the enhancement algorithm

puts equal weights on all activity types of the dependent variable (call locations).

The effectiveness of each of the two enhancement methods is also investigated, by running the

RF fusion model using each of these methods independently to revise a weak prediction result.

Figure 5. Relation between the prediction and the probabilities from MNL (a) and RF (b) fusion models, respectively.
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The prediction rates of 73.7 and 75.2% were obtained for the transition probability-based and

prior probability-based enhancement methods, respectively. Due to the small size of the train-

ing set, many locations are labelled as one single known activity of a day, the sequential

information is thus not available on these days. With a large dataset, the transition matrix

would better represent typical activity and travel behaviour of users. This would lead to the

transition probability-based method and the enhancement algorithm as a whole bringing

greater improvement over the current experimental results.

5. Analysis on the prediction results

Table 8 presents the annotation results by the RF fusion model with the enhancement algo-

rithm, showing a large variation in the prediction accuracy across different activity types.

Home, work/school and non-work obligatory activities are better predictable, with the accu-

racy of 91.3, 79.8 and 78.1%, respectively. Social visit activities show a middle level of predict-

ability of 60.5%. By contrast, leisure activities are only 51.4% recognizable. Overall, prediction

accuracy of 76.6% is achieved. Despite the promising results, misclassification exists for each of

the activity types, prompting for further examination into the potential reasons for the errors.

(1) Home. Homes are featured with high visit frequencies and spatial-temporal regularities.

However, seven homes are misidentified, of which five have lower visit frequencies than 10%

on weekdays, i.e. less than 1 in 10 trips on weekdays ending at home. The unusually less

visited homes could be due to the fact that the corresponding users spend less time at home

and/or they make fewer calls than expected at home. This results in the home visit frequencies

less represented by their call records. Alternatively, some of the misclassified locations can be a

second home for users who already have a home at different locations. Two in these five users

have two labelled homes. While their second homes are occasionally accessed, their main

homes are routinely visited and correctly annotated. (2) Work/school. Like homes, work/school

locations are also characterized by a high level of routine visits, but these two types differ

regarding the time of the visits. While most of the trips to homes are at night and weekends,

trips to offices or schools occur during the daytime on weekdays. Of all the work/school

Fusion model MNL RF

Enhancement Before After Difference Before After Difference

Home 91.3 91.3 0 91.3 91.3 0

Work/school 80.9 82.0 1.1 74.2 79.8 5.6

Non-work 37.5 59.3 21.8 53.1 78.1 25.0

Visit 47.4 55.3 7.9 52.6 60.5 7.9

Leisure 45.7 48.6 2.9 37.1 51.4 14.3

Overall accuracy 69.7 74.1 4.4 69.0 76.6 7.6

Table 7. Prediction result comparison between before the enhancement algorithm and after that (%).
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locations, 10.1% are wrongly predicted as non-work obligatory or social visit activities if they

are accessed infrequently during weekdays. All the corresponding users work/study at multi-

ple places, and the misidentified locations are their additional work/school places. Another

10.1% are mistaken as homes, if they have high visit frequencies at weekend. For instance, one

of these users has two labelled work locations. They were visited at rates of 32% during

weekdays and 42% on Sunday, respectively. While the first one was correctly identified, the

second one was wrongly predicted as home. This suggests that the work regime plays an

important role in distinguishing work locations from homes. While most people work during

weekdays, certain minorities work on different shifts, especially to weekends or nights, gener-

ating distinct activity and travel patterns from the main stream of the population. (3) Non-

work obligatory. The activities have low visit frequencies and short duration. The misclassi-

fication of the activities can be partially attributed to a combination of heterogeneity within

this category. The various detailed types of the activities are likely performed at spatially

independent locations and temporally varied preferences. For instance, shopping is mostly

done in later time of the day than service or bringing/picking up activities. (4) Social visit. The

activities are profiled with a middle level of visit frequencies during weekdays. If the locations

are accessed less, they tend to be annotated as leisure or non-work obligatory activities; if

more, they are considered as home or work/school places. The limited predictability could be

caused by the underlying structure of an individual’s social network, in which various degrees

of relationship exist, ranging from closed one they visit routinely to the one they just meet

occasionally. This generates variations in spatial-temporal features of the locations. (5) Leisure.

Leisure activities are conducted in various places and at different time for an individual; they

exhibit the lowest level of regularities and thus are the most challengeable to annotate. Apart

from the spatial-temporal irregularities, the examination into two falsely predicted leisure

locations reveals additional causes for the misclassification. The first one has a visit frequency

of 36.3% in both the afternoon and evening on weekdays. It was the second most visited place

for the corresponding user who has accessed this place 170 times over 337 days, such that 1 in 2

days he/her was observed there. This location is originally labelled as a restaurant; however,

the call records suggest a high probability that he/her may work there instead of eating as a

customer. The second location was ranked as the most visited place for the concerned user. He/

she has in total conducted 383 visits over 442 days during both weekdays and weekends as

well as at night. Nearly three in 4 days, he/she made calls there. Furthermore, the user has five

Annotated activity Original activity

Home Work/school Non-work Social visit Leisure

Home 91.3 10.1 3.1 15.8 2.8

Work/school 1.2 79.8 9.3 7.9 14.3

Non-work 2.5 5.6 78.1 10.5 17.1

Social visit 3.8 4.5 6.2 60.5 14.3

Leisure 1.2 0 3.1 5.2 51.4

Table 8. Prediction results (%).
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locations collected in the training dataset, but none of which is labelled as home. This location

is documented as sports; however, for this particular user, it is likely that this place is a home

rather than a recreation site. While further investigation into the above two typical cases is

needed before any definite conclusions are drawn, they nevertheless illustrate that our anno-

tation method based on underlying activity and travel behaviour can effectively predict the

activities, which are tailored to each individual. A location may have a single or multiple

functions, but people visiting there could have different purposes. The match with geographic

information alone is not able to identify this distinction. We shall call the location annotation at

the individual level as micro-location-annotation.

6. Conclusions and future research

In this study, a cell phone location annotation method has been developed based on spatial-

temporal regularities as well as sequential information intrinsic to activity and travel behav-

iour. The method does not depend on additional sensors and geographic details. The data

requirement is simple and its collection cost is low. It is also generic to be transferable to other

areas. On top of that, the method is independent of precisely geometric positions of individ-

uals, thus considerably reducing privacy concerns.

Experiments on the annotation method using data collected from natural phone communica-

tion of users have achieved 76.6% prediction accuracy. With this probability, the activity

conducted at a location for a user can be predicted by the spatial-temporal features of the visits

disclosed by his/her call records. Furthermore, this study also shows the added value of the

integration between machine learning methods and underlying activity and travel behaviour

when annotating the location traces.

Nevertheless, despite the spatial-temporal regularities, activity locations still share commonal-

ities in these two dimensions at a certain degree. Activity and travel behaviour is not solely

decided by spatial-temporal elements, it is also affected by socio-economic conditions. The first

improvement in future research should thus take this general background information into

account. In particular, to address the potential causes for misclassifications of home and work/

school locations, the annotation should be combined with the information on the number of

home and work/school places of users as well as their work sectors and regimes. A broad

picture of users’ social networks, obtained from direct surveys and/or social networking sites,

would strengthen the prediction of social visit activities. For non-work obligatory and leisure

activities, the detailed types in each of these two categories should be handled separately, if a

sufficient size of training data for the detailed types is available. The second improvement lies

in finding an effective way of annotating locations, which are visited for multiple purposes for

a particular user. While this study links the most frequent activity to a location, it dismisses

additional activity types, which are performed by the user at different parts but within a same

cell. In the training dataset, 5% of all the locations are visited for multiple purposes.

Today when simple phones are still prevalent constituting nearly 85% of total global handsets

in use, this research makes undoubtedly an important contribution to the semantic explanation
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of the movement data. With the development of smart phones, the data from additional

sensors installed on the phones will provide a third possibility of improvement by integrating

the contextual information into the annotation process.
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