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Abstract

The loss of complexity of the cardiac bioelectrical signal, measured with tools of
nonlinear dynamics (NLD), is studied in patients with very different pathologies. Two
types of scenarios are studied: (a) patients who enter the critical care unit and recover
from their condition; (b) severe patients whose condition worsen and finally die. It is
shown that as the severity of the patients increases, the complexity of their cardiac
bioelectric signal decreases. On the other hand, if patients, despite being severe, manage
to recover, the cardiac bioelectric signal recovers its complexity.

Keywords: bioelectrical signal, nonlinear dynamics, complexity, variability, critical illness

1. Introduction

The application of tools of the theory of the dynamical systems to the study of physiological

phenomena has a long inheritance. This starts from the original works of van der Pol and his

collaborator [1, 2], passes through important contributions [3, 4], and reaches the comprehen-

sive work by Glass and Mackey [5]. The application of these types of systems to describe the

temporal evolution of the physiological phenomena has been established as a tool frequently

used by researchers in this area of knowledge and is already a common place in the literature.

The initial works in the analysis of the dynamics of the cardiac rhythm showed a nonlinear

dynamic (NLD) behavior. Period-doubling bifurcations, in which the period of a regular oscilla-

tion doubles, were predicted theoretically and observed experimentally in the heart cells of

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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embryonic chickens [6]. The tools with a new mathematical approach made it possible to apply

the nonlinear dynamics to basic physiological concepts, proving for the first time evidence of

nonlinear behavior in the electrocardiogram (ECG) [7]. Period multiplying evidence in arterial

blood pressure traces of a dog that had been injected with noradrenaline was reported in 1984 [8].

Since the original reports on ischemic heart disease and arrhythmia [9, 10], the analysis of sponta-

neous variations of beat-to-beat intervals (BBIs) has become an important clinical tool [11–13].

For a long time, the construction of models was based on first principles, being this the main

tool for the understanding of complex physiological phenomena in theoretical models of nerve

and the membrane [14, 15], among which the functioning of the heart occupies a main place.

On the other hand, some studies tried to obtain information about cardiac diseases from the

time series that the measuring instruments offered, although very often they were noisy and

limited data [16]. Procedures have been developed for the study of ventricular fibrillation

using the data of implantable defibrillators [13, 17]. It is well known that these data are often

noisy and only represent the sequence of R-R intervals and is typically morphologically

different from surface electrocardiogram recordings. Many signal-processing algorithms have

been designed to eliminate noise from a system; however, noise (i.e., stochastic processes) is a

critical component of many biological and physiological systems [18]. Given the difficulties

mentioned earlier, some authors tried to use measures of complexity and entropies, as well as

other techniques of the theory of nonlinear phenomena [19, 20].

The initial clinical observation of heart rate variability (HRV), observing changes in the pattern

of the R-R interval, which preceded changes in the heart rate in fetal distress, was reported in

1963 [21]. Later, the first approaches of the heart rate variability analysis based on nonlinear

fractal dynamics were performed in 1987 [4]. It was suggested that self-similar (fractal) scaling

may underlie the 1/f-like spectra [22] seen in multiple systems (e.g., interbeat interval variabil-

ity, daily neutrophil fluctuations). They proposed that this fractal scale invariance may provide

a mechanism for the “constrained randomness” underlying physiological variability and

adaptability. In 1988, it was reported that patients prone to high risk of sudden cardiac death

showed evidence of nonlinear heart rate (HR) dynamics, including abrupt spectral changes

and sustained low-frequency (LF) oscillations. After this report, it has been suggested that a

loss of complex physiological variability could occur under certain pathological conditions

such as reduced HR dynamics before sudden death and aging [23, 24].

Methods of NLD and fractal analysis have opened up new ways for the analysis of HRV.

Although time and frequency domainmethods enable the quantification ofHRVondifferent time

scales, nonlinear methods provide additional information regarding the dynamics and structure

of beat-to-beat time series in various physiological and pathophysiological conditions [25]. The

apparent loss of multiscale complexity in life-threatening conditions suggests a clinical impor-

tance of thismultiscale complexitymeasure. Studies on heart ratemultiscale entropy at 3 h predict

hospital mortality in patients with major trauma [26]. Joint symbolic dynamics, compression

entropy, fractal dimension, and approximate entropy revealed significantly reduced complexity

of heart rate time series and loss of efferent vagal activity in acute schizophrenia [27, 28].

The healthy human heart rate is mainly determined by three major inputs: the sinoatrial node;

and the parasympathetic and sympathetic branches of the autonomous nervous system and

several autocrine, paracrine, and endocrine substances effects on it [29]. The sinoatrial node or
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pacemaker is responsible for the initiation of each heart beat; in the absence of other external

stimuli, it is able to maintain an essentially constant interbeat interval. Experiments in which

parasympathetic and sympathetic inputs are blocked reveal that the interbeat intervals are

very regular and average 0.6 s. The parasympathetic fibers conduct impulses that increase the

interbeat intervals. Suppression of sympathetic stimuli, while under parasympathetic regula-

tion, can result in the increase of the interbeat interval to as much as 1.5 s. The activity of the

parasympathetic system changes with external stimuli and with internal cycles. The sympa-

thetic fibers conduct impulses that decrease the interbeat intervals. Abolition of parasympa-

thetic influences when the sympathetic system remains active can decrease the interbeat

intervals to less than 0.3 s. There are several centers of sympathetic activity which are highly

sensitive to environmental influences [30, 31]. All the patients that are analyzed in this work

have as a common factor a suffering of systemic repercussion that influences the dynamics of

the sympathetic-parasympathetic balance and, therefore, of the heart rate. As will be seen

subsequently, whatever the underlying condition, as it worsens, decreases the complexity of

the cardiac bioelectrical signal, while its improvement is accompanied by an increase in the

complexity of the cardiac signal. Hence, the measures of complexity of the heart electrical

signals allow assessing the severity of the patient’s condition, and as we will see later (Figure 3)

they can be used as early warnings of severity episodes. This is why we focus on the observa-

tion of the complexity of the cardiac bioelectric signal.

The increasing availability of physiological data has allowed the study of long-time series with

other techniques also coming from the theory of dynamical systems. The observations received

from some organ of our body, as we have said before, very often are tainted of noise or are

collected in an incomplete way. The signals of electrical activity of the heart are a good example of

this. They are measured on the surface of the patient, in a finite number of places. The electrical

signal from the heart must pass through several layers of tissues with different electrical conduc-

tivities before being measured by traditional devices. What we measure is actually a distorted

observable of the authentic electric signal coming from the surface of the heart. Then the following

question arises; howmuch information of the original phenomenon could be recovered from this

distorted signal? Other relevant questions are how many magnitudes are necessary for a com-

plete description of the phenomenon? In other words, what is the dimension of the attractor of

the dynamical system that describes the evolution of the heart? Is there a difference between a

healthy person and a sick person in the number of variables necessary to characterize their

behavior? Or put in another way, is there a difference in the dimension of the attractor of the

dynamical systems that describe the behavior of a healthy person and a sick person?

The Takens Embedding Theorem [32] answers these questions under certain assumptions

about the recorded time series. In the following lines, we describe the theoretical framework,

the fundamental results, and the techniques of valuation of the different magnitudes.

2. Mathematical theoretical framework

The most frequent problems in the study of the physiological signals of electrical type are that

very often we have incomplete and deformed information of them. This is a very common

problem in many branches of scientific knowledge. As far as the electrical activity of the
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cardiac muscle is concerned, a methodology has been developed, whose theoretical basis is

found in the theory of dynamical systems. This result is known as the Takens’ Embedding

Theorem. This result allows us, under certain hypotheses, to answer the following questions: Is

it possible to reconstruct the bioelectric dynamics of a cardiac phenomenon from incomplete

information? How many variables are necessary to fully characterize this phenomenon?

Let us assume that n measurements would be necessary to fully characterize the phenomenon

under study. We do not know them directly. Rather, we have a macroscopic observable g that is

constructed from them:

gðtÞ ¼ θðx1ðtÞ,…, xnðtÞÞ (1)

Here, we assume that x1ðtÞ,…, xnðtÞ are the measurements necessary to characterize the sys-

tem, measured at time t. The function θ is one that transforms the variables that characterize

the system in the macroscopic observable to which we have access.

Almost all medical devices discreetly take samples with a certain frequency. Therefore, what in

the practice we have is a time series {g1,…, gT}, where gi ¼ gðtiÞ, where very often it is assumed

(as do we) that the times of measurement ti are equally spaced in time.

The Takens Embedding Theorem basically says that under the assumption that function g is

“well behaved,” that is, which can be measured continuously without very sudden jumps

then, there are τ∈Rþ and N∈N such that the set of vectors:

Ad ¼ ðgi, giþτ
,…, giþðN�1ÞτÞ, i∈N

n o

(2)

is for any practical purpose similar in its properties to the simultaneous behavior of the vari-

ables x1ðtÞ,…, xnðtÞ. Unfortunately, the theorem does not say how τ andN should be calculated.

So a wide heuristic has been developed to estimate these parameters [33]. In this task, two

concepts play an important role: the mutual information function and the correlation integral.

The mutual information function can be defined as follows:

MðτÞ ¼
X

T�τ

t¼1

Pðgt, gtþτ
Þln

Pðgt, gtþτ
Þ

PðgtÞPðgtþτ
Þ

� �

(3)

This concept is closely related to the concept of Boltzmann entropy and the Shannon informa-

tion [34]. It is a measure of nonlinear correlation among the values of the series {gi}.

The values of the mutual information function can be calculated from the {g1,…, gT} series

using appropriate software. The correct value for τ is the first local minimum of the mutual

information function [15, 35]. It is well known that the mutual information function is more

sensitive to correlations of data than other correlation measures [36].

The second important step is the calculation of the so-called embedding dimension N. For this,

it is necessary to use a concept called integral correlation: consider now the collection of vector

of the set Ad:
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Xi ¼ gi, giþτ
,…, giþðN�1Þτ

� �

(4)

the correlation integral CmðεÞ is defined as

Cm εð Þ ¼
m
2

� ��1
X

1 ≤ i, j ≤m
H kXi � Xjk < ε

� 	

(5)

whereH is the Heaviside function. From this concept, we can define the correlation dimension as

dc ¼ lim
ε!0

lim
m!þ∞

lnCmðεÞ

ln ε
(6)

Now, the criteria for selecting the correct embedding dimension N are as follows: choose

increasing embedding dimension and in each case, calculate the correlation integral. When no

changes are observed in the behavior of the correlation integral with respect to increasing the

embedding dimension, then a suitable dimension immersion [15, 33] will be found.

One of the advantages of this method is its robustness with respect to the noise of the signal

under study. The numerical data obtained through a recording apparatus, in our case a Holter,

are the basis of all the further calculations in this chapter. Despite the fine structures of the

cardiac dynamics, a critical component of many biological and physiological systems [19],

could be lost in conventional Holters [3], the attractor of the system is reconstructed with

adequate embedding and correlation dimensions.

The entire process can be seen in Figure 1.

Figure 1. A representation of the entire embedding process. The phenomenon under study has an attractor which only

has incomplete information through an observable. From this observable, the immersion process is executed, creating a

reconstruction of the attractor.
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3. Method

3.1. Description of the patients under study

We have studied the biological electrical signal of electrocardiogram assuming that its evolu-

tion is governed by a dynamic system. A three-channel, 1-h Holter (Scott Care Corporation.

Chroma: Model RZ153C) Monitor was used to monitor 30 patients to obtain data files which

consist of 900,000 rows and three columns of comma separated values from 1 h of registration.

Holter monitoring was performed on each patient every 24 h for a period of 1 h from admis-

sion until discharge. All admission Holter records were performed with the sedated patients,

with amines and ventilatory mechanical support in the supine position. The Holter records of

the surviving patients also are performed in supine position, without mechanical ventilation or

cardiovascular support with amines. The diagnosis of patients was performed from the clinical

point of view and confirmed by imaging studies such as computed tomography (CT) of the site

topologically involved, such as computed axial tomography of the skull, chest, or abdomen.

Some of the patients were surgically operated on one or more occasions. We studied 30

critically ill patients (18 females, 12 male age 54.8�15.3 years old) of various pathologies,

qualified with APACHE II scale 29.26 � 3.16 on admission to intensive care.
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The vital signs on the admission of these patients were as follows: Heart rate, 91.6 �17.51;

respiratory rate, 21.6 � 6.43; mean arterial pressure, 71.4 � 20.8; and temperature of 37.6 � 1.3.

Seventy percent of the patients were admitted with cardiovascular support based on noradren-

aline infusion and sedated with ventilatory mechanical support. The nonlinear time series [33]

were obtained upon admission to intensive care in the morning every day, until their discharge

for improvement or death. The numerical data obtained from the comma-separated values by

means of the Holter are the data subject to analysis of each patient. The description of patients

is shown in Table 1.

N
� Age Sex Diagnosis Surgery N� APACHE II/% Survived/died

1 64 M Severe post traumatic cerebral edema Yes/1 27/55% Died

2 55 F Cerebral Hemorrhage Fisher IV Malformation

Arterio/Venous

Yes/1 24/40% Died

3 60 M Necrotizing Pancreatitis Yes/2 30/75% Died

4 34 F Traumatic Brain Injury—Intraparenchymal

Hemorrhage

Yes/1 20/40% Survived

5 78 F Fisher IV Brain Hemorrhage by Ruptured Cerebral

Aneurism

Yes/1 29/55% Died

6 23 M Wounded by gun fire in right eye No 28/55% Died

7 30 F Postpartum complicated—Eclampsia and

Pulmonary Embolism

Yes/1 27/55% Survived

8 26 M Septic shock by Appendicitis complicated Yes/3 32/75% Died

9 52 M Cerebellar Infarction Yes/1 28/55% Died

10 52 F Septic Shock of Abdominal Origin Yes/4 30/75% Died

11 34 M Colon Necrosis and Septic Shock Yes/3 29/55% Survived

12 69 F Epidural Hematoma Yes/1 25/55% Died

13 40 M Atypical Pneumonia. Acquired Immune Deficiency No 35/85% Died

14 56 M Septic Shock-Pneumonia No 32/75% Died

15 59 M Pulmonary Embolism No 30/75% Died

16 78 F Subarachnoid Hemorrhage—Aneurysm Rupture Yes/1 29/55% Died

17 63 M Acute Myocardial Infarction No 27/55% Died

18 59 M Pulmonary Embolism. No 30/75% Survived

19 47 F Post Cardiorespiratory. Arrest Trans Surgical Yes/1 32/75% Died

20 74 F Pulmonary Embolism. No 27/55% Died

21 62 F Pulmonary Embolism. No 28/55% Died

22 62 M Left cerebellar hemisphere infarction. Yes/1 32/75% Survived

23 47 F Cerebral Hemorrhage - Broken Aneurysm Yes/1 29/55% Died

24 43 F Cerebral Hemorrhage—Broken Aneurysm Yes/1 29/55% Died

25 73 F Traumatic Brain Injury—Intraparenchymal

Hemorrhage

Yes/1 30/75% Died
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The images show a CT scan where two images of patient No. 22 are shown of the posterior

fossa of a 62-year-old man with hypertension treated with captopril 25 mg every 12 h. IMAGE

“A” shows a hypodense zone of the left cerebellar hemisphere, suggesting an ischemic type

lesion. IMAGE “B” shows decompressive craniotomy. The patient on day 10 of intensive care

was without mechanical ventilation and interacting with the staff of the unit. As mentioned

previously in the text, measures of the complexity of their cardiac signal were lower at the time

of entry to the intensive care unit, which was recovered. Later, he was discharge from the

critical medicine unit.

IMAGE “C” displayed is a cut of the cranial computed tomography of a 56-year-old woman with

right occipital arteriovenous malformation. The patient during her stay in intensive care was

complicated by acutemyocardial infarction, cardiogenic shock, dying 12 days after her admission.

4. Results

Let us consider a moving window as shown in Figure 2.

For each moving windows, the correct value of τ and the embedding dimension N are calcu-

lated. Note that the last task means calculating the correlation integral for different dimensions

of immersion, as shown in Figure 2.

N
� Age Sex Diagnosis Surgery N� APACHE II/% Survived/died

26 60 F Hemorrhage Fisher III. Flegmásia Cerulea Dolens No 35/85% Died

27 42 F Hemorrhage Subarachnoid Fisher IV Yes/1 30/75% Died

28 62 F Fisher IV Brain Hemorrhage No 29/55% Died

29 71 F Cerebral Stroke No 30/75% Died

30 69 F Traumatic Brain Injury—Intraparenchymal

Hemorrhage

Yes/1 35/85% Died

54.8�15.3 29.2�3.16

Table 1. Estimated mortality in critical patients according with APACHE II score.
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Once the appropriate dimension of embedding for each mobile window was calculated, we

calculated the corresponding correlation dimension. In total, between sick and healthy people

we amount 96,508 mobile windows of 5000 points each. We decided to choose the length of

the mobile window equal to 5000 because we have observed that for that distance the average

value of the mutual information function is practically zero, which indicates that over the time

series, values separated by 5000 units of time or more have any correlation.

With these data, we calculate the probability density functions of the corresponding windows

for healthy and sick behaviors. The results appear in Figure 3.

Figure 2. Correlation integrals for different embedding dimensions.

Figure 3. Probability density functions of correlation dimensions for windows sick (clearer) behavior an healthy (darker)

behavior.
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Note that there is a clear separation between the dimensions of correlation for sick and healthy

behaviors. Finally, we note that small-dimensional correlation magnitudes are related to less

complex behaviors than those with high correlation dimensions. It is important to note that in

our database are records of people who were healthy and became in serious condition, as well

as people who were sick and recovered later.

5. Discussion

The neural regulation of cardiac bioelectric signal has been explored in the frequency domain,

showing the complexity of the sympathovagal balance which is tonically and phasically modu-

lated by the interaction of at least three major factors: (a) central neural integration, (b) peripheral

inhibitory reflex mechanisms (with negative-feedback characteristics), and (c) peripheral excit-

atory reflex mechanisms (with positive-feedback characteristics) [29]. Parasympathetic efferent

nerve fibers come through the parasympathetic ganglia positioned in the periaortic and epicar-

dial fat pad. Efferent sympathetic innervation arrives from superior, middle, and inferior cervical

and the upper four or five thoracic ganglia. Medullary nuclei and reticular formation give both

excitatory and inhibitory preganglionic efferent fibers as well as accept afferent fibers. Afferent

pathways from baroreceptors and the so-called cardiopulmonary receptors to the brain stem are

closing the loop assuring a feedback mechanism. These baroreceptors are located in the wall of

aortic arch and great arteries arising from it, and in the carotid sinus. The hypothalamus is

considered the most important supramedullary compound that integrates autonomic, somatic,

mental, and emotional information via its extensive associations [29].

The applications of entropy on human physiological signals were developed earlier for ana-

lyzing the heart rate and beat-to-beat blood pressure. Heart rate is influenced by numerous

factors including the liquid metabolism, hormonal and temperature variations, physical activ-

ity, circadian rhythms, and autonomic nervous system. As a result, heart rate variations are

extremely complex in healthy individuals [37].

The entropy of heart rate was linked to neurological system since the modulation of heart beat

was associated with the two components of autonomic nervous system: sympathetic and

parasympathetic nerves [38]. Rhythmical oscillations of both heart rate and blood pressure

have been indicated to reflect the sympathetic and parasympathetic modulation [39, 40].

The evaluation of the autonomic function provides important information about the alteration

of the sympathetic-parasympathetic, altered balance in critically ill patients with or without

multiple organ failure. The proven tools are heart rate variability, baroreflex sensitivity, and,

with limitations, cardiac chemoreflex sensitivity [38]. The R-R interval functions as a substitute

for the sympathovagal balance and represents the net result of all autonomic influences in the

sinus node. Both the sympathetic and parasympathetic inputs to the sinus node can be char-

acterized by a tonic level of activity and by the modulation of this activity (e.g., by respiration

in the case of the parasympathetic input). Heart rate variability most reliably provides a
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measure of the modulation of the sympathetic and parasympathetic inputs to the sinus node,

although a more precise way to characterize the sympathovagal balance is unknown [41, 42].

With new, nonlinear methods being evaluated, the risk (with prognostic implications) could be

predicted more accurately by providing additional information on autonomic heart rate con-

trol in critically ill patients [29].

6. Conclusions

The results obtained allow us to arrive at the following conclusions: if the time windows

studied belong to a person who is sick, the complexity of the time series is low, the dimension

of embedding is small (below 6), and the dimension of correlation is low (below 2). For healthy

people, the dimension of embedding is higher (above 7), the correlation dimension is also

higher (above 2). The transition from a completely healthy to a completely sick behavior and

vice versa occurs continuously. If the temporary moving windows corresponding to stages of

transit between completely healthy and completely diseased behavior had been included in

the analysis, such marked differences in the distributions of the correlation dimensions in each

of these cases do not happen suddenly. In general, the heart electrical signal of a healthy person

is more complex than that of a sick person. Results similar to these have been obtained by other

methods [25]. In the aforementioned work, the authors affirm that the results obtained by them

show that the cardiac dynamics of a healthy subject is more complex and random compared to

the same for a heart failure patient, whose dynamics is more deterministic [43]. Our results are

more general because we have managed to classify temporary windows in “healthy” or

“diseased” (even for the same person) in terms of the complexity of the time series from their

embedding dimension or their correlation dimension.

Our work opens the possibility of observing with these tools patients, for example, under

anesthesia and relaxation in the operating room and critical care unit where patients often

have no possibility of spoken communication, opening another way to evaluate and monitor

the increase or decrease in the complexity of the cardiac bioelectrical signal, with the future

possibility to evaluate the severity of the sick state or the reduction of this, analyzing in real

time the behavior of the dynamics of that bioelectrical signal by means of the observation of

the loss or recovery of the dimension of that bioelectrical signal, which is getting a numeric

value that suggests the severity of the patient.

The implications of this for the early warning of the episodes of dysfunction are clear. Once the

embedding dimension or the correlation dimension falls below a preset threshold, we may

consider that we are facing an emergency.

Finally, the algorithms must deliver the results in real time in order for early warning to be

effective and this is a challenge that must be faced. The ever-increasing speed of digital devices

will certainly help this goal. On the other hand, the thresholds for early warnings should be

obtained from careful statistical experiments.
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