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Abstract

Bayesian network (BN) is a powerful mathematical tool for prediction and diagnosis
applications. A large Bayesian network can constitute many simple networks, which in
turn are constructed from simple graphs. A simple graph consists of one child node and
many parent nodes. The strength of each relationship between a child node and a parent
node is quantified by a weight and all relationships share the same semantics such as
prerequisite, diagnostic, and aggregation. The research focuses on converting graphic
relationships into conditional probabilities in order to construct a simple Bayesian net-
work from a graph. Diagnostic relationship is themain research object, in which sufficient
diagnostic proposition is proposed for validating diagnostic relationship. Relationship
conversion is adhered to logic gates such as AND, OR, and XOR, which are essential
features of the research.

Keywords: diagnostic relationship, Bayesian network, transformation coefficient

1. Introduction

Bayesian network (BN) is a directed acyclic graph (DAG) consists of a set of nodes and a set of

arcs. Each node is a random variable. Each arc represents a relationship between two nodes.

The strength of a relationship in a graph can be quantified by a number called weight. There are

some important relationships such as prerequisite, diagnostic, and aggregation. The difference

between BN and normal graph is that the strength of every relationship in BN is represented by

a conditional probability table (CPT) whose entries are conditional probabilities of a child node

given parent nodes. There are two main approaches to construct a BN, which are as follows

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



• The first approach aims to learn BN from training data by learning machine algorithms.

• The second approach is that experts define some graph patterns according to specific rela-

tionships and then, BN is constructed based on such patterns along with determined CPTs.

This research focuses on the second approach in which relationships are converted into CPTs.

Essentially, relationship conversion aims to determine conditional probabilities based on

weights and meanings of relationships. We will have different ways to convert graphic weights

into CPTs for different relationships. It is impossible to convert all relationships but some of

them such as diagnostic, aggregation, and prerequisite are mandatory ones that we must

specify as computable CPTs of BN. Especially, these relationships are adhered to logic X-gates

[1] such as AND-gate, OR-gate, and SIGMA-gate. The X-gate inference in this research is

derived and inspired from noisy OR-gate described in the book “Learning Bayesian Networks”

Neapolitan ([2], pp. 157–159). Díez and Druzdzel [3] also researched OR/MAX, AND/MIN,

and noisy XOR inferences but they focused on canonical models, deterministic models, and ICI

models whereas I focused on logic gate and graphic relationships. So, their research is different

from mine but we share the same result that is AND-gate model. In general, my research

focuses on applied probability adhered to Bayesian network, logic gates, and Bayesian user

modeling [4]. The scientific results are shared with Millán and Pérez-de-la-Cruz [4].

Factor graph [5] represents factorization of a global function into many partial functions. If

joint distribution of BN is considered as the global function and CPTs are considered as partial

functions, the sumproduct algorithm [6] of factor graph is applied into calculating posterior

probabilities of variables in BN. Pearl’s propagation algorithm [7] is very successful in BN

inference. The application of factor graph into BN is only realized if all CPT (s) of BN are

already determined whereas this research focuses on defining such CPTs firstly. I did not use

factor graph for constructing BN. The concept “X-gate inference” only implies how to convert

simple graph into BN. However, the arrange sum with a fixed variable mentioned in this

research is the “not-sum” ([6], p. 499) of factor graph. Essentially, X-gate probability shown in

Eq. (10) is as same as λ message in the Pearl’s algorithm ([6], p. 518) but I use the most basic

way to prove the X-gate probability.

As default, the research is applied in learning context in which BN is used to assess students’

knowledge. Evidences are tests, exams, exercises, etc. and hypotheses are learning concepts,

knowledge items, etc. Note that diagnostic relationship is very important to Bayesian evalua-

tion in learning context because it is used to evaluate student’s mastery of concepts (knowledge

items) over entire BN. Now, we start relationship conversion with a research on diagnostic

relationship in the next section.

2. Diagnostic relationship

In some opinions like mine, the diagnostic relationship should be from hypothesis to evidence.

For example, disease is hypothesis and symptom is evidence. The symptom must be condi-

tionally dependent on disease. Given a symptom, calculating the posterior probability of
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disease is essentially to diagnose likelihood of such disease ([8], p. 1666). Inversely, the arc from

evidence to hypothesis implies prediction where evidence and hypothesis represent observa-

tion and event, respectively. Given an observation, calculating the posterior probability of the

event is essentially to predict/assert such event ([8], p. 1666). Figure 1 shows diagnosis and

prediction.

The weight w of the relationship between X and D is 1. Figure 1 depicts simplest graph with

two random variables. We need to convert diagnostic relationship into conditional probabili-

ties in order to construct a simplest BN from the simplest graph. Note that hypothesis is binary

but evidence can be numerical. In learning context, evidence D can be test, exam, exercise, etc.

The conditional probability of D given X (likelihood function) is P(D|X). The posterior proba-

bility of X is P(X|D), which is used to evaluate student’s mastery over concept (hypothesis) X

given evidence D. Eq. (1) specifies CPT of D when D is binary (0 and 1)

PðDjXÞ ¼
D if X ¼ 1

1�D if X ¼ 0

�

(1)

Eq (1) is our first relationship conversion. It implies

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ ¼ Dþ 1�D ¼ 1

Evidence D can be used to diagnose hypothesis X if the so-called sufficient diagnostic proposition

is satisfied, as seen in Table 1.

The concept of sufficient evidence is borrowed from the concept of sufficient statistics and it is

inspired from equivalence of variables T and T’ in the research ([4], pp. 292-295). The proposi-

tion can be restated that evidence D is only used to assess hypotheses if it is sufficient evidence.

As a convention, the proposition is called diagnostic condition and hypotheses have uniform

distribution. The assumption of hypothetic uniform distribution (P(X = 1) = P(X = 0)) implies

that we cannot assert whether or not given hypothesis is true before we observe its evidence.

In learning context, D can be totally used to assess student’s mastery of X if diagnostic

condition is satisfied. Derived from such condition, Eq. (2) specifies transformation coefficient

k given uniform distribution of X.

Figure 1. Diagnosis and prediction with hypothesis X and evidence D.
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k ¼
PðXjDÞ

PðDjXÞ
(2)

We need to prove that Eq. (1) satisfies diagnostic condition. Suppose the prior probability of X

is uniform.

PðX ¼ 0Þ ¼ PðX ¼ 1Þ

we have

PðXjDÞ ¼
PðDjXÞPðXÞ

PðDÞ
¼

PðDjXÞPðXÞ

PðDjX ¼ 0ÞPðX ¼ 0Þ þ PðDjX ¼ 1ÞPðX ¼ 1Þ

ðdue to Bayes’ruleÞ

¼
PðDjXÞPðXÞ

PðXÞ
�

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ
�

�

due to PðX ¼ 0Þ ¼ PðX ¼ 1Þ
�

¼
PðDjXÞ

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ
¼ 1 � PðDjXÞ

�

due to PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ ¼ 1
�

■

It is easy to infer that the transformation coefficient k is 1, if D is binary. In practice, evidence D

is often a test whose grade ranges within an interval {0, 1, 2,…, η}. Eq. (3) specifies CPT of D in

this case

PðDjXÞ ¼

D

S
if X ¼ 1

η

S
�
D

S
if X ¼ 0

8

>

>

<

>

>

:

(3)

Where

D∈ f0, 1, 2,…, ηg

S ¼
X

n

D¼0

D ¼
ηðηþ 1Þ

2

D is equivalent to X in diagnostic relationship if P(X|D) = kP(D|X) given uniform distribution of X and the transformation

coefficient k is independent from D. In other words, k is constant with regards to D and so D is called sufficient evidence.

Table 1. Sufficient diagnostic proposition.
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As a convention, PðDjXÞ ¼ 0, ∀D ∉ f0, 1, 2,…, ηg. Eq. (3) implies that if student has mastered

concept (X = 1), the probability that she/he completes the exercise/test D is proportional to her/

his mark on D PðDjXÞ ¼ D
S

� �

. We also have

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ ¼
D

S
þ
η�D

S
¼
η

S
¼

2

ðηþ 1Þ

X

η

D¼0

PðDjX ¼ 1Þ ¼
X

η

D¼0

D

S
¼

X

η

D¼0
D

S
¼

S

S
¼ 1

X

η

D¼0

PðDjX ¼ 0Þ ¼
X

η

D¼0

η�D

S
¼

X

η

D¼0
ðη�DÞ

S
¼

X

η

D¼0
η�

X

η

D¼0
D

S
¼
ηðηþ 1Þ � S

S
¼

2S� S

S
¼ 1

We need to prove that Eq. (3) satisfies diagnostic condition. Suppose the prior probability of X

is uniform.

PðX ¼ 0Þ ¼ PðX ¼ 1Þ

The assumption of prior uniform distribution of X implies that we do not determine if student

has mastered X yet. Similarly, we have

PðXjDÞ ¼
PðDjXÞPðXÞ

PðDÞ
¼

PðDjXÞ

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ
¼
ηþ 1

2
PðDjXÞ ■

So, the transformation coefficient k is ηþ1
2 if D ranges in {0, 1, 2,…, η}.

In the most general case, discrete evidence D ranges within an arbitrary integer interval

fa, aþ 1, aþ 2,…, bg. In other words, D is bounded integer variable whose lower bound and

upper bound are a and b, respectively. Eq. (4) specifies CPT of D, where D∈ fa, aþ 1, aþ 2,…, bg.

PðDjXÞ ¼

D

S
if X ¼ 1

bþ a

S
�
D

S
if X ¼ 0

8

>

>

<

>

>

:

(4)

Where

D∈ {a, aþ 1, aþ 2,…, b}

S ¼ aþ ðaþ 1Þ þ ðaþ 2Þ þ…þ b ¼
ðbþ aÞðb� aþ 1Þ

2

Note, PðDjXÞ ¼ 0, ∀D ∉ fa, aþ 1, aþ 2,…, bg. According to the diagnostic condition, we need

to prove the equality PðXjDÞ ¼ kPðDjXÞ, where

k ¼
b� aþ 1

2

Similarly, we have
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PðXjDÞ ¼
PðDjXÞPðXÞ

PðDÞ
¼

PðDjXÞ

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ
¼

b� aþ 1

2
PðDjXÞ ■

If evidence D is continuous in the real interval [a, b] with note that a and b are real numbers,

Eq. (5) specifies probability density function (PDF) of continuous evidence D∈ ½a, b�. The PDF

pðDjXÞ replaces CPT in case of continuous random variable.

pðDjXÞ ¼

2D

b2 � a2
if X ¼ 1

2

b� a
�

2D

b2 � a2
if X ¼ 0

8

>

>

>

<

>

>

>

:

where

D∈ ½a, b� where a and b are real numbers

S ¼

ð

b

a

DdD ¼
b2 � a2

2
(5)

As a convention, [a, b] is called domain of continuous evidence, which can be replaced by

open or half-open intervals such as (a, b), (a, b], and [a, b). Of course we have pðDjXÞ ¼ 0,

∀D ∉ ½a, b�. In learning context, evidence D is often a test whose grade ranges within real

interval [a, b].

Functions p(D|X = 1) and p(D|X = 0) are valid PDFs due to

ð

D

pðDjX ¼ 1ÞdD ¼

ð

b

a

2D

b2 � a2
dD ¼

1

b2 � a2

ð

b

a

2DdD ¼ 1

ð

D

pðDjX ¼ 0ÞdD ¼
2

b� a

ð

b

a

dD�
1

b2 � a2

ð

b

a

2DdD ¼ 1:

According to the diagnostic condition, we need to prove the equality

PðXjDÞ ¼ kpðDjXÞ

where,

k ¼
b� a

2

When D is continuous, its probability is calculated in ε-vicinity where ε is very small number.

As usual, ε is bias ifD is measure values produced from equipment. The probability ofD given

X, where D + ε∈ [a, b] and D – ε∈ [a, b] is
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PðDjXÞ ¼

ð

Dþε

D�ε

pðDjXÞdD ¼

ð

Dþε

D�ε

2D

b2 � a2
dD if X ¼ 1

ð

Dþε

D�ε

2

b� a
�

2D

b2 � a2

� �

dD if X ¼ 0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

¼

4εD

b2 � a2
if X ¼ 1

4ε

b� a
�

4εD

b2 � a2
if X ¼ 0

¼ 2εpðDjXÞ

8

>

>

<

>

>

:

In fact, we have

PðXjDÞ ¼
PðDjXÞPðXÞ

PðDjX ¼ 0ÞPðX ¼ 0Þ þ PðDjX ¼ 1ÞPðX ¼ 1Þ
¼

PðDjXÞ

PðDjX ¼ 0Þ þ PðDjX ¼ 1Þ
�

due to Bayes
0

rule and the assumption PðX ¼ 0Þ ¼ PðX ¼ 1Þ
�

¼
b� a

4ε
PðDjXÞ ¼ kpðDjXÞ ■

In general, Eq. (6) summarizes CPT of evidence of single diagnostic relationship.

PðDjXÞ ¼

D

S
if X ¼ 1

M

S
�
D

S
if X ¼ 0

8

>

<

>

:

k ¼
N

2

Where,

N ¼

2 if D∈ f0, 1g

ηþ 1 if D∈ f0, 1, 2,…, ηg

b� aþ 1 if D∈ fa, aþ 1, aþ 2,…, bg

b� a if D continuous and D∈ ½a, b�

8

>

>

>

>

<

>

>

>

>

:

M ¼

1 if D∈ f0, 1g

η if D∈ f0, 1, 2,…, ηg

bþ a if D∈ fa, aþ 1, aþ 2,…, bg

bþ a if D continuous and D∈ ½a, b�

8

>

>

>

>

<

>

>

>

>

:

S ¼
X

D

D ¼
NM

2
¼

1 if D∈ f0, 1g

ηðηþ 1Þ

2
if D∈ f0, 1, 2,…, ηg

ðbþ aÞðb� aþ 1Þ

2
if D∈ fa, aþ 1, aþ 2,…, bg

b2 � a2

2
if D continuous and D∈ ½a, b�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(6)
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In general, if the conditional probability P(D|X) is specified by Eq. (6), the diagnostic condition

will be satisfied. Note that the CPT P(D|X) is the PDF p(D|X) in case of continuous evidence.

The diagnostic relationship will be extended with more than one hypothesis. The next section

will mention how to determine CPTs of a simple graph with one child node and many parent

nodes based on X-gate inferences.

3. X-gate inferences

Given a simple graph consisting of one child variable Y and n parent variables Xi, as shown in

Figure 2, each relationship from Xi to Y is quantified by normalized weight wi where 0 ≤ wi ≤ 1.

A large graph is an integration of many simple graphs. Figure 2 shows the DAG of a simple

BN. As aforementioned, the essence of constructing simple BN is to convert graphic relation-

ships of simple graph into CPTs of simple BN.

Child variable Y is called target and parent variables Xis are called sources. Especially, these

relationships are adhered to X-gates such as AND-gate, OR-gate, and SIGMA-gate. These

gates are originated from logic gate [1]. For instance, AND-gate and OR-gate represent prereq-

uisite relationship. SIGMA-gate represents aggregation relationship. Therefore, relationship

conversion is to determined X-gate inference. The simple graph shown in Figure 2 is also

called X-gate graph or X-gate network. Please distinguish the letter “X” in the term “X-gate

inference” which implies logic operators (AND, OR, XOR, etc.) from the “variable X”.

All variables are binary and they represent events. The probability P(X) indicates event X

occurs. Thus, P(X) implicates P(X = 1) and P(not(X)) implicates P(X = 0). Eq. (7) specifies the

simple NOT-gate inference.

Figure 2. Simple graph or simple network.

Bayesian Inference104



P
�

notðXÞ
�

¼ PðXÞ ¼ PðX ¼ 0Þ ¼ 1� PðX ¼ 1Þ ¼ 1� PðXÞ

P
�

not
�

notðXÞ
��

¼ PðXÞ
(7)

X-gate inference is based on three assumptions mentioned in Ref. ([2], p. 157), which are as

follows

• X-gate inhibition: Given a relationship from source Xi to target Y, there is a factor Ii that

inhibits Xi from being integrated into Y. Factor Ii is called inhibition of Xi. That the

inhibition Ii is turned off is prerequisite of Xi integrated into Y.

• Inhibition independence: Inhibitions are mutually independent. For example, inhibition I1 of

X1 is independent from inhibition I2 of X2.

• Accountability: X-gate network is established by accountable variables Ai for Xi and Ii. Each

X-gate inference owns particular combination of Ais.

Figure 3 shows the extended X-gate network with accountable variables Ais ([2], p. 158).

The strength of each relationship from source Xi to target Y is quantified by a weight 0 ≤ wi ≤ 1.

According to the assumption of inhibition, probability of Ii = OFF is pi, which is set to be the

weight wi.

pi ¼ wi

If notation wi is used, we focus on the strength of relationship. If notation pi is used, we focus

on probability of OFF inhibition. In probabilistic inference, pi is also prior probability of Xi = 1.

However, we will assume each Xi has uniform distribution later on. Eq. (8) specifies probabil-

ities of inhibitions Iis and accountable variables Ais.

Figure 3. Extended X-gate network with accountable variables Ais.
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PðIi ¼ OFFÞ ¼ pi ¼ wi

PðIi ¼ ONÞ ¼ 1� pi ¼ 1� wi

PðAi ¼ ONjXi ¼ 1, Ii ¼ OFFÞ ¼ 1

PðAi ¼ ONjXi ¼ 1, Ii ¼ ONÞ ¼ 0

PðAi ¼ ONjXi ¼ 0, Ii ¼ OFFÞ ¼ 0

PðAi ¼ ONjXi ¼ 0, Ii ¼ ONÞ ¼ 0

PðAi ¼ OFFjXi ¼ 1, Ii ¼ OFFÞ ¼ 0

PðAi ¼ OFFjXi ¼ 1, Ii ¼ ONÞ ¼ 1

PðAi ¼ OFFjXi ¼ 0, Ii ¼ OFFÞ ¼ 1

PðAi ¼ OFFjXi ¼ 0, Ii ¼ ONÞ ¼ 1

(8)

According to Eq. (8), given probability P(Ai=ON | Xi=1, Ii=OFF), it is assured 100% confident

that accountable variables Ai is turned on if source Xi is 1 and inhibition Ii is turned off. Eq. (9)

specifies conditional probability of accountable variables Ai (s) given Xi (s), which is corollary

of Eq. (8).

PðAi ¼ ONjXi ¼ 1Þ ¼ pi ¼ wi

PðAi ¼ ONjXi ¼ 0Þ ¼ 0

PðAi ¼ OFFjXi ¼ 1Þ ¼ 1� pi ¼ 1� wi

PðAi ¼ OFFjXi ¼ 0Þ ¼ 1

(9)

Appendix A1 is the proof of Eq. (9). As a definition, the set of all Xis is complete if and only if

PðX1 ∪ X2 ∪⋯∪ XnÞ ¼ PðΩÞ ¼
Xn

i¼1

wi ¼ 1

The set of all Xis is mutually exclusive if and only if

Xi ∩ Xj ¼ ∅, ∀i 6¼ j

For each Xi, there is only one Ai and vice versa, which establishes a bijection between Xis and

Ais. Obviously, the fact that the set of all Xis is complete is equivalent to the fact that the set of

all Ai (s) is complete. We will prove by contradiction that “the fact that the set of all Xi (s) is

mutually exclusive is equivalent to the fact that the set of all Ai (s) is mutually exclusive.”

Suppose Xi ∩ Xj ¼ ∅,∀i 6¼ j but ∃i 6¼ j: Ai ∩ Aj ¼ B 6¼ ∅. Let B�1 6¼ ∅ be preimage of B. Due to

B ⊆ Ai and B ⊆ Aj, we have B�1
⊆ Xi and B�1

⊆ Xj, which causes that Xi ∩ Xj ¼ B�1 6¼ ∅. There

is a contradiction and so we have

Xi ∩ Xj ¼ ∅, ∀i 6¼ j ) Ai ∩ Aj ¼ ∅, ∀i 6¼ j

By similar proof, we have
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Ai ∩ Aj ¼ ∅, ∀i 6¼ j ) Xi ∩ Xj ¼ ∅, ∀i 6¼ j ■

The extended X-gate network shown in Figure 3 is interpretation of simple network shown

in Figure 2. Specifying CPT of the simple network is to determine the conditional probability

P(Y = 1 | X1, X2,…, Xn) based on extended X-gate network. The X-gate inference is represented

by such probability P(Y = 1 | X1, X2,…, Xn) specified by Eq. (10) ([2], p. 159).

PðYjX1, X2,…, XnÞ ¼
X

A1 ,A2,…,An
PðYjA1, A2,…, AnÞ

Yn

i¼1
PðAijXiÞ (10)

Appendix A2 is the proof of Eq. (10). It is necessary to make some mathematical notations

because Eq. (10) is complicated, which is relevant to arrangements of Xi (s). Given the set

Ω = {X1, X2,…, Xn} where all variables are binary, Table 2 specifies binary arrangements of Ω.

Given Ω = {X1, X2,…, Xn} where |Ω| = n is cardinality of Ω.

Let a(Ω) be an arrangement ofΩwhich is a set of n instances {X1=x1, X2=x2,…, Xn=xn} where xi is 1 or 0. The number of all a

(Ω) is 2|Ω|. For instance, given Ω = {X1, X2}, there are 2
2=4 arrangements as follows:

aðΩÞ ¼ fX1 ¼ 1, X2 ¼ 1g, aðΩÞ ¼ fX1 ¼ 1, X2 ¼ 0g, aðΩÞ ¼ fX1 ¼ 0, X2 ¼ 1g, aðΩÞ

¼ fX1 ¼ 0, X2 ¼ 0g:

Let a(Ω:{Xi}) be the arrangement of Ω with fixed Xi. The number of all a(Ω:{Xi}) is 2
|Ω|�1. Similarly, for instance, a(Ω:{X1,

X2, X3}) is an arrangement of Ω with fixed X1, X2, X3. The number of all a(Ω:{X1, X2, X3}) is 2
|Ω|�3.

Let c(Ω) and c(Ω:{Xi}) be the number of arrangements a(Ω) and a(Ω:{Xi}), respectively. Such c(Ω) and c(Ω:{Xi}) are called

arrangement counters. As usual, counters c(Ω) and c(Ω:{Xi}) are equal to 2|Ω| and 2|Ω|�1, respectively but they will vary

according to specific cases.

Let
X

a
F
�

aðΩÞ
�

and
Y

a
F
�

aðΩÞ
�

denote sum and product of values generated from function F acting on every a(Ω). The

number of arrangements on which F acts is c(Ω).

Let x denote the X-gate operator, for instance, x = ⊙ for AND-gate, x =⊕ for OR-gate, x = not ⊙ for NAND-gate, x = not⊕

for NOR-gate, x =⊗ for XOR-gate, x = not⊗ for XNOR-gate, x = ⊎ for U-gate, x ¼ þ for SIGMA-gate. Given an x-operator,

let s(Ω:{Xi}) and s(Ω) be sum of all PðX1xX2x…xXnÞ through every arrangement of Ω with and without fixed Xi,

respectively.

sðΩÞ ¼
X

a

P
�

X1xX2x…xXnjaðΩÞ
�

¼
X

a

P
�

Y ¼ 1jaðΩÞ
�

sðΩ : fXigÞ ¼
X

a

P
�

X1xX2x…xXnjaðΩ : fXigÞ
�

¼
X

a

P
�

Y ¼ 1jaðΩ : fXigÞ
�

For example, s(Ω) and s(Ω:{Xi}) for OR-gate are:

sðΩÞ ¼
X

a

P
�

X1 ⊕X2 ⊕…⊕XnjaðΩÞ
�

sðΩ : fXigÞ ¼
X

a

P
�

X1 ⊕X2 ⊕…⊕XnjaðΩ : fXigÞ
�

Such s(Ω) and s(Ω:{Xi}) are called arrangement sum. They are acting function F.

Note that Ω can be any set of binary variables.

Table 2. Binary arrangements.
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It is not easy to produce all binary arrangements ofΩ. Table 3 shows a code snippet written by

Java programming language for producing such all arrangements.

Each element of the list “arrangements” is a binary arrangement a(Ω) presented by an array of

bits (0 and 1). The method “create(int[] a, int i)”which is recursive method, is the main one that

generates arrangements. The method call “ArrangementGenerator.parse(2, n)” will list all possi-

ble binary arrangements.

Eq. (11) specifies the connection between s(Ω:{Xi = 1}) and s(Ω:{Xi = 0}), between c(Ω:{Xi = 1})

and c(Ω:{Xi = 0}).

sðΩ : fXi ¼ 1gÞ þ sðΩ : fXi ¼ 0gÞ ¼ sðΩÞ

cðΩ : fXi ¼ 1gÞ þ cðΩ : fXi ¼ 0gÞ ¼ cðΩÞ
(11)

It is easy to draw Eq. (11) when the set of all arrangements a(Ω:{Xi = 1) is complement of the set

of all arrangements a(Ω:{Xi = 0).

Let K be a set of Xis whose values are 1 and let L be a set of Xis whose values are 0. K and L are

mutually complementary. Eq. (12) determines sets K and L.

K ¼ fi : Xi ¼ 1g

L ¼ fi : Xi ¼ 0g

K ∩ L ¼ ∅

K∪ L ¼ {1, 2,…, n}

8

>

>

>

>

<

>

>

>

>

:

(12)

The AND-gate inference represents prerequisite relationship satisfying AND-gate condition

specified by Eq. (13).

PðY ¼ 1jAi ¼ OFF for some iÞ ¼ 0 (13)

From Eq. (10), we have

PðY ¼ 1jX1, X2,…, XnÞ ¼
X

A1,A2,…,An

PðY ¼ 1jA1, A2,…, AnÞ
Y

n

i¼1

PðAijXiÞ

¼
Y

n

i¼1

PðAi ¼ ONjXiÞ

�

Due to PðY ¼ 1jAi ¼ OFF for some iÞ ¼ 0
�

¼
�

Y

i∈K

PðAi ¼ ONjXi ¼ 1Þ
��

Y

i∉K

PðAi ¼ ONjXi ¼ 0Þ
�

¼
Y

i∈K

pi

 !

Y

i∉K

0

 !

¼

Y

n

i¼1

pi if all XiðsÞ are 1

0 if there exists at least one Xi ¼ 0

8

<

:

(Due to Eq. (9))

Bayesian Inference108



In general, Eq. (14) specifies AND-gate inference.

PðX1⊙X2⊙…⊙XnÞ ¼ PðY ¼ 1jX1, X2,…, XnÞ ¼

Y

n

i¼1

pi if all XiðsÞ are 1

0 if there exists at least one Xi ¼ 0

8

>

<

>

:

PðY ¼ 0jX1, X2,…, XnÞ ¼
1�

Y

n

i¼1

pi if all XiðsÞ are 1

1 if there exists at least one Xi ¼ 0

8

>

<

>

:

(14)

The AND-gate inference was also described in ([3], p. 33). Eq. (14) varies according to two

cases whose arrangement counters are listed as follows

public class ArrangementGenerator {

private ArrayList<int[]> arrangements;

private int n;

private int r;

private ArrangementGenerator(int n, int r) {

this.n = n;

this.r = r;

this.arrangements = new ArrayList();

}

private void create(int[] a, int i) {

for(int j = 0; j < n; j++) {

a[i] = j;

if(i < r - 1)

create(a, i + 1);

else if(i == r -1) {

int[] b = new int[a.length];

for(int k = 0; k < a.length; k++) b[k] = a[k];

arrangements.add(b);

}

}

}

public int[] get(int i) {

return arrangements.get(i);

}

public long size() {

return arrangements.size();

}

public static ArrangementGenerator parse(int n, int r) {

ArrangementGenerator arr =

new ArrangementGenerator(n, r);

int[] a = new int[r];

for(int i=0; i<r; i++) a[i] = -1;

arr.create(a, 0);

return arr;

}

}

Table 3. Code snippet generating all binary arrangements.
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L ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 1, cðΩ : fXi ¼ 0gÞ ¼ 0, cðΩÞ ¼ 1:

L 6¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 2n�1 � 1, cðΩ : fXi ¼ 0gÞ ¼ 2n�1, cðΩÞ ¼ 2n � 1:

The OR-gate inference represents prerequisite relationship satisfying OR-gate condition spec-

ified by Eq. (15) ([2], p. 157).

PðY ¼ 1jAi ¼ ON for some iÞ ¼ 1 (15)

The OR-gate condition implies

PðY ¼ 0jAi ¼ ON for some iÞ ¼ 0

From Eq. (10), we have ([2], p. 159)

PðY ¼ 0jX1, X2,…, XnÞ ¼
X

A1,A2,…,An

PðY ¼ 1jA1, A2,…, AnÞ
Y

n

i¼1

PðAijXiÞ

¼
Y

n

i¼1

PðAi ¼ OFFjXiÞ

�

due to PðY ¼ 1jAi ¼ ON for some iÞ ¼ 0
�

¼
Y

i∈K

PðAi ¼ OFFjXi ¼ 1Þ

 !

Y

i∉K

PðAi ¼ OFFjXi ¼ 0Þ

 !

¼
Y

i∈K

ð1� piÞ

 !

Y

i∉K

1

 !

¼

Y

i∈K

ð1� piÞif K 6¼ ∅

1 if K ¼ ∅

8

<

:

(Due to Eq. (9))

In general, Eq. (16) specifies OR-gate inference.

PðX1 ⊕X2 ⊕…⊕XnÞ ¼ 1� PðY ¼ 0jX1, X2,…, XnÞ ¼
1�

Y

i∈K

ð1� piÞ if K 6¼ ∅

0 if K ¼ ∅

8

<

:

PðY ¼ 0jX1, X2,…, XnÞ ¼

Y

i∈K

ð1� piÞ if K 6¼ ∅

1 if K ¼ ∅

8

<

:

(16)

where K is the set of Xis whose values are 1. The OR-gate inference was mentioned in Refs. ([2],

p. 158) and ([3], p. 20). Eq. (16) varies according to two cases whose arrangement counters are

listed as follows
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K 6¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 2n�1, cðΩ : fXi ¼ 0gÞ ¼ 2n�1 � 1, cðΩÞ ¼ 2n � 1:

K ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 0, cðΩ : fXi ¼ 0gÞ ¼ 1, cðΩÞ ¼ 1:

According to De Morgan’s rule with regard to AND-gate and OR-gate, we have

P
�

notðX1⊙X2⊙…⊙XnÞ
�

¼ P
��

notðX1Þ
�

⊕

�

notðX2Þ
�

⊕…⊕

�

notðXnÞ
��

¼
1�

Y

i∈L

�

1� ð1� piÞ
�

if L 6¼ ∅

0 if L ¼ ∅

8

<

:

(Due to Eq. (16))

According to Eq. (14), we also have

P
�

notðX1 ⊕X2 ⊕…⊕XnÞ
�

¼ P
��

notðX1Þ
�

⊙

�

notðX2Þ
�

⊙…⊙

�

notðXnÞ
��

¼

Y

n

i¼1

P
�

notðXiÞ
�

if all not ðXiÞðsÞ are 1

0 if there exists at least one not ðXiÞ ¼ 0

8

>

>

<

>

>

:

¼

Y

n

i¼1

ð1� piÞ if all XiðsÞ are 0

0 if there exists at least one Xi ¼ 1

8

>

<

>

:

In general, Eq. (17) specifies NAND-gate inference and NOR-gate inference derived from

AND-gate and OR-gate

P
�

notðX1⊙X2⊙…⊙XnÞ
�

¼

1�
Y

i∈L

pi if L 6¼ ∅

0 if L ¼ ∅

8

>

<

>

:

P
�

notðX1 ⊕X2 ⊕…⊕XnÞ
�

¼

Y

n

i¼1

qi if K ¼ ∅

0 if K 6¼ ∅

8

>

>

<

>

>

:

(17)

where K and L are the sets of Xis whose values are 1 and 0, respectively.

Suppose the number of sources Xis is even. Let O be the set of Xis whose indices are odd. Let O1

and O2 be subsets of O, in which all Xis are 1 and 0, respectively. Let E be the set of Xis whose

indices are even. Let E1 and E2 be the subsets of E, in which all Xis are 1 and 0, respectively.
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E ¼ f2, 4, 6,…, ng

E1 ⊆ E

E2 ⊆ E

E1∪ E2 ¼ E

E1 ∩ E2 ¼ ∅

Xi ¼ 1, ∀i∈E1

Xi ¼ 0, ∀i∈E2

and

O ¼ f1, 3, 5,…, n� 1g

O1 ⊆ O

O2 ⊆ O

O1∪ O2 ¼ O

O1 ∩ O2 ¼ ∅

Xi ¼ 1, ∀i∈O1

Xi ¼ 0, ∀i∈O2

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Thus, O1 and E1 are the subsets of K. Sources Xis and target Y follow XOR-gate if one of two

XOR-gate conditions specified by Eq. (18) is satisfied.

P Y ¼ 1

	

	

	

	

	

Ai ¼ON for i∈O

Ai ¼OFF for i ∉O

( ) !

¼ PðY ¼ 1jA1 ¼ON,A2 ¼OFF,…,An�1 ¼ON,An ¼OFFÞ ¼ 1

P Y ¼ 1

	

	

	

	

	

Ai ¼ON for i∈E

Ai ¼OFF for i ∉ E

( ) !

¼ PðY ¼ 1jA1 ¼OFF,A2 ¼ON,…,An�1 ¼OFF,An ¼ONÞ ¼ 1

(18)

From Eq. (10), we have

PðY ¼ 1jX1, X2,…, XnÞ ¼
X

A1,A2,…,An

PðY ¼ 1jA1, A2,…, AnÞ
Y

n

i¼1

PðAijXiÞ

If both XOR-gate conditions are not satisfied then,

PðY ¼ 1jX1, X2,…, XnÞ ¼ 0

If the first XOR-gate condition is satisfied, we have

PðY ¼ 1jX1, X2,…, XnÞ

¼ PðY ¼ 1jA1 ¼ ON,A2 ¼ OFF,…, An�1 ¼ ON,An ¼ OFFÞ
Y

n

i¼1

PðAijXiÞ

¼
Y

i∈O

PðAi ¼ ONjXiÞ

 !

Y

i∈E

PðAi ¼ OFFjXiÞ

 !

We have

Y

i∈O

PðAi ¼ ONjXiÞ

¼
Y

i∈O1

PðAi ¼ ONjXi ¼ 1Þ

 !

�
Y

i∈O2

PðAi ¼ ONjXi ¼ 0Þ

 !

¼
Y

i∈O1

pi

 !

�
Y

i∈O2

0

 !

¼

Y

i∈O1

pi if O2 ¼ ∅

0 if O2 6¼ ∅

8

<

:
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(Due to Eq. (9))

We also have

Y

i∈E

PðAi ¼ OFFjXiÞ

¼
Y

i∈E1

PðAi ¼ OFFjXi ¼ 1Þ

 !

�
Y

i∈E2

PðAi ¼ OFFjXi ¼ 0Þ

 !

¼
Y

i∈E1

ð1� piÞ

 !

Y

i∈E2

1

 !

¼

Y

i∈E1

ð1� piÞ if E1 6¼ ∅

1 if E1 ¼ ∅

8

<

:

(Due to Eq. (9))

Given the first XOR-gate condition, it implies

PðY ¼ 1jX1, X2,…, XnÞ ¼
Y

i∈O

PðAi ¼ ONjXiÞ

 !

Y

i∈E

PðAi ¼ OFFjXiÞ

 !

¼

Y

i∈O1

pi

 !

Y

i∈E1

ð1� piÞ

 !

if O2 ¼ ∅ and E1 6¼ ∅

Y

i∈O1

piif O2 ¼ ∅ and E1 ¼ ∅

0 if O2 6¼ ∅

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Similarly, given the second XOR-gate condition, we have

PðY ¼ 1jX1, X2,…, XnÞ ¼
Y

i∈E

PðAi ¼ ONjXiÞ

 !

Y

i∈O

PðAi ¼ OFFjXiÞ

 !

¼

Y

i∈E1

pi

 !

Y

i∈O1

ð1� piÞ

 !

if E2 ¼ ∅ and O1 6¼ ∅

Y

i∈E1

pi if E2 ¼ ∅ and O1 ¼ ∅

0 if E2 6¼ ∅

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

If one of XOR-gate conditions is satisfied then,

PðY ¼ 1jX1, X2,…, XnÞ

¼
�

Y

i∈O

PðAi ¼ ONjXiÞ
��

Y

i∈E

PðAi ¼ OFFjXiÞ
�

þ
�

Y

i∈E

PðAi ¼ ONjXiÞ
��

Y

i∈O

PðAi ¼ OFFjXiÞ
�

This implies Eq. (19) to specify XOR-gate inference.
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PðX1 ⊗X2 ⊗…⊗XnÞ ¼ PðY ¼ 1jX1, X2,…, XnÞ

¼

Y

i∈O1

pi

 !

Y

i∈E1

ð1� piÞ

 !

þ
Y

i∈E1

pi

 !

Y

i∈O1

ð1� piÞ

 !

if O2 ¼ ∅ and E2 ¼ ∅

Y

i∈O1

pi

 !

Y

i∈E1

ð1� piÞ

 !

if O2 ¼ ∅ and E1 6¼ ∅ and E2 6¼ ∅

Y

i∈O1

pi if O2 ¼ ∅ and E1 ¼ ∅

Y

i∈E1

pi

 !

Y

i∈O1

ð1� piÞ

 !

if E2 ¼ ∅ and O1 6¼ ∅ and O2 6¼ ∅

Y

i∈E1

pi if E2 ¼ ∅ and O1 ¼ ∅

0 if O2 6¼ ∅ and E2 6¼ ∅

0 if n < 2 or n is odd

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

where
O ¼ f1, 3, 5,…, n� 1g

O1 ⊆ O

O2 ⊆ O

O1∪ O2 ¼ O

O1 ∩ O2 ¼ ∅

Xi ¼ 1,∀i∈O1

Xi ¼ 0,∀i∈O2

and

E ¼ f2, 4, 6,…, ng

E1 ⊆ E

E2 ⊆ E

E1∪ E2 ¼ E

E1 ∩ E2 ¼ ∅

Xi ¼ 1, ∀i∈E1

Xi ¼ 0, ∀i∈E2

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(19)

Where,

Given n ≥ 2 and n is even, Eq. (19) varies according to six cases whose arrangement counters

are listed as follows

O2 ¼ ∅ and E2 ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 1, cðΩ : fXi ¼ 0gÞ ¼ 0, cðΩÞ ¼ 1:

O2 ¼ ∅ and E1 6¼ ∅ and E2 6¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 2
n
2 � 2, cðΩ : fXi ¼ 0gÞ ¼ 0, cðΩÞ ¼ 2

n
2 � 2:

O2 ¼ ∅ and E1 ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 1, cðΩ : fXi ¼ 0gÞ ¼ 0, cðΩÞ ¼ 1:

E2 ¼ ∅ and O1 6¼ ∅ and O2 6¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 2
n
2�1 � 1, cðΩ : fXi ¼ 0gÞ ¼ 2

n
2�1 � 1, cðΩÞ ¼ 2

n
2 � 2:

E2 ¼ ∅ and O1 ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 0, cðΩ : fXi ¼ 0gÞ ¼ 1, cðΩÞ ¼ 1:
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O2 6¼ ∅ and E2 6¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 2
n
2�1 � 1

� �

2
n
2 � 1

� �

, cðΩ : fXi ¼ 0gÞ ¼ 2
n
2�1 2

n
2 � 1

� �

, cðΩÞ ¼ 2
n
2 � 1

� �2
:

Suppose the number of sources Xis is even. According to XNOR-gate inference [1], the output

is on if all inputs get the same value 1 (or 0). Sources Xi (s) and target Y follow XNOR-gate if

one of two XNOR-gate conditions specified by Eq. (20) is satisfied.

PðY ¼ 1jAi ¼ ON, ∀iÞ ¼ 1
PðY ¼ 1jAi ¼ OFF, ∀iÞ ¼ 1

(20)

From Eq. (10), we have

PðY ¼ 1jX1, X2,…, XnÞ ¼
X

A1,A2,…,An

PðY ¼ 1jA1, A2,…, AnÞ
Y

n

i¼1

PðAijXiÞ

If both XNOR-gate conditions are not satisfied then,

PðY ¼ 1jX1, X2,…, XnÞ ¼ 0

If Ai = ON for all i, we have

PðY ¼ 1jX1, X2,…, XnÞ ¼ PðY ¼ 1jAi ¼ ON, ∀iÞ
Y

n

i¼1

PðAi ¼ ONjXiÞ

¼
Y

n

i¼1

PðAi ¼ ONjXiÞ ¼

Y

n

i¼1

piif L ¼ ∅

0 if L 6¼ ∅

8

>

<

>

:

(Please see similar proof in AND-gate inference)

If Ai = OFF for all i, we have

PðY ¼ 1jX1, X2,…, XnÞ ¼
Y

n

i¼1

PðAi ¼ OFFjXiÞ ¼

Y

i∈K

ð1� piÞ if K 6¼ ∅

1 if K ¼ ∅

(

(Please see similar proof in OR-gate inference)

If one of XNOR-gate conditions is satisfied then,

PðY ¼ 1jX1, X2,…, XnÞ ¼
Y

n

i¼1

PðAi ¼ ONjXiÞ þ
Y

n

i¼1

PðAi ¼ OFFjXiÞ

This implies Eq. (21) to specify XNOR-gate inference.
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P
�

notðX1 ⊗X2 ⊗…⊗XnÞ
�

¼ PðY ¼ 1jX1, X2,…, XnÞ ¼

Y

n

i¼1

pi þ
Y

n

i¼1

ð1� piÞ if L ¼ ∅

Y

i∈K

ð1� piÞ if L 6¼ ∅ and K 6¼ ∅

1 if L 6¼ ∅ and K ¼ ∅

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(21)

where K and L are the sets of Xis whose values are 1 and 0, respectively. Eq. (21) varies

according to three cases whose arrangement counters are listed as follows

L ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 1, cðΩ : fXi ¼ 0gÞ ¼ 0, cðΩÞ ¼ 1:

L 6¼ ∅ and K 6¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 2n�1 � 1, cðΩ : fXi ¼ 0gÞ ¼ 2n�1 � 1, cðΩÞ ¼ 2n � 2:

L 6¼ ∅ and K ¼ ∅

cðΩ : fXi ¼ 1gÞ ¼ 0, cðΩ : fXi ¼ 0gÞ ¼ 1, cðΩÞ ¼ 1:

Let U be a set of indices such that Ai = ON and let α ≥ 0 and β ≥ 0 be predefined numbers. The

U-gate inference is defined based on α, β and cardinality of U. Table 4 specifies four common

U-gate conditions.

Note that U-gate condition on |U| can be arbitrary and it is only relevant to Ais (ON or OFF)

and the way to combine Ais. For example, AND-gate and OR-gate are specific cases of U-gate

with |U| = n and |U| ≥ 1, respectively. XOR-gate and XNOR-gate are also specific cases of

U-gate with specific conditions on Ai (s). However, it must be assured that there is at least one

combination of Ais satisfying the predefined U-gate condition, which causes that U-gate

probability is not always equal to 0. In this research, U-gate is the most general nonlinear gate

where U-gate probability contains products of weights (see Table 5). Later on, we will research

a so-called SIGMA-gate that contains only linear combination of weights (sum of weights, see

Eq. (23)). Shortly, each X-gate is a pattern owning a particular X-gate inference that is X-gate

probability P(X1 � X2 �…� Xn). Each X-gate inference is based on particular X-gate condition

(s) relevant to only variables Ais.

From Eq. (10), we have

PðY ¼ 1jX1, X2,…, XnÞ ¼
X

A1,A2,…,An

PðY ¼ 1jA1, A2,…, AnÞ
Y

n

i¼1

PðAijXiÞ

Let U be the set of all possible U (s), we have
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PðY ¼ 1jX1, X2,…, XnÞ ¼
X

U∈U

PðY ¼ 1jA1, A2,…, AnÞ
Y

n

i¼1

PðAijXiÞ

¼
X

U∈U

Y

i∈U

PðAi ¼ ONjXiÞ
Y

j∉U

PðAj ¼ OFFjXjÞ

If Xi ¼ 0, ∀i∈U then,

PðY ¼ 1jX1, X2,…, XnÞ ¼
X

U∈U

Y

i∈U

0
Y

j∉U

PðAj ¼ OFFjXjÞ ¼ 0

This implies all sets U (s) must be subsets of K. The U-gate probability is rewritten as follows

PðY ¼ 1jX1, X2,…, XnÞ ¼
X

U∈U

Y

i∈U

PðAi ¼ ONjXi ¼ 1Þ
Y

j∉U

PðAj ¼ OFFjXjÞ

¼
X

U∈U

Y

i∈U

pi

Y

j∉U

PðAj ¼ OFFjXjÞ

¼
X

U∈U

Y

i∈U

pi

Y

j∈K\U

PðAj ¼ OFFjXj ¼ 1Þ
Y

j∉K

PðAj ¼ OFFjXj ¼ 0Þ

¼
X

U∈U

Y

i∈U

pi

Y

j∈K\U

ð1� pjÞ
Y

j∉K

1 ¼
X

U∈U

Y

i∈U

pi

Y

j∈K\U

ð1� pjÞ

(Due to Eq. (9))

Let PU be the U-gate probability; Table 5 specifies U-gate inference and cardinality of U where

U is the set of subsets (U) of K.

Note that the notation
n
j

� �

denotes the number of combinations of j elements taken from n

elements.

n
j

� �

¼
n!

j!ðn� jÞ!

Arrangement counters relevant to U-gate inference and the set K are listed as follows

|U|=α PðY ¼ 1jA1, A2,…, AnÞ ¼ 1 if there are exactly α variables Ai = ON (s). Otherwise, PðY ¼ 1jA1, A2,…, AnÞ ¼ 0.

|U|≥α PðY ¼ 1jA1, A2,…, AnÞ ¼ 1 if there are at least α variables Ai = ON (s). Otherwise, PðY ¼ 1jA1, A2,…, AnÞ ¼ 0.

|U|≤β PðY ¼ 1jA1, A2,…, AnÞ ¼ 1 if there are at most β variables Ai = ON (s). Otherwise, PðY ¼ 1jA1, A2,…, AnÞ ¼ 0.

α≤|U|≤β PðY ¼ 1jA1, A2,…, AnÞ ¼ 1 if the number of Ai = ON (s) is from α to β. Otherwise, PðY ¼ 1jA1, A2,…, AnÞ ¼ 0.

Table 4. U-gate conditions.
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Let, SU ¼
X

U ∈U

Y

i∈U

pi

Y

j∈K\U

ð1� pjÞ

PU ¼ PðX1⊎X2⊎…⊎XnÞ ¼ PðY ¼ 1jX1, X2,…, XnÞ

As a convention,
Y

i∈U

pi ¼ 1 ifjUj ¼ 0

Y

j∈K\U

ð1� pjÞ ¼ 1 ifjUj ¼ jKj

|U|=0
PU ¼

Y

n

j¼1

ð1� pjÞ if jKj > 0

1 if jKj ¼ 0

8

>

>

<

>

>

:

jU j ¼ 1

|U|≥0
PU ¼

SU if jKj > 0

1 if jKj ¼ 0

(

jU j ¼ 2jKj

The case |U|≥0 is the same to the case |U|≤n

|U|=n

PU ¼

Y

n

i¼1

piif jKj ¼ n

0 if jKj < n

8

>

>

<

>

>

:

jU j ¼
1 if jKj ¼ n

0 if jKj < n

(

|U|=α

0<α<n

PU ¼
SU if jKj ≥α

0 if jKj < α

(

jU j ¼

jKj

α

 !

if jKj ≥α

0 if jKj < α

8

>

>

<

>

>

:

|U|≥α

0<α<n

PU ¼
SU if jKj ≥α

0 if jKj < α

(

jU j ¼

X

jKj

j¼α

jKj

j

 !

if jKj ≥α

0 if jKj < α

8

>

>

>

<

>

>

>

:

|U|≤β

0<β<n

PU ¼
SU if jKj > 0

1 if jKj ¼ 0

(

jU j ¼

X

minðβ, jKjÞ

j¼0

jKj

j

 !

if jKj > 0

1 if jKj ¼ 0

8

>

>

>

<

>

>

>

:

α≤|U|≤β

0<α<n

0<β<n

PU ¼
SU if jKj ≥α

0 if jKj < α

(

jU j ¼

X

minðβ, jKjÞ

j¼α

jKj

j

 !

if jKj ≥α

0 if jKj < α

8

>

>

>

<

>

>

>

:

Table 5. U-gate inference.
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jKj ¼ 0

cðΩ : fXi ¼ 1gÞ ¼ 0, cðΩ : fXi ¼ 0gÞ ¼ 1, cðΩÞ ¼ 1:

jKj ¼ 1

cðΩ : fXi ¼ 1gÞ ¼ 1, cðΩ : fXi ¼ 0gÞ ¼ 0, cðΩÞ ¼ 1:

jKj ¼ α and α > 0

cðΩ : fXi ¼ 1gÞ ¼
n� 1
α� 1

� �

, cðΩ : fXi ¼ 0gÞ ¼
n� 1
α

� �

, cðΩÞ ¼
n
α

� �

:

jKj ≤α and α > 0

cðΩ : fXi ¼ 1gÞ ¼
X

α

j¼1

n� 1
j� 1

� �

, cðΩ : fXi ¼ 0gÞ ¼
X

α

j¼0

n� 1
j

� �

, cðΩÞ ¼
X

α

j¼0

n
j

� �

:

jKj ≥α and α > 0

cðΩ : fXi ¼ 1gÞ ¼
X

n

j¼α

n� 1
j� 1

� �

, cðΩ : fXi ¼ 0gÞ ¼
X

n�1

j¼α

n� 1
j

� �

, cðΩÞ ¼
X

n

j¼α

n
j

� �

:

The SIGMA-gate inference [9] represents aggregation relationship satisfying SIGMA-gate

condition specified by Eq. (22).

PðYÞ ¼ P
Xn

i¼1
Ai

� �

where the set of Ai is complete and mutually exclusive

X

n

i¼1

wi ¼ 1

Ai ∩ Aj ¼ ∅, ∀i 6¼ j

(22)

The sigma sum
Xn

i¼1
Ai indicates that Y is exclusive union of Ais and here, it does not express

arithmetical additions.

Y ¼
X

n

i¼1

Ai ¼ ⋃
n

i¼1

Ai

This implies

PðYÞ ¼ P
X

n

i¼1

Ai

 !

¼ P ⋃
n

i¼1

Ai

 !

¼
X

n

i¼1

PðAiÞ

The sigma sum
Xn

i¼1
PðAiÞ now expresses arithmetical additions of probabilities P(Ai).
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SIGMA-gate inference requires the set of Ais is complete and mutually exclusive, which means

that the set of Xis is complete and mutually exclusive too. The SIGMA-gate probability is [9]

PðYjX1, X2,…, XnÞ ¼ P
X

n

i¼1

Ai

	

	

	

	

	

X1, X2,…, Xn

 !

ðdue to SIGMA� gate conditionÞ

¼
X

n

i¼1

PðAijX1, X2,…, XnÞ

�

because AiðsÞ are mutually exclusive
�

¼
X

n

i¼1

PðAijXiÞ

ðbecause Ai is only dependent on XiÞ

It implies

PðY ¼ 1jX1, X2,…, XnÞ

¼
X

n

i¼1

PðAi ¼ ONjXiÞ

¼
X

i∈K

PðAi ¼ ONjXi ¼ 1Þ

 !

þ
X

i∉K

PðAi ¼ ONjXi ¼ 0Þ

 !

¼
X

i∈K

wi þ
X

i∉K

0 ¼
X

i∈K

wi

(Due to Eq. (9))

In general, Eq. (23) specifies the theorem of SIGMA-gate inference [9]. The base of this theorem

was mentioned by Millán and Pérez-de-la-Cruz ([4], pp. 292-295).

PðX1 þ X2 þ…þ XnÞ ¼ P
X

n

i¼1

Xi

 !

¼ PðY ¼ 1jX1, X2,…, XnÞ ¼
X

i∈K

wi

PðY ¼ 0jX1, X2,…, XnÞ ¼ 1�
X

i∈K

wi ¼
X

i∈L

wi

where the set of Xis is complete and mutually exclusive.

Xn

i¼1
wi ¼ 1

Xi ∩ Xj ¼ ∅, ∀i 6¼ j
(23)

The arrangement counters of SIGMA-gate inference are c(Ω:{Xi = 1}) = c(Ω:{Xi = 0}) = 2n�1,

c(Ω) = 2n.

Eq. (9) specifies the “clockwise” strength of relationship between Xi and Y. Event Xi = 1 causes

event Ai =ONwith “clockwise”weight wi. There is a question “given Xi = 0, how likely the event

Ai = OFF is”. In order to solve this problem, I define a so-called “counterclockwise” strength of

relationship between Xi and Y denoted ωi. Event Xi = 0 causes event Ai = OFF with
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“counterclockwise” weight ωi. In other words, each arc in simple graph is associated with a

clockwise weight wi and a counterclockwise weight ωi. Such graph is called bi-weight simple graph

shown in Figure 4.

With bi-weight simple graph, all X-gate inferences are extended as so-called X-gate bi-inferences.

Derived from Eq. (9), Eq. (24) specifies conditional probability of accountable variables with

regard to bi-weight graph.

PðAi ¼ ONjXi ¼ 1Þ ¼ pi ¼ wi

PðAi ¼ ONjXi ¼ 0Þ ¼ 1� ρi ¼ 1� ωi

PðAi ¼ OFFjXi ¼ 1Þ ¼ 1� pi ¼ 1� wi

PðAi ¼ OFFjXi ¼ 0Þ ¼ ρi ¼ ωi

(24)

The probabilities P(Ai = ON | Xi = 0) and P(Ai = OFF | Xi = 1) are called clockwise adder di and

counterclockwise adder δi. As usual, di and δi are smaller than wi and ωi. When di = 0, bi-weight

graph becomes normal simple graph.

di ¼ PðAi ¼ ONjXi ¼ 0Þ ¼ 1� ρi ¼ 1� ωi

δi ¼ PðAi ¼ OFFjXi ¼ 1Þ ¼ 1� pi ¼ 1� wi

The total clockwise weight or total counterclockwise weight is defined as sum of clockwise

weight and clockwise adder or sum of counterclockwise weight and counterclockwise adder.

Eq. (25) specifies such total weightsWi andW i. Theseweights are also called relationship powers.

W i ¼ wi þ di
W i ¼ ωi þ δi

where

di ¼ 1� ρi ¼ 1� ωi

δi ¼ 1� pi ¼ 1� wi
(25)

Given Eq. (25), the set of all Ais is complete if and only if
Xn

i¼1
wi ¼ 1.

Figure 4. Bi-weight simple graph.
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By extending aforementioned X-gate inferences, we get bi-inferences for AND-gate, OR-gate,

NAND-gate, NOR-gate, XOR-gate, XNOR-gate, and U-gate as shown in Table 6.

The largest cardinalities of K (L) are 2n�1 and 2n with and without fixed Xi. Thus, it is possible

to calculate arrangement counters. As a convention, the product of probabilities is 1 if indices

set is empty.

Y

i∈ I

f i ¼ 1 if I ¼ ∅

With regard to SIGMA-gate bi-inference, the sum of all total clockwise weights must be 1 as

follows

Xn

i¼1

W i ¼
Xn

i¼1

ðwi þ diÞ ¼
Xn

i¼1

ðwi þ 1� ωiÞ ¼ 1

Derived from Eq. (23), the SIGMA-gate probability for bi-weight graph is

PðX1 þ X2 þ…þ XnÞ ¼
Xn

i¼1

PðAi ¼ ONjXiÞ

¼
X

i∈K

PðAi ¼ ONjXi ¼ 1Þ þ
X

i∈L

PðAi ¼ ONjXi ¼ 0Þ

¼
X

i∈K

wi þ
X

i∈L

di

Shortly, Eq. (26) specifies SIGMA-gate bi-inference.

PðX1 þ X2 þ…þ XnÞ ¼
X

i∈K

wi þ
X

i∈L

di

where the set of Xi(s) is complete and mutually exclusive.

Xn

i¼1

W i ¼ 1

Xi ∩ Xj ¼ ∅, ∀i 6¼ j

(26)

The next section will research diagnostic relationship which adheres to X-gate inference.

4. Multihypothesis diagnostic relationship

Given a simple graph shown in Figure 2, if we replace the target source Y by an evidenceD, we

get a so-called multihypothesis diagnostic relationship whose property adheres to X-gate infer-

ence. Maybe there are other diagnostic relationships in which X-gate inference is not

concerned. However, this research focuses on X-gate inference and so multi-hypothesis diag-

nostic relationship is called X-gate diagnostic relationship. Sources X1, X2,…, Xn become hypoth-

eses. As a convention, these hypotheses have prior uniform distribution.
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According to aforementioned X-gate network shown in Figures 2 and 3, the target variable

must be binary whereas evidence D can be numeric. It is impossible to establish the evidenceD

as direct target variable. Thus, the solution of this problem is to add an augmented target

binary variable Yand then, the evidenceD is connected directly to Y. In other words, the X-gate

diagnostic network have n sources {X1, X2,…, Xn}, one augmented hypothesis Y, and one

evidence D. As a convention, X-gate diagnostic network is called X-D network. The CPTs of

the entire network are determined based on combination of diagnostic relationship and X-gate

inference mentioned in previous sections. Figure 5 depicts the augmented X-D network. Note

that variables X1, X2,…, Xn, and Y are always binary.

Appendix A3 is the proof that the augmented X-D network is equivalent to X-D network with

regard to variables X1, X2,…, Xn and D. As a convention, augmented X-D network is consid-

ered as same as X-D network.

The simplest case of X-D network is NOT-D network having one hypothesis X1 and one

evidence D, equipped with NOT-gate inference. NOT-D network satisfies diagnostic condition

because it essentially represents the single diagnostic relationship. Inferred from Eqs. (1)

and (7), the conditional probability P(D|X1) and posterior probability P(X1|D) of NOT-D

network are

PðDjX1Þ ¼
1�D if X1 ¼ 1

D if X1 ¼ 0

(

PðX1jDÞ ¼
PðDjX1ÞPðX1Þ

PðX1Þ
�

PðDjX1 ¼ 0Þ þ PðDjX1 ¼ 1Þ
�

(Due to Bayes’ rule and uniform distribution of X1)

Figure 5. Augmented X-D network.
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¼
PðDjX1Þ

PðDjX1 ¼ 0Þ þ PðDjX1 ¼ 1Þ
¼ 1 � PðDjX1Þ

�

due to PðDjX1 ¼ 0Þ þ PðDjX1 ¼ 1Þ ¼ 1
�

It implies NOT-D network satisfies diagnostic condition. Let

Ω ¼ fX1, X2,…, Xng

n ¼ jΩj

We will validate whether the CPT of diagnostic relationship, P(D|X) specified by Eq. (6), still

satisfies diagnostic condition within general case, X-D network. In other words, X-D network

is general case of single diagnostic relationship.

Recall from dependencies shown in Figure 5, Eq. (27) specifies the joint probability of X-D

network.

PðΩ, Y,DÞ ¼ PðX1, X2,…, Xn, Y,DÞ ¼ PðDjYÞPðYjX1, X2,…, XnÞ
Y

n

i¼1

PðXiÞ

where Ω ¼ {X1, X2,…, Xn}:

(27)

Eq. (28) specifies the conditional probability of D given Xi (likelihood function) and the

posterior probability of Xi given D.

PðDjXiÞ ¼
PðXi, DÞ

PðXiÞ
¼

X

fΩ,Y,Dg\fXi,Dg
PðΩ, Y,DÞ

X

fΩ,Y,Dg\fXig
PðΩ, Y,DÞ

PðXijDÞ ¼
PðXi, DÞ

PðDÞ
¼

X

fΩ,Y,Dg\fXi,Dg
PðΩ, Y,DÞ

X

fΩ,Y,Dg\fDg
PðΩ, Y,DÞ

(28)

where Ω = {X1, X2,…, Xn} and the sign “\” denotes the subtraction (excluding) operator in set

theory [10]. Eq. (29) specifies the joint probability P(Xi, D) and the marginal probability P(D)

given uniform distribution of all sources. Appendix A4 is the proof of Eq. (29).

PðXi, DÞ ¼
1

2nS

�

ð2D�MÞsðΩ : fXigÞ þ 2n�1ðM�DÞ
�

PðDÞ ¼
1

2nS

�

ð2D�MÞsðΩÞ þ 2nðM�DÞ
�

(29)

where s(Ω) and s(Ω:{Xi}) are specified in Table 2. From Eqs. (28–30) specifies conditional

probability P(D|Xi), posterior probability P(Xi|D), and transformation coefficient for X-gate

inference.
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PðDjXi ¼ 1Þ ¼
PðXi ¼ 1, DÞ

PðXi ¼ 1Þ
¼

ð2D�MÞsðΩ : fXi ¼ 1gÞ þ 2n�1ðM�DÞ

2n�1S

PðDjXi ¼ 0Þ ¼
PðXi ¼ 0, DÞ

PðXi ¼ 0Þ
¼

ð2D�MÞsðΩ : fXi ¼ 0gÞ þ 2n�1ðM�DÞ

2n�1S

PðXi ¼ 1jDÞ ¼
PðXi ¼ 1, DÞ

PðDÞ
¼

ð2D�MÞsðΩ : fXi ¼ 1gÞ þ 2n�1ðM�DÞ

ð2D�MÞsðΩÞ þ 2nðM�DÞ

PðXi ¼ 0jDÞ ¼ 1� PðXi ¼ 1jDÞ ¼
ð2D�MÞsðΩ : fXi ¼ 0gÞ þ 2n�1ðM�DÞ

ð2D�MÞsðΩÞ þ 2nðM�DÞ

k ¼
PðXijDÞ

PðDjXiÞ
¼

2n�1S

ð2D�MÞsðΩÞ þ 2nðM�DÞ

(30)

The transformation coefficient is rewritten as follows

k ¼
2n�1S

2D
�

sðΩÞ � 2n�1
�

þM
�

2n � sðΩÞ
�

Note that S, D, and M are abstract symbols and there is no proportional connection between

2n�1S and D for all D, specified by Eq. (6). Assuming that such proportional connection 2n�1S =

aDj exists for all D where a is arbitrary constant. Given binary case when D = 0 and S = 1, we

have

2n�1 ¼ 2n�1 � 1 ¼ 2n�1S ¼ aDj ¼ a � 0j ¼ 0

There is a contradiction, which implies that it is impossible to reduce k into the following form

k ¼
aDj

bDj

Therefore, if k is constant with regard to D then,

2D
�

sðΩÞ � 2n�1
�

þM
�

2n � sðΩÞ
�

¼ C 6¼ 0,∀D

where C is constant. We have

X

D

�

2D
�

sðΩÞ � 2n�1
�

þM
�

2n � sðΩÞ
��

¼
X

D

C

) 2S
�

sðΩÞ � 2n�1
�

þNM
�

2n � sðΩÞ
�

¼ NC

) 2nS ¼ NC

It is implied that
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k ¼
2n�1S

2D
�

sðΩÞ � 2n�1
�

þM
�

2n � sðΩÞ
� ¼

NC

2C
¼

N

2

This holds

2nS ¼ N
�

2D
�

sðΩÞ � 2n�1
�

þM
�

2n � sðΩÞ
��

¼ 2ND
�

sðΩÞ � 2n�1
�

þ 2S
�

2n � sðΩÞ
�

) 2ND
�

sðΩÞ � 2n�1
�

� 2S
�

sðΩÞ � 2n�1
�

¼ 0

) ðND� SÞ
�

sðΩÞ � 2n�1
�

¼ 0

Assuming ND = S we have

ND ¼ S ¼ 2NM ) D ¼ 2M

There is a contradiction because M is maximum value of D. Therefore, if k is constant with

regard to D then s(Ω) = 2n�1. Inversely, if s(Ω) = 2n�1 then k is

k ¼
2n�1S

2Dð2n�1 � 2n�1Þ þMð2n � 2n�1Þ
¼

N

2

PðX1⊙X2⊙…⊙XnÞ ¼
Y

i∈K

pi

Y

i∈L

di

PðX1 ⊕X2 ⊕…⊕XnÞ ¼ 1�
Y

i∈K

δi
Y

i∈L

ρi

P
�

notðX1⊙X2⊙…⊙XnÞ
�

¼ 1�
Y

i∈ L

ρi

Y

i∈K

δi

P
�

notðX1 ⊕X2 ⊕…⊕XnÞ
�

¼
Y

i∈ L

di
Y

i∈K

pi

PðX1 ⊗X2 ⊗…⊗XnÞ ¼
Y

i∈O1

pi

Y

i∈O2

di
Y

i∈E1

δi
Y

i∈E2

ρi þ
Y

i∈E1

pi

Y

i∈E2

di
Y

i∈O1

δi
Y

i∈O2

ρi

P
�

notðX1 ⊗X2 ⊗…⊗XnÞ
�

¼
Y

i∈K

pi

Y

i∈L

di þ
Y

i∈K

δi
Y

i∈ L

ρi

PðX1⊎X2⊎…⊎XnÞ ¼
X

U∈U

Y

i∈U ∩ K

pi

Y

i∈U ∩ L

di

0

@

1

A

Y

i∈U ∩ K

δi
Y

i∈U ∩ L

ρi

0

B

@

1

C

A

There are four common conditions of U: |U|=α, |U|≥α, |U|≤β, and α≤|U|≤β. Note that U is the complement of U,

U ¼ f1, 2,…, ng\U

The largest cardinality of U is:

jU j ¼ 2n

Table 6. Bi-inferences for AND-gate, OR-gate, NAND-gate, NOR-gate, XOR-gate, XNOR-gate, and U-gate.
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In general, the event that k is constant with regard to D is equivalent to the event s(Ω) = 2n�1.

This implies diagnostic theorem stated in Table 7.

The diagnostic theorem is the optimal way to validate the diagnostic condition.

The Eq. (30) becomes simple with AND-gate inference. Recall that Eq. (14) specified AND-gate

inference as follows

PðX1⊙X2⊙…⊙XnÞ ¼ PðY ¼ 1jX1, X2,…, XnÞ ¼

Y

n

i¼1

pi if all XiðsÞ are 1

0 if there exists at least one Xi ¼ 0

8

>

<

>

:

Due to only one case X1 = X2 =…= Xn = 1, we have

sðΩÞ ¼ sðΩ : fXi ¼ 1gÞ ¼
Y

n

i¼1

pi

Due to Xi = 0, we have

sðΩ : fXi ¼ 0gÞ ¼ 0

Derived from Eq. (30), Eq. (31) specifies conditional probability P(D|Xi), posterior probability

P(Xi|D), and transformation coefficient according to X-D network with AND-gate reference

called AND-D network.

Given X-D network is combination of diagnostic relationship and X-gate inference:

PðY ¼ 1jX1, X2,…, XnÞ ¼ PðX1xX2x…xXnÞ

PðDjYÞ ¼

D

S
if Y ¼ 1

M

S
�
D

S
if Y ¼ 0

8

>

>

<

>

>

:

The diagnostic condition of X-D network is satisfied if and only if

sðΩÞ ¼
X

a

P
�

Y ¼ 1jaðΩÞ
�

¼ 2jΩj�1,∀Ω 6¼ ∅

At that time, the transformation coefficient becomes:

k ¼
N

2

Note that weights pi = wi and ρi = ωi, which are inputs of s(Ω), are abstract variables. Thus, the equality s(Ω) = 2|Ω|�1

implies all abstract variables are removed and so s(Ω) does not depend on weights.

Table 7. Diagnostic theorem.
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PðDjXi ¼ 1Þ ¼
ð2D�MÞ

Yn

i¼1
pi þ 2n�1ðM�DÞ

2n�1S

PðDjXi ¼ 0Þ ¼
M�D

S

PðXi ¼ 1jDÞ ¼
ð2D�MÞ

Yn

i¼1
pi þ 2n�1ðM�DÞ

ð2D�MÞ
Yn

i¼1
pi þ 2nðM�DÞ

PðXi ¼ 0jDÞ ¼
2n�1ðM�DÞ

ð2D�MÞ
Yn

i¼1
pi þ 2nðM�DÞ

k ¼
2n�1S

ð2D�MÞ
Yn

i¼1
pi þ 2nðM�DÞ

(31)

For convenience, we validate diagnostic condition with a case of two sources Ω = {X1, X2}, p1 =

p2 = w1 = w2 = 0.5, D∈ {0, 1, 2, 3}. According to diagnostic theorem stated in Table 7, if s(Ω) 6¼ 2

for given X-gate then, such X-gate does not satisfy diagnostic condition.

Given AND-gate inference, by applying Eq. (14), we have

sðΩÞ ¼ ð0:5 � 0:5Þ þ 0þ 0þ 0 ¼ 0:25

Given OR-gate inference, by applying Eq. (16), we have

sðΩÞ ¼ ð1� 0:5 � 0:5Þ þ ð1� 0:5Þ þ ð1� 0:5Þ þ 0 ¼ 3� 3 � 0:5 � 0:5 ¼ 1:75

Given XOR-gate inference, by applying Eq. (19), we have

sðΩÞ ¼ ð0:5 � 0:5þ 0:5 � 0:5Þ þ 0:5þ 0:5þ 0 ¼ 1:5

Given XNOR-gate inference, by applying Eq. (21), we have

sðΩÞ ¼ ð0:5 � 0:5þ 0:5 � 0:5Þ þ 0:5þ 0:5þ 1 ¼ 2:5

Given SIGMA-gate inference, by applying Eq. (23), we have

sðΩÞ ¼ ð0:5þ 0:5Þ þ 0:5þ 0:5þ 0 ¼ 2

It is asserted that AND-gate, OR-gate, XOR-gate, and XNOR-gate do not satisfy diagnostic

condition and so they should not be used to assess hypotheses. However, it is not asserted if U-

gate and SIGMA-gate satisfy such diagnostic condition. It is necessary to expend equation for

SIGMA-gate diagnostic network (called SIGMA-D network) in order to validate it.

In case of SIGMA-gate inference, by applying Eq. (23), we have

Bayesian Inference128



X

i

wi ¼ 1

sðΩÞ ¼ 2n�1
X

i

wi ¼ 2n�1

sðΩ : fXi ¼ 1gÞ ¼ 2n�1wi þ 2n�2
X

j 6¼i

wj ¼ 2n�1wi þ 2n�2ð1� wiÞ ¼ 2n�2ð1þ wiÞ

sðΩ : fXi ¼ 0gÞ ¼ sðΩÞ � sðΩ : fXi ¼ 1gÞ ¼ 2n�2ð1� wiÞ

It is necessary to validate SIGMA-D network with SIGMA-gate bi-inference. By applying

Eq. (26), we recalculate these quantities as follows

sðΩÞ ¼ 2n�1
X

i

wi þ 2n�1
X

i

di ¼ 2n�1
X

i

ðwi þ diÞ ¼ 2n�1

�

due to
X

i

ðwi þ diÞ ¼ 1
�

sðΩ : fXi ¼ 1gÞ ¼ 2n�1wi þ 2n�2
X

j 6¼i

wj þ 2n�2
X

i

di ¼ 2n�2wi þ 2n�2
X

i

ðwi þ diÞ ¼ 2n�2ð1þ wiÞ

sðΩ : fXi ¼ 0gÞ ¼ sðΩÞ � sðΩ : fXi ¼ 1gÞ ¼ 2n�2ð1� wiÞ

Obviously, quantities s(Ω), s(Ω:{Xi=1}), and s(Ω:{Xi = 0}) are kept intact. According to diagnostic

theorem, we conclude that SIGMA-D network does satisfy diagnostic condition due to

s(Ω)=2n�1. Thus, SIGMA-D network can be used to assess hypotheses.

Eq. (32), an immediate consequence of Eq. (30), specifies conditional probability P(D|Xi),

posterior probability P(Xi|D), and transformation coefficient for SIGMA-D network.

PðDjXi ¼ 1Þ ¼
ð2D�MÞwi þM

2S

PðDjXi ¼ 0Þ ¼
ðM� 2DÞwi þM

2S

PðXi ¼ 1jDÞ ¼
ð2D�MÞwi þM

2M

PðXi ¼ 0jDÞ ¼
ðM� 2DÞwi þM

2M

k ¼
N

2

(32)

In case of SIGMA-gate, the augmented variable Y can be removed from X-D network. The

evidence D is now established as direct target variable. Figure 6 shows a so-called direct

SIGMA-gate diagnostic network (direct SIGMA-D network).

Derived from Eq. (23), the CPT of direct SIGMA-D network is determined by Eq. (33).
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PðDjX1, X2,…, XnÞ ¼
X

i∈K

D

S
wi þ

X

j∈L

M�D

S
wj

where the set of Xi (s) is complete and mutually exclusive.

Xn

i¼1

wi ¼ 1

Xi ∩ Xj ¼ ∅, ∀i 6¼ j

(33)

Eq. (33) specifies valid CPT due to

X

D

PðDjX1, X2,…, XnÞ ¼
1

S

X

i∈K

wi

X

D

Dþ
1

S

X

j∈L

wj

X

D

ðM�DÞ

¼
1

S

X

i∈K

Swi þ
1

S

X

j∈L

wjðNM� SÞ ¼
1

S

X

i∈K

Swi þ
1

S

X

j∈L

Swj ¼
Xn

i¼1

wi ¼ 1

From dependencies shown in Figure 6, Eq. (34) specifies the joint probability of direct SIGMA-D

network.

PðX1, X2,…, Xn, Y,DÞ ¼ PðDjX1, X2,…, XnÞ
Yi¼1

n
PðXiÞ (34)

Inferred from Eq. (29), Eq. (35) specifies the joint probability P(Xi, D) and the marginal proba-

bility P(D) of direct SIGMA-D network, given uniform distribution of all sources.

PðXi, DÞ ¼
1

2n
sðΩ : fXigÞ

PðDÞ ¼
1

2n
sðΩÞ

(35)

where s(Ω) and s(Ω:{Xi}) are specified in Table 2.

By browsing all variables of direct SIGMA-D network, we have

Figure 6. Direct SIGMA-gate diagnostic network (direct SIGMA-D network).
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sðΩ : fXi ¼ 1gÞ ¼ 2n�1 D

S
wi þ 2n�2

X

j 6¼i

D

S
wj þ 2n�2

X

j 6¼i

M�D

S
wj

¼
2n�2

S
ð2Dwi þM

X

j 6¼i

wjÞ ¼
2n�2

S

�

2Dwi þMð1� wiÞ
�

Due to
X

n

i¼1

wi ¼ 1

 !

¼
2n�2

S

�

ð2D�MÞwi þM
�

Similarly, we have

sðΩ : fXi ¼ 0gÞ ¼ 2n�1 M�D

S
wi þ 2n�2

X

j6¼i

M�D

S
wj þ 2n�2

X

j 6¼i

D

S
wj ¼

2n�2

S

�

ðM� 2DÞwi þM
�

sðΩÞ ¼ 2n�1
X

i

D

S
wi þ 2n�1

X

i

M�D

S
wi ¼

2n�1M

S

By applying Eq. (35), s(Ω:{Xi = 0}), s(Ω:{Xi = 1}), and s(Ω), we get the same result with Eq. (32).

PðDjXi ¼ 1Þ ¼
ð2D�MÞwi þM

2S

PðDjXi ¼ 0Þ ¼
ðM� 2DÞwi þM

2S

PðXi ¼ 1jDÞ ¼
ð2D�MÞwi þM

2M

PðXi ¼ 0jDÞ ¼
ðM� 2DÞwi þM

2M

k ¼
N

2

Therefore, it is possible to use direct SIGMA-D network to assess hypotheses. It is asserted that

SIGMA-D network satisfy diagnostic condition when single relationship, NOT-D network,

direct SIGMA-D network are specific cases of SIGMA-D network. There is a question: does an

X-D network that is different from SIGMA-D network and not aforementioned exist such that

it satisfies diagnostic condition?

Recall that each X-D network is a pattern owning a particular X-gate inference which in turn is

based on particular X-gate condition (s) relevant to only variables Ais. The most general

nonlinear X-D network is U-D network whereas SIGMA-D network is linear one. The U-gate

inference given arbitrary condition on U is
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PðX1⊎X2⊎…⊎XnÞ ¼
X

U ∈U

Y

i∈U ∩ K

pi
Y

i∈U ∩ L

ð1� ρiÞ

0

@

1

A

Y

i∈U ∩ K

ð1� piÞ
Y

i∈U ∩ L

ρi

0

B

@

1

C

A

Let f be the arrangement sum of U-gate inference.

f ðpi,ρiÞ ¼
X

aðΩÞ

X

U∈U

Y

i∈U ∩ K

pi
Y

i∈U ∩ L

ð1� ρiÞ

0

@

1

A

Y

i∈U ∩ K

ð1� piÞ
Y

i∈U ∩ L

ρi

0

B

@

1

C

A

The function f is sum of many large expressions and each expression is product of four possible

sub-products (Π) as follows

Expr ¼
Y

i∈U ∩ K

pi
Y

i∈U ∩ L

ð1� ρiÞ
Y

i∈U ∩ K

ð1� piÞ
Y

i∈U ∩ L

ρi

In any case of degradation, there always exist expression Expr (s) having at least 2 sub-

products (Π), for example,

Expr ¼
Y

i∈U ∩ K

pi
Y

i∈U ∩ L

ð1� ρiÞ

Consequently, there always exist Expr (s) having at least 5 terms relevant to pi and ρi if n ≥ 5, for

example,

Expr ¼ p1p2p3ð1� ρ4Þð1� ρ5Þ

Thus, degree of fwill be larger than or equal to 5 given n ≥ 5. According to diagnostic theorem,

U-gate network satisfies diagnostic condition if and only if f(pi, ρi) = 2
n�1 for all n ≥ 1 and for all

abstract variables pi and ρi. Without loss of generality, each pi or ρi is sum of variable x and a

variable ai or bi, respectively. Note that all pi, ρi, ai are bi are abstract variables.

pi ¼ xþ ai

ρi ¼ xþ bi

The equation f�2n�1 = 0 becomes equation g(x) = 0 whose degree is m ≥ 5 if n ≥ 5.

ɡðxÞ ¼ �xm þ C1x
m�1 þ…þ Cm�1xþ Cm � 2n�1 ¼ 0

where coefficients Ci s are functions of ai and bis. According to Abel-Ruffini theorem [11],

equation g(x) = 0 has no algebraic solution when m ≥ 5. Thus, abstract variables pi and ρi cannot

be eliminated entirely from g(x) = 0, which causes that there is no specification of U-gate

inference P(X1xX2x…xXn) so that diagnostic condition is satisfied.
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It is concluded that there is no nonlinear X-D network satisfying diagnostic condition, but

a new question is raised: does there exist the general linear X-D network satisfying

diagnostic condition? Such linear network is called GL-D network and SIGMA-D network

is specific case of GL-D network. The GL-gate probability must be linear combination

of weights.

PðX1xX2x…xXnÞ ¼ Cþ
X

n

i¼1

αiwi þ
X

n

i¼1

βidi

where C is arbitrary constant.

The GL-gate inference is singular if αi and βi are functions of only Xi as follows

PðX1xX2x…xXnÞ ¼ Cþ
X

n

i¼1

hiðXiÞwi þ
X

n

i¼1

ɡiðXiÞdi

The functions hi and gi are not relevant to Ai because the final equation of GL-gate

inference is only relevant to Xi (s) and weights (s). Because GL-D network is a pattern,

we only survey singular GL-gate. Mentioned GL-gate is singular by default and it is

dependent on how to define functions hi and gi. The arrangement sum with regard to

GL-gate is

sðΩÞ ¼
X

a

Cþ
X

n

i¼1

hiðXiÞwi þ
X

n

i¼1

ɡiðXiÞdi

 !

¼ 2nCþ 2n�1
X

n

i¼1

�

hiðXi ¼ 1Þ þ hiðXi ¼ 0Þ
�

wi þ 2n�1
X

n

i¼1

�

ɡiðXi ¼ 1Þ þ ɡiðXi ¼ 0Þ
�

di

Suppose hi and gi are probability mass functions with regard to Xi. For all i, we have

0 ≤ hiðXiÞ ≤ 1

0 ≤ ɡiðXiÞ ≤ 1

hiðXi ¼ 1Þ þ hiðXi ¼ 0Þ ¼ 1

ɡiðXi ¼ 1Þ þ giðXi ¼ 0Þ ¼ 1

The arrangement sum becomes

sðΩÞ ¼ 2nCþ 2n�1
X

n

i¼1

ðwi þ diÞ

GL-D network satisfies diagnostic condition if
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sðΩÞ ¼ 2nCþ 2n�1
Xn

i¼1

ðwi þ diÞ ¼ 2n�1

) 2Cþ
Xn

i¼1

ðwi þ diÞ ¼ 1

Suppose the set of Xis is complete.

Xn

i¼1

ðwi þ diÞ ¼ 1

This implies C = 0. Shortly, Eq. (36) specifies the singular GL-gate inference so that GL-D

network satisfies diagnostic condition.

PðX1xX2x…xXnÞ ¼
Xn

i¼1

hiðXiÞwi þ
Xn

i¼1

ɡiðXiÞdi

where hi and ɡi are probability mass functions and the set of XiðsÞ is complete:

Xn

i¼1

W i ¼ 1

(36)

Functions hi(Xi) and gi(Xi) are always linear due to Xi
m = Xi for all m ≥ 1 when Xi is binary. It is

easy to infer that SIGMA-D network is GL-D network with following definition of functions hi
and gi.

hiðXiÞ ¼ 1� ɡiðXiÞ ¼ Xi, ∀i

According to Millán and Pérez-de-la-Cruz [4], a hypothesis can have multiple evidences as

seen in Figure 7. This is multi-evidence diagnostic relationship opposite to aforementioned multi-

hypothesis diagnostic relationship.

Figure 7 depicts the multi-evidence diagnostic network called M-E-D network in which there

are m evidences D1, D2,…, Dm and one hypothesis Y. Note that Y has uniform distribution.

In simplest case where all evidences are binary, the joint probability of M-E-D network is

PðY,D1, D2,…, DmÞ ¼ PðYÞ
Ym

j¼1

PðDjjYÞ ¼ PðYÞPðD1, D2,…, DmjYÞ

The product
Ym

j¼1
PðDjjYÞ is denoted as likelihood function as follows

PðD1, D2,…, DmjYÞ ¼
Ym

j¼1

PðDjjYÞ

The posterior probability P(Y | D1, D2,…, Dm) given uniform distribution of Y is
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PðYjD1, D2,…, DmÞ ¼
PðY,D1, D2,…, DmÞ

PðY ¼ 1, D1, D2,…, DmÞ þ PðY ¼ 0, D1, D2,…, DmÞ

¼
1Ym

j¼1
PðDjjY ¼ 1Þ þ

Ym

j¼1
PðDjjY ¼ 0Þ

� PðD1, D2,…, DmjYÞ

The possible transformation coefficient is

1

k
¼

Ym

j¼1

PðDjjY ¼ 1Þ þ
Ym

j¼1

PðDjjY ¼ 0Þ

M-E-D network will satisfy diagnostic condition if k = 1 because all hypotheses and evidence

are binary, which leads that following equation specified by Eq. (37) has 2m real roots P(Dj|Y)

for all m ≥ 2.

Ym

j¼1

PðDjjY ¼ 1Þ þ
Ym

j¼1

PðDjjY ¼ 0Þ ¼ 1 (37)

Eq. (37) has no real root given m = 2 according to following proof. Suppose Eq. (37) has 4 real

roots as follows

Figure 7. Diagnostic relationship with multiple evidences (M-E-D network).

Figure 8. M-HE-D network.
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a1 ¼ PðD1 ¼ 1jY ¼ 1Þ

a2 ¼ PðD2 ¼ 1jY ¼ 1Þ

b1 ¼ PðD1 ¼ 1jY ¼ 0Þ

b2 ¼ PðD2 ¼ 1jY ¼ 0Þ

From Eq. (37), it holds

a1a2 þ b1b2 ¼ 1

a1ð1� a2Þ þ b1b2 ¼ 1

ð1� a1Þa2 þ b1b2 ¼ 1

a1a2 þ b1ð1� b2Þ ¼ 1

a1a2 þ ð1� b1Þb2 ¼ 1

)

a1 ¼ a2

b1 ¼ b2

a21 þ b21 ¼ 1

a1 þ 2b21 ¼ 2

b1 þ 2a21 ¼ 2

⇔

a1 ¼ a2 ¼ 0

b1 ¼ b2

a21 þ b21 ¼ 1

b1 ¼ 2

or

a1 ¼ a2 ¼ 0:5

b1 ¼ b2

a21 þ b21 ¼ 1

b1 ¼ 1:5

8

>

>

>

>

>
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>

>

>

>

>

:

The final equation leads a contradiction (b1 = 2 or b1 = 1.5) and so it is impossible to apply the

sufficient diagnostic proposition into M-E-D network. Such proposition is only used for one-

evidence network. Moreover, X-gate inference absorbs many sources and then produces out of

one targeted result whereas the M-E-D network essentially splits one source into many results.

It is impossible to model M-E-D network by X-gates. The potential solution for this problem is

to group many evidences D1, D2,…, Dm into one representative evidence D which in turn is

dependent on hypothesis Y but this solution will be inaccurate in specifying conditional

probabilities because directions of dependencies become inconsistent (relationships from Dj

to D and from Y to D) except that all Djs are removed and D becomes a vector. However,

evidence vector does not simplify the hazardous problem and it changes the current problem

into a new problem.

Another solution is to reverse the direction of relationship, in which the hypothesis is depen-

dent on evidences so as to take advantages of X-gate inference as usual. However, the rever-

sion method violates the viewpoint in this research where diagnostic relationship must be

from hypothesis to evidence. In other words, we should change the viewpoint.

Another solution is based on a so-called partial diagnostic condition that is a loose case of

diagnostic condition for M-E-D network, which is defined as follows

PðYjDjÞ ¼ kPðDjjYÞ

where k is constant with regard to Dj. The joint probability is

PðY,D1, D2,…, DmÞ ¼ PðYÞ
Y

m

j¼1

PðDjjYÞ

M-E-D network satisfies partial diagnostic condition. In fact, given all variables are binary,

we have
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PðYjDjÞ ¼

X

Ψ\fY,Djg
PðY,D1, D2,…, DmÞ

X

Ψ\fDjg
PðY,D1, D2,…, DmÞ

(Let Ψ = {D1, D2,…, Dm})

¼
PðDjjYÞ

Ym

k¼1,k6¼j

�

X

Dk
PðDkjYÞ

�

Ym

k¼1,k 6¼j

�

X

Dk
PðDkjY ¼ 1Þ

�

þ
Ym

k¼1,k6¼j

�

X

Dk
PðDkjY ¼ 0Þ

�

(Due to uniform distribution of Y)

¼
PðDjjYÞ

Ym

k¼1,k 6¼j
1

Ym

k¼1,k6¼j
1þ

Ym

k¼1,k 6¼j
1
¼

1

2
PðDjjYÞ

�

Due to
X

Dk

PðDkjYÞ ¼ PðDk ¼ 0jYÞ þ PðDk ¼ 1jYÞ ¼ 1
�

Partial diagnostic condition expresses a different viewpoint. It is not an optimal solution

because we cannot test a disease based on only one symptom while ignoring other obvious

symptoms, for example. The equality P(Y|Dj) = 0.5P(Dj|Y) indicates the accuracy is decreased

two times. However, Bayesian network provides inference mechanism based on personal

belief. It is subjective. You can use partial diagnostic condition if you think that such condition

is appropriate to your application.

If we are successful in specifying conditional probabilities of M-E-D network, it is possible

to define an extended network which is constituted of n hypotheses X1, X2,…, Xn and m

evidences D1, D2,…, Dm. Such extended network represents multi-hypothesis multi-evidence

diagnostic relationship, called M-HE-D network. Figure 8 depicts M-HE-D network.

The M-HE-D network is the most general case of diagnostic network, which was mentioned in

Ref. ([4], p. 297). We can construct any large diagnostic BN from M-HE-D networks and so the

research is still open.

5. Conclusion

In short, relationship conversion is to determine conditional probabilities based on logic gates

that are adhered to semantics of relationships. The weak point of logic gates is to require that

all variables must be binary. For example, in learning context, it is inconvenient for expert to

create an assessment BN with studying exercises (evidences) whose marks are only 0 and 1. In

order to lessen the impact of such weak point, the numeric evidence is used for extending

capacity of simple Bayesian network. However, combination of binary hypothesis and
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numeric evidence leads to errors or biases in inference. For example, given a student gets

maximum grade for an exercise but the built-in inference results out that she/he has not

mastered fully the associated learning concept (hypothesis). Therefore, I propose the sufficient

diagnostic proposition so as to confirm that numeric evidence is adequate to make compli-

cated inference tasks in BN. The probabilistic reasoning based on evidence is always accurate.

Application of the research can go beyond learning context whenever probabilistic deduction

relevant to constraints of semantic relationships is required. A large BN can be constituted of

many simple BN (s). Inference in large BN is hazardous problem and there are many optimal

algorithms for solving such problem. In future, I will research effective inference methods for

the special BN that is constituted of X-gate BN (s) mentioned in this research because X-gate

BN (s) have precise and useful features of which we should take advantages. For instance, their

CPT (s) are simple in some cases and the meanings of their relationships are mandatory in

many applications. Moreover, I try my best to research deeply M-E-D network and M-HE-D

network whose problems I cannot solve absolutely now.

Two main documents that I referred to do this research are the book “Learning Bayesian

Networks” [2] by the author Richard E. Neapolitan and the article “A Bayesian Diagnostic

Algorithm for Student Modeling and its Evaluation” [4] by authors Eva Millán and José Luis

Pérez-de-la-Cruz. Especially, the SIGMA-gate inference is based on and derived from the work

of the Eva Millán and José Luis Pérez-de-la-Cruz. This research is originated from my PhD

research “A User Modeling System for Adaptive Learning” [12]. Other references relevant

to user modeling, overlay model, and Bayesian network are [13–16]. Please concern these

references.

Appendices

A1. Following is the proof of Eq. (9)

PðAi ¼ ONjXiÞ

¼ PðAi ¼ ONjXi, Ii ¼ ONÞPðIi ¼ ONÞ þ PðAi ¼ ONjXi, Ii ¼ OFFÞPðIi ¼ OFFÞ

¼ 0 � ð1� piÞ þ PðAi ¼ ONjXi, Ii ¼ OFFÞpi

ðBy applying Eq: ð8ÞÞ

¼ piPðAi ¼ ONjXi, Ii ¼ OFFÞ

It implies

PðAi ¼ ONjXi ¼ 1Þ ¼ piPðAi ¼ ONjXi ¼ 1, Ii ¼ OFFÞ ¼ pi

PðAi ¼ ONjXi ¼ 0Þ ¼ piPðAi ¼ ONjXi ¼ 0, Ii ¼ OFFÞ ¼ 0

PðAi ¼ OFFjXi ¼ 1Þ ¼ 1� PðAi ¼ ONjXi ¼ 1Þ ¼ 1� pi

PðAi ¼ OFFjXi ¼ 0Þ ¼ 1� PðAi ¼ ONjXi ¼ 0Þ ¼ 1 ■
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A2. Following is the proof of Eq. (10)

PðYjX1, X2,…, XnÞ ¼
PðY,X1, X2,…, XnÞ

PðX1, X2,…, XnÞ

ðDue to Bayes’ ruleÞ

¼

X
A1,A2 ,…,An

PðY,X1, X2,…, XnjA1, A2,…, AnÞ � PðA1, A2,…, AnÞ

PðX1, X2,…, XnÞ

ðDue to total probability ruleÞ

¼
X

A1,A2,…,An

PðY,X1, X2,…, XnjA1, A2,…, AnÞ �
PðA1, A2,…, AnÞ

PðX1, X2,…, XnÞ

¼
X

A1,A2,…,An

PðYjA1, A2,…, AnÞ � PðX1, X2,…, XnjA1, A2,…, AnÞ �
PðA1, A2,…, AnÞ

PðX1, X2,…, XnÞ

(Because Y is conditionally independent from Xis given Ais)

¼
X

A1,A2,…,An

PðYjA1, A2,…, AnÞ �
PðX1, X2,…, Xn, A1, A2,…, AnÞ

PðX1, X2,…, XnÞ

¼
X

A1,A2,…,An

PðYjA1, A2,…, AnÞ � PðA1, A2,…, AnjX1, X2,…, XnÞ

ðDue to Bayes’ ruleÞ

¼
X

A1,A2,…,An

PðYjA1, A2,…, AnÞ
Yn

i¼1

PðAijX1, X2,…, XnÞ

(Because Ais are mutually independent)

¼
X

A1,A2,…,An

PðYjA1, A2,…, AnÞ
Yn

i¼1

PðAijXiÞ

(Because each Ai is only dependent on Xi) ■

A3. Following is the proof that the augmented X-D network (shown in Figure 5) is equivalent

to X-D network (shown in shown in Figures 2 and 3) with regard to variables X1, X2,…, Xn,

and D.

The joint probability of augmented X-D network shown in Figure 5 is

PðX1, X2,…, Xn, Y,DÞ ¼ PðDjYÞPðYjX1, X2,…, XnÞ
Yn

i¼1

PðXiÞ

The joint probability of X-D network is
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PðX1, X2,…, Xn, DÞ ¼ PðDjX1, X2,…, XnÞ
Y

n

i¼1

PðXiÞ

By applying total probability rule into X-D network, we have

PðX1, X2,…, Xn, DÞ ¼
PðD,X1, X2,…, XnÞ

PðX1, X2,…, XnÞ

Y

n

i¼1

PðXiÞ

ðDue to Bayes’ ruleÞ

¼

X

Y
PðD,X1, X2,…, XnjYÞPðYÞ

PðX1, X2,…, XnÞ

Y

n

i¼1

PðXiÞ

ðDue to total probability ruleÞ

¼

X

Y
PðD,X1, X2,…, XnjYÞPðYÞ

PðX1, X2,…, XnÞ

Y

n

i¼1

PðXiÞ

¼
X

Y

PðD,X1, X2,…, XnjYÞ �
PðYÞ

PðX1, X2,…, XnÞ

 !

�
Y

n

i¼1

PðXiÞ

¼
X

Y

PðDjYÞ �
PðX1, X2,…, XnjYÞPðYÞ

PðX1, X2,…, XnÞ

 !

�
Y

n

i¼1

PðXiÞ

(Because D is conditionally independent from all Xi (s) given Y)

¼
X

Y

PðDjYÞ �
PðY,X1, X2,…, XnÞ

PðX1, X2,…, XnÞ

 !

�
Y

n

i¼1

PðXiÞ

¼
X

Y

PðDjYÞPðYjX1, X2,…, XnÞ
Y

n

i¼1

PðXiÞ

ðDue to Bayes’ ruleÞ

¼
X

Y

PðX1, X2,…, Xn, Y,DÞ ■

A4. Following is the proof of Eq. (29)

Given uniform distribution of Xi (s), we have

PðX1Þ ¼ PðX2Þ ¼ ⋯ ¼ PðXnÞ ¼
1

2

The joint probability becomes

PðΩ, Y,DÞ ¼
1

2n
PðYjX1, X2,…, XnÞPðDjYÞ
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The joint probability of Xi and D is

PðXi, DÞ ¼
X

fΩ,Y,Dg\fXi,Dg

PðΩ, Y,DÞ

¼ PðX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 1, Y ¼ 1, DÞ

þPðX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 0, Y ¼ 1, DÞ þ⋯

þPðX1 ¼ 0, X2 ¼ 0,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 1, Y ¼ 1, DÞ

þPðX1 ¼ 0, X2 ¼ 0,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 0, Y ¼ 1, DÞ

þPðX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 1, Y ¼ 0, DÞ

þPðX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 0, Y ¼ 0, DÞ þ⋯

þPðX1 ¼ 0, X2 ¼ 0,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 1, Y ¼ 0, DÞ

þPðX1 ¼ 0, X2 ¼ 0,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 0, Y ¼ 0, DÞ

¼
1

2n
D

S

�

PðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 1Þ þ PðY ¼ 1jX1 ¼ 1, X2

¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 0Þ þ⋯þ PðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 1Þ

þPðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 0Þ
�

þ
1

2n
M�D

S

�

PðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 1Þ þ PðY ¼ 0jX1 ¼ 1, X2

¼ 1,…, Xi,…, Xn�1 ¼ 1, Xn ¼ 0Þ þ⋯þ PðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 1Þ

þPðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xi,…, Xn�1 ¼ 0, Xn ¼ 0Þ
�

(Due to Eq. (6))

The marginal probability of D is

PðDÞ ¼
X

fΩ,Y,Dg\fDg

PðΩ, Y,DÞ

¼ PðX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 1, Y ¼ 1, DÞ þ PðX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 0, Y ¼ 1, DÞ þ⋯

þ PðX1 ¼ 0, X2 ¼ 0,…, Xn ¼ 1, Y ¼ 1, DÞ þ PðX1 ¼ 0, X2 ¼ 0,…, Xn ¼ 0, Y ¼ 1, DÞ

þ PðX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 1, Y ¼ 0, DÞ

¼
1

2n
D

S

�

PðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 1Þ þ PðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 0Þ þ⋯

þPðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 1Þ þ PðY ¼ 1jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 0Þ
�

þ
1

2n
M�D

S

�

PðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 1Þ þ PðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 0Þ þ⋯

þPðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 1Þ þ PðY ¼ 0jX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 0Þ
�

þPðX1 ¼ 1, X2 ¼ 1,…, Xn ¼ 0, Y ¼ 0, DÞ þ⋯

By applying Table 2, the joint probability P(Xi, D) is determined as follows
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PðXi, DÞ ¼
1

2nS
D
X

a

P

�

Y ¼ 1jaðΩ : fXigÞ
�

þ ðM�DÞ
X

a

P

�

Y ¼ 0jaðΩ : fXigÞ
�

 !

¼
1

2nS
D
X

a

P

�

Y ¼ 1jaðΩ : fXigÞ
�

þ ðM�DÞ
X

a

�

1� P

�

Y ¼ 1jaðΩ : fXigÞ
��

 !

¼
1

2nS

�

ð2D�MÞsðΩ : fXigÞ þ 2n�1ðM�DÞ
�

Similarly, the marginal probability P(D) is

PðDÞ ¼
1

2nS

�

ð2D�MÞsðΩÞ þ 2nðM�DÞ
�

■
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