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Abstract

The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic
systems. In general, it is related with a bistable nonlinear system of Duffing type under
additive excitation combining deterministic periodic force and Gaussian white noise. It
manifests as a stable quasiperiodic interwell hopping between both stable stateswith a small
random perturbation. Classical definition and basic features of SR are regarded. The most
important methods of investigation outlined are: analytical, semi-analytical, and numerical
procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic
simulation ismentioned and experimentalwayof results verification is recommended. Some
areas in Engineering Dynamics related with SR are presented together with a particular
demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperi-
odic parts of the response is discussed. Some nonconventional definitions are outlined
concerning alternative operators and driving processes are highlighted. The chapter shows a
large potential of specific basic, applied and industrial research in SR. This strategy enables to
formulate new ideas for both development of nonconventional measures for vibration
damping and employment of SR in branches, where it represents an operating mode of the
system itself.Weaknesses and emptyareaswhere the research effort of SR should be oriented
are indicated.

Keywords: stochastic resonance, post-critical processes, dynamic stability,
Fokker-Planck equation, Galerkin approach

1. Introduction

The stochastic resonance (SR) is a phenomenon, which can be observed at certain nonlinear

dynamic systems under combined excitation including mostly deterministic periodic force and

random noise. The phenomenon of this type has been first observed and reported by Kramers,

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



see [1], investigating the interwell hopping in the Brownian motion. Some allusions can also be

found in older resources devoted to stochastic processes and theory of stability (Lyapunov,

Kolmogorov, Planck, and others).

The genuine phenomenon of SR has been discovered in early 1980s. The initiation point was

probably two papers by Nicolis [2, 3] dealing with problems of climatic evolution. Other

scientific and application areas followed that inspiration in due time, since it came to light that

SR is a generic phenomenon. The idea of SR initiated remarkable cross-disciplinary interest

bringing together nonlinear dynamics, statistical physics, information and communication

theories, data analysis, life and medical sciences. Individual areas came to the use of SR

phenomenon rather independently, and therefore, they introduced slightly different defini-

tions and particular strategies in the first period. This transition time passed and many cross

disciplines overlapping in their activities have been built at the unifying background devel-

oped by mathematics and theoretical physics. Despite this evolution, the historical aspects are

still visible, due to fact that every branch still focuses on different needs, working in different

scale and parameter intervals.

The term stochastic resonance was introduced probably in 1981 in informatics to describe the

annoying noise in contemporary communication equipment that prevented to detect the weak

useful signal. However, researchers recognized soon that under certain conditions, the noise

can be helpful to enhance the device sensitivity.

The opportunity to employ SR in mechanics emerged only recently. SR approved to be prom-

ising for modeling of certain post-critical effects in nonlinear dynamics, active vibration

damping, feedback systems, biomechanics, etc. Therefore, it is worthy of presentating a certain

overview to the community of rational and applied dynamics concerning strengths, weak-

nesses, and application possibilities of SR occurred in theoretical and applied disciplines.

The phenomenon itself manifests in the simplest case by a stable periodic hopping between

two nearly constant limits perturbed by random noises. The occurrence of this phenomenon

depends on certain combinations of input parameters, which can be determined theoretically

and verified experimentally. The classical mathematical definition of SR follows from proper-

ties of the Duffing equation with the negative linear part of the stiffness (bistable system)

under excitation by a Gaussian white noise together with a deterministic harmonic force with

a fixed frequency. It should be highlighted that also more general definitions of SR exist and

will be also briefly reported in this chapter. In particular, it considers various types of the

random noise, shapes of the deterministic excitation component, types of oscillator

nonlinearity (potential of internal forces), and finally also number of stable positions, which

can exceed two or drop to one.

In terms of classical Engineering Dynamics, SR can be assumed as a dangerous effect accompa-

nying a post-critical system response. Therefore, it should be eliminated by appropriate selection

of parameters and operating conditions (plasma physics, aeroelasticity, rotating machines, etc.)

in order to ensure the reliability of the system. On the other hand, SR can characterize the mode

of a natural system we are observing, and therefore, it serves as a tool of its investigation (e.g.,

Brownian motion mentioned above). It can also represent an intentional operating mode of the
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artificial system, and therefore, it should be considered as a useful state (special excitation or

vibration damping devices, energy harvesting, etc.).

Nevertheless, many disciplines predominantly consider SR as a mechanism by which a system

embedded in a noisy environment acquires an enhanced sensitivity toward small external

signal, when the noise intensity reaches certain finite level. This phenomenon of boosting

undetectable signals by resonating with added noise extends to many other systems, whether

electromagnetic, physical, or biological, and is an area of intense research. This interpretation

of SR shows that noise can play a positive role in systems either designed artificially or

observed as a natural systems. Furthermore, SR and its variants can serve to understand many

processes in various scales and temperature domains to understand various effects in solid

state physics, biophysics, and electronics with possible application to design SR-inspired

devices.

The study tries to mimic some excellent review studies published mainly in the areas of

physics, informatics, and physiology with emphasis on Engineering Dynamics. See, for

instance, papers [4–10], etc. Although their style is quite different, adequately with the branch

they represent, they are full of valuable information and worthy to be studied. For reading are

recommended problem-oriented monographs, e.g., [11, 12] or books including SR-devoted

chapters, e.g., [13–15]. Additional information can be found also at numerous web sites, like

popular Wikipedia, Scholarpedia, American Physical Society Sites, Encyclopedia of Maths, or

Mathworks, see [16]. Doubtlessly, the largest source of primary information are leading

journals edited by world societies of physics, electronics, informatics, and neurosciences.

Moreover, lot of conference proceedings are available as well organized, e.g., by IEEE, APS,

AIP, SIAM, or OSA.

Apart from this introductory remarks, the chapter consists of six sections (2–6). They have

general or specific character oriented to particular disciplines. Section 2 introduces some

overview of classical SR definitions, solution methods, and ways of its quantification. The

following Section 3 estimates a possible future SR position in mechanics accompanied by a

digest of a particular study performed in area of aeroelastic stability. Section 4 is devoted to SR-

assisted energy harvesting as a discipline being very close to mechanics and having many joint

features with that. Section 5 is unavoidably included for historical reasons dealing with clima-

tology, where the modern SR appeared in the contemporary meaning of the term in early 1980.

It gave an inspiration for all other branches, which are commonly discussed. Section 6 pays

attention to nonconventional SR definitions dealing with alternative differential operators

providing for instance, a possibility to abandon the bistable interwell hopping and to build

SR on a monostable system. The use of nonGaussian driving noise is mentioned as well.

Concluding part No. 7 attempts to evaluate position of SR strategy and its strengths and

weaknesses. With respect to the area of potential readers, it concentrates to a possible SR

involvement in Engineering Dynamics. It means to eliminate dangerous SR-based phenomena

occurring in industrial aerodynamics, dynamics of vehicles, and in whatever system endangered

by dynamic stability loss and subsequent post-critical emergency regime. In the same time, SR

can become the basis for the development of active equipment for vibration damping, earth-

quake resistance improvement, vehicle stabilization, etc. Let us take a note that SR phenomenon
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appears in many additional disciplines of theoretical and applied physics, data mining, chemis-

try, neurophysiology, pattern recognition, etc., where many inherent extensions beyond the

classical definition of SR have been developed and used. For more information, see review

papers, e.g., [4, 17], where extensions into quantum stochastic resonance with specific applica-

tions are outlined.

2. Classical definition of stochastic resonance

In early 1980s, SR has been discovered as a generic phenomenon and the first classical defini-

tion has been introduced. Some modifications appeared in due time, but the basic version is

still alive serving as the basis of SR mathematical modeling. There is a lot of resources

reporting about SR from the viewpoint of the definition in a rigorous or loose interpretation,

see for example well-known overview article [4] by Gammaitoni et al. and also review

paper [17] by authors of this chapter. Note that although vast majority of cases use the classical

definition, a number of problems need the special definition of the SR phenomenon regarding

its basic philosophy or individual components. Such settings extending the classical definition

will be briefly outlined in Section 6.

2.1. Phenomenon of stochastic resonance

In classical meaning, SR occurs in bistable systems with single degree of freedom (SDOF),

when a small periodic force is applied together with a large broad band random noise, see

Figure 1. The system response is driven by two excitation components resulting in a “system

switch” between two stable states. Their positions are given by two wells of the system

potential V(u). Wells are separated by a barrier. Its height decisive for the switching is consid-

ered as a difference between maximum and minimum of the potential, see Figure 1.

Figure 1. Bistable nonlinear system: (a) Symmetric potential; (b) Nonsymmetric potential.
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In the absence of periodic forcing, the approximate frequency of escape from one well into the

second is given by the following estimate published in the comprehensive study [1]:

ωe ¼
ffiffiffi

2
p

� exp �ΔV=σ2
� �

(1)

where σ
2 is the variance of the noise, and ΔV means the barrier separating potential minima

(symmetric potential), see Figure 1a. For nonsymmetric potential, the symbols ΔV�(u),ΔV+(u)

in Figure 1b denote the left and right minima, respectively. In classical setting of SR, the

Gaussian white noise is taken into account (for a couple of other variants, see Section 6).

If both component are acting, then the degree of switching is related with the noise intensity σ
2,

see a sample response in Figure 2. When the periodic force is small enough being unable to make

the system response switch, the presence of a nonnegligible random component is required for it

to happen. When the noise is small (small variance σ
2) very few switches occur, mainly at

random with no significant periodicity in the system response—Figure 2(a). When the noise is

too strong, a large number of switches occur for each period of the periodic component, and the

system response does not show remarkable periodicity—Figure 2(c). Between these two condi-

tions, there exists an optimal value of the noise intensity σ
2
0 that cooperatively concurs with the

periodic forcing in order tomake almost exactly one switch per period (a maximum in the signal-

to-noise ratio)—Figure 2(b). Amplitude of the response alternating component as a function of

the noise level is outlined in Figure 3. Peakness of the maximum is given by the damping factor.

If the damping is too high, the peak can completely disappear and SR vanishes.

The optimum of the noise level σ20 is quantitatively determined by matching of two time scales:

i. the period of the sinusoid (the deterministic time scale); and

ii. the Kramers rate, Eq. (1)—average switch rate induced by the sole noise, which is the

inverse of the stochastic time scale. It implicates the denomination “stochastic resonance”.

Figure 2. Time history of the system response for various noise variance: (a) low level; (b) optimal level σ20; (c) high level.
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The Kramers formula, Eq. (1), is a result of theoretical and empirical investigation motivated

by problems of nonlinear optics. Note that, in original resources, the absolute temperature T

instead of the variance σ2 is considered. The formula Eq. (1) is widely used and works very

well. During the last decades, a number of areas of optics, quantum mechanics, chemistry,

neurophysiology, etc., investigated this formula attempting to use the phenomenon of SR for

the description of various effects arising in their branches using both experimental and theo-

retical ways of investigation, see, e.g., [18, 19].

The mathematical basis of the classical SR definition is related to the Duffing equation with

negative linear part of the stiffness (in terms of mechanics). It is the most simple variant and it

corresponds together with Gaussian white noise and deterministic harmonic force with a fixed

frequency to the classical setting of SR. This configuration will be treated mostly throughout

this chapter. Nevertheless, some generalizations and extensions beyond the classical formula-

tion will be introduced in section 6 and furthermore at other remarked places.

Let us assume the nonlinear mass-unity SDOF oscillator written in a normal form:

_u ¼ v; _v ¼ �2ωb � v� V 0 uð Þ þ P tð Þ þ ξ tð Þ: (2)

V(u)–potential commonly introduced in a form providing the Duffing equation:

V uð Þ ¼ �
ω2

0

2
u2 þ

γ4

4
u4 ) V 0 uð Þ ¼ dV uð Þ=du ¼ �ω2

0 � uþ γ4 � u3 (3)

ξ(t)–Gaussian white noise of intensity 2σ2 respecting conditions:

E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 2σ2 � δ t� t0ð Þ; (4)

Ef•g, δðtÞ—operator of the mathematical mean value in Gaussian meaning and Dirac function,

respectively,

Figure 3. Amplitude of the system response alternating component due to simultaneous excitation by a weak periodic

force and a random noise.
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P(t) = Po exp(iΩt)—external harmonic force with frequency Ω. Amplitude Po should be under-

stood per unit mass.

Symbols ω0 and ωb have a usual meaning of the circular eigenfrequency and circular damping

frequency of the associated linear system. The linear part of the V ' (u) is negatively making the

system metastable in the origin, while the cubic part acts as stabilizing factor beyond a certain

interval of displacement u. The system is drafted in Figure 1 in two versions: (a) system with

symmetric potential typical by an equivalent energy needed for hopping from the left into the

right potential well and backwards; (b) system with asymmetric potential due to the supple-

mentary linear string, which could be able (when rising its stiffness) to bring the oscillator to

monostable state, see Section 6.1, where we will see that also the monostable system under

certain circumstances is able to exhibit SR phenomenon.

2.2. Methods of stochastic resonance investigation

Theoretical approaches, either analytical or numerical, are mostly based on an assumption that

random processes ruling inside the investigated system are of the Markov type. The primary

requirement, namely the dependence of the process on its value only in one previous moment,

is usually accomplished. In such a case, a large variety of methods are applicable for the

investigation of SR phenomena.

Basically three type of solution procedures can be regarded:

(i) Fokker-Planck (FP) equation. It is the equation for cross probability density function (PDF) of

the system response. Solution of this equation serves subsequently for the evaluation of

various stochastic parameters like mean value, stochastic moments of adequate order, auto

and cross correlation functions, probability flow, signal to noise ratio, mutual information etc.

Concerning SR itself, the main indicators and parameters of this phenomenon can be evaluated

and discussed in relation with the physical character of the problem, see subsection 2.3. So

that, PDF is a certain “source function” to obtain all information needed.

Taking into account that random noise in the governing physical differential system, Eq. (2),

has an additive character, no Wong-Zakai correction terms emerge, see, e.g., [20–22]. Then, the

relevant FP equation, e.g., [23], can be easily written out:

∂p u; v; tð Þ

∂t
¼ �κu

∂p u; v; tð Þ

∂u
þ

∂

∂v
κvp u; v; tð Þð Þ þ

1

2
κvv

∂
2p u; v; tð Þ

∂v2
; (5)

κu, κv - are drifft coefficients : κu ¼ v ; κv ¼ κv tð Þ ¼ �2ωb � v� V 0 uð Þ þ P tð Þ ,
κvv - is a diffusion coefficient : κvv ¼ 2σ2;

(6)

together with boundary and initial conditions:

lim
u, v!�∞

p u; v; tð Þ ¼ 0 að Þ, p u; v; 0ð Þ ¼ δ u; vð Þ bð Þ: (7)

Solution of the above FP equation can be conducted using one of the following procedures:
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(i-a) Variational solution of Galerkin type. In principle, it is a procedure of decomposition into

stochastic moments (or cumulants) with Gaussian closure, e.g., [24]. The demonstration of this

procedure is presented in subsection 3.2, where an application to stability analysis of the TDOF

aeroelastic system is roughly outlined.

In general, for details of the Galerkin method on the basis of functional analysis rules, see, e.g.,

[25]. For details of particular solution, see [26–28], and other papers and monographs. The

method is suitable namely for stationary solutions, but quasiperiodic solutions can be investi-

gated as well, see, e.g., [29], where detailed procedure outlined above is presented.

(i-b) Generalized Fourier method. Decomposition into a series following eigen functions and values

of FP operator.

p u; v; tð Þ ¼ po u; vð Þ � ϕ tð Þ ) p u; v; tð Þ ¼
XN

j¼0

pj u; vð Þ � ϕj tð Þ (8)

The series Eq. (8) can be substituted into the FPE Eq. (5). Due to the independency of pj(u, v) or

ϕj(t) on time or space variables, respectively, the part dependent on time only can be separated

on the left side and that dependent on space variables on the right side. They can be equivalent

only if both of them equal the same constant λj for each part of the series. It can be shown that

λj are eigen values of the FP operator part, which is on the right side of Eq. (5). Subsequently,

pj(u, v) are relevant eigen functions of this operator and finally ϕj(t) are the simple exponential

functions with the negative real part. Take a note that the λ0 = 0, as the first part of the series

Eq. (8) for j = 0 represents the stationary part of the FPE solution, provided the stationary part

exists. In general, the occurrence of one or more positive real parts of λj can reveal positive,

which would indicate an instable solution of FPE. However, it is not the case when investigat-

ing FPE used for modeling the SR phenomenon.

This approach is applicable rather in special cases with easy searching of eigen functions, when

transition process is looked for. For example, see [30]. In general, searching for eigen functions

of FP operator is a complex task, and it can prevent application of this method when more than

SDOF system is analyzed.

(i-c) Floquet theory. Application of the Floquet theorem:

p u; v; tð Þ ¼ p u, v, tþ Tð Þ (9)

Suitable for equations with periodically variable coefficients, when transition nonperiodic

process is investigated. See [30].

(i-d) Finite element method (FEM) and other numerical procedures. The FEM can be considered as a

general numerical solution method of partial differential equation. It can be proved that FEM

is well applicable for this purpose under certain circumstance, which are fulfilled regarding

FPE. When constructing adequate elements, a care should be taken due to special properties of

the FP operator. Significant problem originates from the fact of multi-dimensionality of space we

are workingwith and a delicate character of initial conditions. Moreover, the non-self-adjointness
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of the FP operator, special configuration of boundary conditions, etc., should be taken into

account. These factors shift application of FEM in this case into a special area where a number of

nonconventional problems should be solved.

The FPE is analyzed in an original evolutionary form which enables an analysis of transition

effects starting the (nearly) Dirac type initial conditions. The FEM efficiency when solving FPE,

which follows from the Duffing stochastic differential equation without external harmonic

forces was already studied by the authors in [31]. With the periodic force taken into account,

certain difficulties arise due to the time inhomogeneity of the corresponding stochastic process.

Many results regarding FEM application on FP equation analysis can be found in [32] or [33].

For the most recent results concerning FEM application to SR problem, see [31], and additional

details together with demonstrating examples, see [34].

The method is based on the approximaltion solution of Eq. (5) in the Galerin-Petrov meaning

on the piecewise smoothly bounded domain Ψ ∈ u � v, in Rd, d = 2. The initial conditions at

t = 0s for PDF are considered in a form of the Gauss distribution function with an initial system

position at the point u0 = 0, v0 = 0. For a small value of standard deviation, it approaches the

Dirac function as it is primarily requested.

After a spatial discretization of Ψ onto the rectangular finite elements using the bilinear

approximation functions and implying boundary condition p(∂Ψ, t) = 0, the system of ordinary

differential equations emerges with global matrices M, S(t) and vector of probability density

values P(t) in nodes of the mesh.

Final differential system has the form as follows:

M � _P tð Þ ¼ S tð Þ � P tð Þ (10)

The matrix S(t) is time-dependent due to the periodic perturbation entering the drift term of

FPE, and in the result, the solution oscillates periodically between the potential wells. In the

regime of SR, the switchings are in phase with the external periodic signal P(t) and the mean

residence time is closest to half the signal period 2π/Ω. Comparing the results obtained by

means of FME with those following from the analytical investigation outlined above shows a

good compatibility.

The efficiency of FEM is obvious as usual. It enables to investigate details, which are inacces-

sible using other methods. It applies especially to transition processes starting the excitation

and response processes nearby the stability loss, when the Lyapunov exponent is floating

around zero and boundary between local and global stability are ambiguous.

(ii) Stochastic simulation–digital and analog. Stochastic simulation is one of the most important

methods of SR investigation. The basic idea is straightforward, the governing system Eq. (2) is

subdued to numerical integration and subsequently probabilistic parameters including PDF

are evaluated. However, extreme caution should be taken, as the differential system is stochas-

tic. Because the system Eq. (2) includes only an additive noise, no Wong-Zakai correction terms

are necessary, see [20–22]. However, the strategy of integration should be carefully con-

trolled [35, 36], due to fact that we manipulate with the Ito system. In principle, the time
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increment can be neither too long in order to prevent information loss, nor too short to keep

the stochastic character of the output. Hence, the care should be taken during manipulations in

the corrector phase of one step.

Results obtained in this manner are very important. They serve as a verification of semi-

analytical results obtained using one of the procedures mentioned in the previous paragraph

(i), and furthermore, the simulation is able to enter into small details, which remain hidden to

methods mentioned in (i). It applies particularly to transition process if there is a need of their

investigation. On the other hand, like every fully numerical method or simulation, it provides

result for one set of parameters only. Like in experiments, it is difficult and laborious to obtain

a broader overview.

Analog simulations have been very popular in the past wherever nonlinear differential equa-

tions were to be solved. However, they are still very attractive for researchers as they lie at the

frontier between digital simulation and experiment. Their advantage is that the parameters can

be easily and quickly tuned over a wide range of values and the response can be followed

straightforwardly. Many review and technical papers have been published as for

instance [37, 38], where the comparison of analog simulation of stochastic resonance with

adiabatic theory has been performed. It should be appreciated now that a genuine analog

simulation can be effectively emulated at digital computers using commercial software pack-

ages, see for instance McSimAPN package, visit <http://www.edn.com>. Moreover, actually

whatever hybrid analysis enabling digital support of the analog simulation is possible.

(iii) Experimental measurements. SR has been observed in a wide variety of experiments involv-

ing electronic circuits, chemical reactions, semiconductor devices, nonlinear optical systems,

magnetic systems, and superconducting quantum interference devices (SQUID). The general

instruction for experimental procedures can be hardly recommended. They are always devel-

oped individually respecting specific character of every research activity. Anyway, be aware

that many experiments do not serve for validation of theoretical results. Indeed, the strategy is

often opposite. The purpose of the experiment is an initial recognition of the basic principle

while the theoretical approach should verify subsequently its validity. It is very frequently

observed particularly in neurophysiological experiments related with SR, see monograph [12]

and papers [39–43] and others. Three popular examples of this type performed should be

named: the mechanoreceptor cells of crayfish, the sensory hair cells of cricket, human visual

perception. Another “inverse” experiments (preceding any theoretical modeling) can be seen

in a wind tunnel. Here, the divergence instability of the prismatic bar in a cross flow has been

observed in the view of SR without any previous theoretical background. A number of

primary experimental studies are available also in plasma physics, optics, and in other

branches, e.g., [44–46].

2.3. Quantification of stochastic resonance

Occurrence of SR is obviously indicated by periodic transition across the potential barrier

which is synchronized in the mean with periodicity of the deterministic excitation component.

The frequency should be close to that given by Kramers formula, Eq. (1). The phenomenon

emerges markedly, when introducing the optimal noise amount under adequate damping
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level, as it corresponds to Figures 2 and 3, otherwise the response is very small. This rather

empirical identification is validated by theoretical means outlined above.

Internal character of the signal provided by SR can be inspected in particular cases using some

useful parameters and functions:

(i) Signal to noise ratio. Very frequently used indicator. It is based on the power spectral density

(PSD) attributes of the signal u(t). A couple of variants can be found in literature, see, e.g.,

[21, 23], etc. Usually the ratio of PSD concerning the periodic signal being proportional to the

integral of the Dirac function taken in a small neighborhood Δω of its frequency � Ω and the

total (PSD) integral at the same interval is considered. Symbolically expressed:

SNR ωð Þ ¼ PSD ωð Þ=SN , SN � output background noise (11)

Strengths and shortcomings of the above expression are obvious. Spectral density PSD(ω)

should be continuous and simple, otherwise Eq. (11) does not provide reliable results applica-

ble in a practical analysis. Nevertheless, other variants of this procedure are evident. They can

be based on a certain integral evaluation along the frequency axis, but they should be com-

posed for particular cases.

(ii) Residence time distribution and the first excursion probability. Observing Figure 2, the output

signal u(t) is a random process. The time of residence in one basin and the jump to the other

one can be regarded as a problem of time of the first excursion probability, see, e.g., [21] and

many independent authors like [47], etc. Evaluation of individual periods of residence in one

basin can serve as indication of SR stability and quality. This parameter gets an important

information because the signal u(t) suffers very often from nonintentional jumps within SR

periods. Results provided are more reliable as a rule in comparison with (i), but the procedure

in a particular case is much more laborious.

(iii) Information entropy based indication. Widely used in communication theories. This indicator

is based on Boltzmann’s entropy of information, see monograph [48]. Boltzmann’s entropy is

defined by the expression:

I ϕð Þ ¼

ð

X

p x; tð Þ � lg p x; tð Þ dx (12)

where I(ϕ) denotes Boltzmann’s entropy of probability and p(x, t) is the cross-probability density

of the system response. The procedures working with this tool are usually based on maximiza-

tion of this entropy with auxiliary constraints, which is the governing dynamic system itself. In

particular, PDF is written in a form of the multi-dimensional exponential (mostly a polynomial in

a homogeneous form) with free coefficients. These coefficients are subsequently determined by

means of the extreme searching using a suitable procedure (Fletcher-Powell, artificial neuronal

network, etc.).

This procedure is very effective when impuls character of useful signal is considered, see the SR-

focused paper by Neiman [49] or generally oriented [26], etc. As a large source of information
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can doubtlessly serve relevant chapters in monographs [11] or [50]. A significant step forward to

characterize the conventional SR by means of information theory tools has been put by [51],

where SR in a nonlinear system driven by an aperiodic force has been studied. See also a number

of other papers being more or less on the boundary between classical and nonconventional SR

definitions, as for instance [52] dealing with SR capacity enhancement in an asymmetric binary

channel.

(iv) Statistics of local random processes in individual basins. Random processes surrounding the

mean value when residing in a basin is evaluated. Then random mean square root is evaluated

and compared with the amplitude of the jumping process mean value. Rather special method

which appears rarely in SR as a separate tool. If applied, it is more or less smoothly integrated

with the analytical process. Its application can be observed more in areas working with more

general SR definitions concerning the operator structure and driving noise type, see section 6.

(v) Mutual information. Let us denote pϕψ(ϕ, ψ) the joint PDF of input and output processes

ϕ(t), ψ(t). Being based on Shannon’s theorem, see [53], mutual information between processes

ϕ(t), ψ(t) is defined as the relative entropy between the joint PDF and the product of partial

PDFs, see [48] or [54]:

I ϕ;ψð Þ ¼

ð

ϕ,ψ

p
ϕψ

ϕ;ψð Þ � lg
p
ϕψ

ϕ;ψð Þ

p
ϕ
ϕð Þp

ψ
ψð Þ

 !

dϕdψ (13)

It seems that the mutual information is the most effective quantification parameter for assess-

ment in suprathreshold stochastic resonance, see [11] and many more. Take a note that Eq. (13)

basically represents a significant generalization of the Boltzmann’s entropy procedure Eq. (12)

with respect to conditional probability referring some intermediate state analogously with

Bayesian updating.

3. Engineering Dynamics and stochastic resonance

It seems that Engineering Mechanics is now gradually discovering SR and is looking for areas

of SR applicability. Nevertheless, some areas can already show off tangible results. Research

activities are mostly the joint projects with physics, fluid mechanics, electronics, and medical

disciples. Similarly like in other branches also in Engineering Mechanics, the direct and inverse

tasks are investigated. Due to some delay, it can draw upon experience of other disciplines.

Let us outline some relevant areas of Engineering Mechanics where SR provides (or could

provide) significant contribution in various points of the research and application. Then, we

present briefly a sample problem of aeroelastic stability related with SR.

3.1. Areas in dynamics related with stochastic resonance

Engineering Dynamics of discrete and continuous systems in classical meaning of the term can

come into contact with SR roughly in three areas:
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(i) nonlinear SDOF,multi degree of freedom (MDOF) or possibly continuous dynamic systems subdued

to combination of periodic and random excitation. A number of problems arising in flow structure

interaction can be tackled using various models of SR type, e.g., slender structures in a cross

flow, soft large roofs, high speed channels with streaming fluids, and propagating solitary

waves, etc. Some more examples can be found among other systems with significant Duffing

type nonlinearity with meta-stable point of origin, even those more complicated nonlinear

system (Van der Pol, Rayleigh, etc.) can exhibit SR effects. They emerge usually after entering

into a post-critical regime stabilized by certain nonlinear forces. A sample problem of aeroelas-

tic stability will be shortly looked through.

(ii) Experimental measurements of weak signals below threshold limit. Subthreshold signal sensing,

recording, and filtering is rather a cross discipline widespread nearly everywhere.

Signal sensing and subsequent data processing is a wide area pervading all scientific and

engineering disciplines. Hence, relevant problems attracted many researchers all the time.

The aim has always been to speed up digitizing frequency, increase resolution and reliability,

and to diminish as much as possible differences between input and output processes.

It has been recognized in the past that a weak signal being below the threshold limit of a

sensor, can be boosted by adding white noise to the useful signal, see Figure 4. For details,

see [11]. The sum of both signals can overcome the threshold limit and hence to be detectable

by the sensor. Then, random component is filtered out to effectively detect original, previously

undetectable signal. Many general studies and special-oriented variants have been performed

to detect subthreshold signals using a driving random signal, let us name a few of them [24, 55–

58] following various attributes of SR employment in weak signal recognition and reliable

recording.

The qualitative jump forward in this strategy brought the suprathreshold stochastic resonance

(SSR). The phenomenon of SSR has been discovered by N. Stocks. The first paper informing

about SSR is the review paper [8] published in 1999. As the primary source can serve [59],

which appeared 1 year later and authored solely by Stocks. Since then, many articles have been

published about SSR. Probably, the most comprehensive explanation can be found in the

monograph by McDonnell et al. [11].

Figure 4. Experimental measurements of weak signals below threshold limit, see [11].
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(iii) Biomechanics. Very wide domain gathering experts of many areas constituted interdisci-

plinary teams worldwide. Domains like heart dynamics, blood streaming, muscle system

functionality, and vocal folds are followed. However, predominantly problems of the human

skeleton are tackled, see for instance [42, 60]. Here, substantial attention is paid to SR in which

noise enhances the response of a nonlinear system to weak signals in various biological

sensory systems. In the same time, it has been recognized that adding low magnitude periodic

vibration greatly enhances the bone formation in response to loading, which is definitely an

excellent contribution of SR for the osteogenic processes. An outcome of these activities are

among others the therapies of the whole-body through vibration training on a chair rising in

elderly individuals [61, 62]. Very sophisticated stochastic analysis of discrete data sets pro-

vided by measuring records has been performed in order to bring an exact evidence of the

meaningful healing procedure.

Let us take a note beyond limit of this study. Biomechanics is not far from various medical

branches, where a wide range of modern special implants based on the SR principle is

successfully used. In particular cochlear stimulators, oftalmological adaptors, pacemakers

and others, see for instance [4] or [17] where also many additional references can be

found.

3.2. Sample problem of aeroelastic stability

With reference to wind tunnel observations in a wind channel, it seems that SR is promising as

a theoretical model inherent for several aeroelastic post-critical effects arising at a prismatic

beam in a cross flow. Dealing with relevant projects, these post-critical effects should be

carefully investigated in order to eliminate any danger of the bridge deck collapse due to

aeroelastic effects. In particular, the divergence or buffeting of a bridge deck can be modeled

as a post-critical process of the SR type at an SDOF or two degree of freedom (TDOF) system,

see Figure 5. For details, see [63]. In Figure 5(a), we can see outline of the TDOF system

investigated. Figure 5(b) exhibits the stability diagram itself. White or dark fields indicate

stable or instable zones, respectively. The stability limits are plotted in the plane of heaving

and pitching eigen frequencies ω2
u
and ω2

ϕ. Figure 5(c) shows value of the flutter frequency Ω
2

with respect to position on the parabola with axes x1, x2 in Figure 5(b).

Figure 5. Stability diagram of the TDOF aeroelastic system: (a) TDOF aeroelastic system, (b) stability diagram in ω2
u
and

ω2
ϕ coordinates, (c) flutter frequency Ω2 as function of a position on the parabolic part of stability limits.
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Paper [64] is referred for details and further references. Anyway, let us revisit Eqs. (2–4) for

basic mathematical model. Three theoretical solution ways have been followed. FP equation

together with boundary conditions is written out in Eqs. (6, 7).

(i) Semi-analytical solution of FP equation. Galerkin type procedure has been applied in order to

respect non-self-adjointness of the FP operator, see [25]. With respect to the linearity of the FP

equation, the basic periodicity of the PDF should be equivalent with the frequency of the

deterministic excitation component Ω and its integer multiples. See formulation Eqs. (2–4)

together with Eqs. (5–7).

Therefore, the series can be written in the following form:

p u; v; tð Þ ¼ po u; vð Þ
X

J

j¼0

qj u; vð Þ � exp ijΩtð Þ (14)

where Ω is the harmonic excitation frequency. The series Eq. (14) represents an approach of a

weak solution of FP equation, which repeats in the period T = 2π/Ω. It gives a true picture of

solution within one period, but cannot express any influence of initial conditions.

In Eq. (14), po(u, v) means the solution of FPE Eq. (5) for P0 = 0, it means that the deterministic

part of excitation vanishes and the external excitation is limited to random component only.

The solution is time independent (solution of the Boltzmann type). For details, see, e.g., [26–

28], and other papers and monographs, see also Figure 6 for symmetric and nonsymmetric

potentials V:

po u; vð Þ ¼ D � exp �
2ωb

σ
2
H u; vð Þ

� �

: (15)

Figure 6. Response PDF of the system excited by white noise only: (a) Symmetric potential; (b) Nonsymmetric potential.
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In the above expression, D is the normalizing constant, and H(u, v) represents the Hamiltonian

function of the basic system. In particular:

H u; vð Þ ¼
1

2
v2 þ V uð Þ ¼

1

2
v2 �

1

2
ω2

ou
2 þ

1

4
γ4u4 (16)

The unknown functions qj(u, v) in Eq. (14) can be searched for using the generalized method of

stochastic moments as it can be found, in [23]. For additional details, see [29]. Using the

Galerkin approach, the expression (14) is substituted into Eq. (5) and the whole equation is

subsequently multiplied by the testing functions α(u, v).

The testing functions α(u, v) and unknown functions qj(u, v) are assumed to have a following

advantageous form:

α u; vð Þ ¼ αr, s u; vð Þ ¼ ur �Hs βv
� �

; r ¼ 0,…, R ; s ¼ 0,…, S (17)

qj u; vð Þ ¼
X

R, S

k, l¼0

qj,klu
k �Hl βv

� �

(18)

where Hs(βv) are l'Hermite polynomials and β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ωb=σ2
p

. After applying the mathematical

mean operator with respect to probability density function po(u, v), see Eq. (15), and employing

orthogonality of l'Hermite polynomials, the linear algebraic system for unknown coefficients

qj;k,l arises (qo(u, v) = 1, q� 1(u, v)�0):

2β ijΩþ 2ωbsð ÞAqj, s � 2 sþ 1ð ÞCqj, sþ1 þ Bqj, s�1 ¼ 2β2PoAqj�1, s�1 (19)

whereqj,s = [qj,0s, qj,1s,…, qj,Rs]
T
—columnvector (R + 1 components) andA,B,C∈R

(R + 1)� (R + 1)
—

square arrays containing moments:

Ar,k ¼

ð

∞

�∞

urþk
Φ uð Þdu ; Br,k ¼

ð

∞

�∞

kurþk�1
Φ uð Þdu ; Cr,k ¼

ð

∞

�∞

rurþk�1
Φ uð Þdu

Φ uð Þ ¼ exp βω2
ou

2 �
1

2
γ4u4

� �

(20)

Function Φ(u) is symmetric with respect to zero and therefore Ar,k = 0 for odd r + k, while Br,k,

Cr,k vanish for even r + k.

For each j, the three-term recurrence formula Eq. (19) forms an algebraic system of size (S + 1)

(R + 1)� (S + 1)(R + 1) for all unknown coefficients qj,rs. The block diagonal of the systemmatrix

consists from scaled regular matrices A, see Eq. (20), and thus it is invertible.

The resulting probability density function varies in time with periodicity, which corresponds to

the frequency of external loading Ω. The individual peaks alternate but the lower peak never

vanishes completely, see Figure 7. The computed joint probability density is shown in the

Figure 7(a), the corresponding curve for the displacement variable u (section for v = 0) is in

the Figure 7(b). The solid line shows the computed time-dependent probability density for t = 30,

the dashed line corresponds to the stationary solution of the Boltzmann type po(u, v), see Eq. (15).
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(ii) Solution of FP equation using FEM. Solution procedure is based on the approximate solution

of Eq. (5) in the Galerin-Petrov meaning on the piecewise smoothly bounded domainΨ ∈ u� v,

in Rd, d = 2. The initial conditions at t = 0s for PDF are considered in a form of very pointed

Gaussian distribution function with an initial system position at the point u0 = 0, v0 = 0. For a

small values of standard deviation, it approaches to the Dirac function as it is primarily

requested. The system of ordinary differential equations emerge with global matrices M, K(t)

and vector of PD values p(t) in nodes of the mesh:

M _p tð Þ ¼ K tð Þp tð Þ: (21)

The matrix K(t) is time-dependent due to the periodic perturbation entering the drift term of

FP equation, and in the result, the solution oscillates periodically between the potential wells.

In the regime of SR, the switchings are in phase with the external periodic signal P(t), and the

mean residence time is closest to half of the signal period 2π/Ω.

Some results of numerical analysis are depicted in Figure 8. Comparison of those with semi-

analytic results plotted in Figure 7 shows a perfect coincidence.

(iii) Stochastic simulation. Differential system Eq. (2) has been repeatedly solved numerically

respecting its stochastic character, see [35], with the same parameter setting as used before. The

white noise was simulated as a finite sum of harmonic functions with uniformly distributed

random frequencies ωi ∈ (0, ωmax〉 (ωmax = 10 rad. s� 1) and phases ϕi ∈ (0, 2π〉:

ξ tð Þ ¼
ffiffiffi

2
p

σ
X

N

i¼1

cos ωitþ ϕi

� �

(22)

Figure 7. (a) PDF according to relation Eq. (14) for t = 30; (b) the corresponding cross section for v = 0 during the transition

period starting initial condition of the Dirac type (solid line with filling) and stationary solution of the Boltzmann type

(dashed).
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The results of the SR analysis are illustrated in Figure 9, which presents the signal to noise ratio

—Figure 9(a) as the function of the noise intensity expressed by 2σ2 = κ
vv
, and the results

(Fourier spectra) of the stochastic simulations using the basic system Eq. (2) and Figure 9(b).

In the individual spectral lines, it can be seen in the influence of rising the white noise intensity,

which acts together with a harmonic force onto the system. For a very low level of the noise,

the harmonic component is hardly able to overcome the interwell barrier, and therefore, only

Figure 8. Axonometric and sectional display of the PDF at the highest value of probability of residing in selected potential

well: (a) κ
vv
= 0.10; (b) κ

vv
= 0.25–stochastic resonance; (c) κ

vv
= 1.0; the lower pictures are vertical cross-sections of surfaces

in the upper row for v = 0, see highlighted curves in red.

Figure 9. Results of stochastic simulation: (a) the signal to noise ratio as the function of various noise intensity (σ2) due to

SR; (b) Fourier spectra of the response obtained by numerical solution.
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seldom irregular jumps between stable points occur, as it has been already demonstrated in

Figure 2.

In local regimes, the system response is relatively small and nearly linear. Optimal ratio of the

noise intensity (σ20), and the amplitude of the harmonic force results for its certain frequency in

the system response containing visible spectral peaks (amplification) corresponding with the

frequency of the external harmonic modulation. The single peak (in the case of colored noise

more peaks may appear) and thus the “optimal” noise strength can be identified.

4. Energy harvesting

A number of sources of harvestable ambient energy exist, including waste heat, vibration,

electromagnetic waves, wind, flowing water, solar energy, human motion, and others. They

can serve for powering remote wireless sensors, controllers, stimulators in a number of tech-

nological and biological applications, without any battery or wiring complements. Therefore,

energy harvesting (EH) has emerged as a discipline with the goal of fabricating devices that

can generate electrical power by exploiting ambient waste energy, for instance see [65]—

ambient vibration, [66]—thermo gradient [67]. Basically following ideas are used: piezoelectric

layered parts, magnetic levitation, magneto-rheologic hydraulic elements, ball screw systems,

impact systems, and other principles. A pioneering work highlighting theoretical aspects of

EH and challenging other authors is [68]. The adequate model follows from SDOF bistable

system:

€u þ 2ωb _u þ ω2
0u 1�

l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ d
2

p

 !

¼ P0 cosΩtþ hξ tð Þ (23)

where l, d are dimension characterizing von Mieses truss—remembers the system in Figure 1a.

A couple of modified equations are also used in order to facilitate the insight into the system.

The most frequent is the relevant Duffing system with negative linear part of stiffness.

4.1. Small scale energy production and measuring system feeding

A few electro-mechanical principles are used for this purpose. Typically, a cantilevered beam

with a piezoelectric strip is used to transform vibrational energy into electrical energy through

damping, see Figure 10. This figure has been taken over from [69], where many details and

systematic background can be found. For small displacements of the beam, peak power

generation in the mechanism will occur when the natural frequency of the beam is tuned to

the peak of the vibration noise spectrum. Briefly speaking, SR despite being counter-intuitive

phenomenon proved to be effective to enhance vibrational EH by adding periodic forcing to a

vibration excited energy harvesting. A review of EH suitable piezoelectric materials together

with adequate shaping and comprehensive experience in practice can be found in [9]. The most

frequent applications cover human stimulation feeding, measuring and transducer system

feeding, traffic control feeding, and many other devices with consumption approximately less

than 1.0W.
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4.2. Large scale application and vibration damping

While the first generation of EH devices has been intended for the low power consumption,

subsequently an idea of SR-assisted EH application in large scale systems appeared. These

systems usually combine auxiliary power production and vibration suppressing in large scale

engineering systems and suppose to work with energy approx 1 � 100kW. Energy is gained

from vehicles and transport means operation, vibration of civil and mechanical engineering

systems, and other resources.

Comprehensive review of the contemporary knowledge regarding EH in large scale facili-

ties is presented in papers [70] and [71]. Relevant principles are based again on EH assisted

by SR phenomena. Possibilities and practical aspects of vibration damping using SR sup-

port EH are widely discussed in engineering oriented journals, see Figure 11. A number of

other facilities is based or supported using this principle. Let us name a few: floating floor,

railroad track vertical deflection, vehicle suspension, ocean energy harvesting, and many

others.

Figure 10. Small scale energy production for capture local feeding, see [69].

Figure 11. Large scale energy supply of the active TMD, see [70].
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5. Climatology

The position of SR in climatology is specific in comparison with other disciplines. It is worthy

to be highlighted in the separate section, although apparently it is a bit far from engineering

mechanics. The reason is that researchers in climatology demonstrated the first systematic

genuine SR in contemporary meaning. This concept was introduced in 1981–1982 by C.

Nicolis, see [2, 3], dealing with the problem of climatic changes during the Quaternary.

Approximately in the same time appeared papers by Benzi at al. dealing with similar

topics [72, 73] preferring a bit more theoretical aspects of the SR phenomena. So that, this

pioneering step came from the apparently exotic context of the Earth’s climate evolution of the

periodic recurrence of Earth’s ice ages. For some summary of the starting period and physical

motivation analyzing the physical essentials of climatological changes in view of SR, see

Scholarpedia [74], other encyclopedia co-authored by C. and G. Nicolis and also a couple of

review articles, e.g., [4, 5].

5.1. Physical motivation

It has been known that the climatic system possesses a very pronounced internal variability. A

striking illustration is provided by the last glaciation which reached its peak some 18,000 years

ago, leading to mean global temperatures of some degrees lower than the present ones and a

total ice volume more than twice its present value.

Going further back in the past, it is realized that glaciation has covered, in an intermittent

fashion, much of the Quaternary era. Statistical data analysis shows that the glacial/inter-

glacial transitions that have marked the last hundred thousand years display an average

periodicity of 10,000 years, indeed. To this process is superimposed a considerable, random

looking variability of Sun flux. The conventional explanation was that variations in the eccen-

tricity of Earth’s orbital path occurred with a period of about 105 years. So that, the energy flux

Q impacting the Earth can be characterized as follows:

Q ¼ Q0 1þ ε � sinωtð Þ; (24)

where ε ≈ 0.001, ω ≈ 2π/105years� 1. This process caused the year average temperature to shift

dramatically and produces the ice volume changes on the Earth, which randomly oscillates

between limits 30 � 60 � 106km3, see Figure 12a.

However, it sounds strange, since the only known time scale in this range is that of the changes

in time of the eccentricity of the Earth’s orbit around the sun, as a result of the perturbing

action of the other solar system bodies. This perturbation modifies the total amount of solar

energy received by the Earth but the magnitude of this astronomical effect is exceedingly

small, about 0.1%, see above. So that, the measured variation in the eccentricity had a relatively

small amplitude compared to the dramatic temperature change. Therefore a question arose,

whether one can identify in the Earth-atmosphere-cryosphere system any mechanism capable

of enhancing its sensitivity to such small external time-dependent forcing.
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The search of a response to this question led to the concept of SR, which has been developed

out of an effort to understand how the Earth’s climate oscillates periodically between two

relatively stable global temperature states, one “normal” and the other an “ice age” state. In

other words, a theoretical explanation has been elaborated to show that the temperature

change due to the weak eccentricity oscillation and added stochastic variation due to the

unpredictable energy output of the sun (known as the solar constant) could cause the temper-

ature to move in a nonlinear fashion between two stable dynamic states. Specifically, glaciation

cycles are viewed as transitions between glacial and inter-glacial states that are somehow

managing to capture the periodicity of the astronomical signal, even though they are actually

made possible by the environmental noise rather than by the signal itself. Note that also

dynamics of the Earth as a deformable body should be taken into account, see [75], as an

indirect source of periodic processes involved.

5.2. Mathematical modeling

The orbit of Earth around the sun is not exactly elliptical, as it is commonly reported. The shape

of its trajectory is complex following a form of a spiral. This trajectory is stable within a basin

having a form of a closed strip. Its width is approximately 107 km, see Figure 12b, and exhibits

a character of deterministic chaotic attractor. Earth trajectory takes place within the shadow

area, see Figure 12b. The Lyapunov exponent mostly oscillates nearby 0.

The basic setting of SR in climatology started with SDOF nondynamic system subjected to a

stochastic excitation and weak harmonic forcing. It corresponds formally to the Langevin

equation of the first order in the form with suppressed inertia term due to high damping

(adiabatic approach), compare with Eqs (26) or (27), Section 6.1:

d2u

dt2
þ

∂V uð Þ

∂u
¼ η tð Þ þQ0 1þ εexp iωtð Þ

� �

_η þ a � η ¼ ξ tð Þ, or €η þ a _η þ bη ¼ ξ tð Þ

(25)

Figure 12. (a) Ice volume on the Earth surface in the past, see [5]. (b) Earth trajectory around the sun.
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where it has been denoted: V(u)—conventional symmetric quartic potential, η(t)—exponen-

tially correlated random process, ξ(t)—α stable white noise.

Potential V(u) is considered usually in conventional symmetric quartic form, but also various

nonsymmetric variants are regarded in order to respect specific anomalous situations, see also

sections 2 and 3. Compare Eq. (25) with FitzHugh-Nagumo equations, see [76, 77]. The

contemporary research uses more sophisticated models respecting the space distribution.

However, the basic mechanism concerning the time coordinate following Eq. (25) is kept.

Further research in 1990s has been focused to abrupt glacial climatic changes. It has been

conducted in view to SR phenomenon related with these changes. Results appeared succes-

sively during last 2 decades, see, e.g., [5, 78], and later [79, 80] reflecting furthermore specific

attributes of the chaotic dynamics. On the basis of SR, many more studies have been published

dealing with general and specific themes. See, e.g., [81] discussing SR in the North Atlantic and

a large series of articles by Ditlevsens (senior and junior), e.g., [82] dealing with the rapid

climate shifts observed in the glacial climate.

Take a note that the statistical properties of relevant processes are adequately characterized by

α-stable processes and so they are widely used in this discipline. For theoretical background

see, e.g., monographs [83, 84] and some problem specific papers, see subsection 6.2.

6. Alternative operators and driving processes

The most common SR definition is based on the Duffing equation with the negative linear part

of stiffness being excited by an appropriate combination of a harmonic and Gaussian white

noise signals. However, it came to light that a few different definitions of SR are possible being

based on an alternative differential system or using other driving noise than the Gaussian one.

It revealed that many cases can be treated much more effectively than under classical defini-

tions. Application of this background is very wide, and it can be concluded that starting

investigation of a particular problem a suitable definition should be carefully selected. So that

they can be actually found everywhere in physics, life, and social disciplines.

6.1. Alternative differential operators

Despite of classical definitions of SR, some nonconventional inherent settings appeared

together with excellent applications in general theory, nano-scale systems, neurophysiology,

etc. Using the linear response theory, some alternative types of SR turned out. For details, see

the original papers by Dykman [19, 85, 86], Luchinsky [7, 8], and other authors. They identified

SR existence in quite different systems from those commonly studied to date, which are typical

by a static double-well potential and being excited by a force equal to the sum of periodic and

driving stochastic components.

(i) SR in a monostable system. The SR can be observed in a monostable nonlinear Duffing

oscillator being driven by additive Gaussian white noise ξ(t) of intensity σ. Let us assume the

nonlinear mass-unity SDOF oscillator:
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€u þ 2ωb _u þ ∂V uð Þ
∂u

¼ ξ tð Þ þ P0 exp iΩtð Þ, V uð Þ ¼ ω2
0

2
u2 þ γ4

4
u4 þ Bu,

ωb ≪ 1, E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 4ωbσ
2 � δ t� t0ð Þ:

(26)

Note that the potential V(u) posses the positive quadratic part and therefore the derivative ∂V

(u)/∂u (providing the stiffness force in mechanical system) is a monotonous function. There-

fore, the system is monostable unlike conventional systems exhibiting SR. Moreover, the

system Eq. (26) is nonsymmetric due to linear term in the potential. It can be understood as a

constant external force pre-stressing the system, see Figure 13(a).

The first variant |B| ≤ 0.43: The eigen frequency is rising monotonously with increasing energy

(or the square of response amplitude). In absence of periodic force and under small noise

intensity σ, the peak of the response variance, spanning around the eigen frequency ω0(E) in

an excitation level E, has the width which is approximately given by ωb, see, e.g., [21] or [23] (in

other word Lorenzian peak). That small periodic force inserted on the right side of Eq. (26) will

be amplified significantly and therefore SR emerges. The most considerable increment corre-

sponds to the frequency Ω = ω0(E).

The second variant |B| > 0.43: The eigen frequency is no more monotonous and exhibits a

minimum for a certain E > 0. Without periodic force, the system response is given by a narrow

spectral density with a maximum at the frequency ωm lying in the point dω0(E)/dE = 0. The ωb

is very small, and therefore, in this point the extremely sharp variance of width approximately

ω
1=2
b arises and increases nearly exponentially with rising σ. So that for Ω close to ωm, the SR

phenomenon can be expected. It comes to light that the second variant leads to more signifi-

cant SR phenomenon.

(ii) SR in a bistable system with periodically modulated noise. Potential of the system is similar to

the classical version, in particular its quadratic part is negative and hence the system is bistable

again. Linear part of the potential is retained. Damping is high (system is over-damped) and

therefore the inertia term can be neglected. The system behavior is modeled is follows:

_u þ ∂V uð Þ
∂u

¼ f tð Þ � ξ tð Þ 1

2
P0 exp iΩtð Þ þ 1

� �

, V uð Þ ¼ �ω2
0

2
u2 þ γ4

4
u4 þ Bu; (27)

Unlike Eq. (26), a harmonically modulated white noise is applied on the right side. Parameter B

characterizes again the asymmetry of the potential. For �2= 3
ffiffiffi

3
p� �

< B < 2= 3
ffiffiffi

3
p� �

, the poten-

tial possesses two minima. Simple manipulation gets the intensity of the driving force, see

Figure 13(b). As the amplitude P0 is considered small, its square can be neglected. So the real

part reads:

E f tð Þf t0ð Þf g ¼ 2σ2δ t� t0ð Þ 1þ P0 cos Ωtð Þð Þ (28)

and we can see that the intensity of the driving force is periodic. Herewith the phenomenon of

SR type emerges.
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(iii) SR in a system with coexisting periodic attractors. The third form of nonconventional SR

is entirely different form of bistability. The SR concept can be based on coexisting stable

states having the form of periodic or chaotic attractors, if there are any. The coexisting

attractors are not static, but periodic. Theoretical analysis of these more involved situa-

tions draw on the existence (for relevant systems) of generalized potentials, not necessar-

ily analytic in the state variables, possessing local minima on the corresponding attractors.

For simplicity, the case where the period of vibration for each of the two attractors is the

same can be considered and, consequently, it can be assumed that they correspond to two

different stable states of forced vibration induced by an external periodic field driving the

system, see Figure 13(c). This interesting approach has been proposed in [87] where

chaotic SR is studied to enhance attractors reconstruction using an appropriated random

additional noise.

The under-damped nonlinear oscillator to be considered provides a well-known simple, but

nontrivial, example of a system that behaves in just this way; its bistability under periodic,

nearly resonant driving has been investigated in the context of nonlinear optics and in exper-

iments on a confined relativistic electron excited by cyclotron resonant radiation. The particu-

lar model we treat, the nearly-resonantly-driven, under-damped, single-well Duffing oscillator

with additive noise, which serves as an archetype for the study of fluctuation phenomena

associated with coexisting periodic attractors, is described by

€u þ 2ωb _u þ
∂V uð Þ

∂u
¼ ξ tð Þ þ P0 exp iΩtð Þ, V uð Þ ¼

ω2
0

2
u2 þ

γ4

4
u4 þ Bu,

ωb ≪ 1, E ξ tð Þf g ¼ 0, E ξ tð Þξ t0ð Þf g ¼ 4ωbσ
2 � δ t� t0ð Þ:

(29)

The appearance of new types of SR in systems far from the conventional static double-well

potential shows that SR is a very general phenomenon. In other words, there are many

physical situations where noise can be used to increase the response of a system to periodic

driving. The effect is not confined to systems with coexisting static stable states. Correspond-

ingly, SR may be more widespread in nature, and potentially of wider relevance in science and

technology, than has hitherto been appreciated.

Figure 13. Alternative operators: (a) monostable system; (b) bistable system with periodically modulated noise; (c)

system with coexisting periodic attractors.
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(iv) Logistic map. Let us note that each of differential operators above can be formulated in term

of its discretized variant. Then the whole stochastic differential system can be rewritten in form

of a logistic map:

uiþ1 ¼ ui;ui�1;…; ti; ti�1;…ð Þ (30)

where ui is the state vector of the system in i-th point. This scheme includes an explicit time

point to indicate that additive excitation (deterministic, stochastic in time) is acting. This

discretized version is widely used if the immediate stochastic simulation is foreseen. Anyway,

a care should be taken and Ito system is to be formulated the first respecting principles of

manipulation with stochastic processes, see, e.g., [20–22]. These operations related with SR are

very close to optimal (suboptimal) filtering and other stochastic data treatment. They can

provide valuable contribution to SR application especially in numerical processing. This con-

cerns particularly one-pass filtering where evaluation processes with SR algorithms are very

close. For details see, for instance, [23] and other monographs, where even more general

models than Eq. (30) are formulated.

6.2. NonGaussian driving noise

Although Gaussian random noise is mostly used as driving component, there approved well

also other than Gaussian processes. This finding results from the inherent nature of a number

of processes originally characterized by different PDF.

(i) α-stable processes. A number of papers deal with α-stable processes in the role of SR

generator. For comprehensive acquainting with α �stable and other useful nonGaussian

processes monographs [83, 84] are recommended, see Figure 14. Indeed, α-stable processes

are suitable for use in nondynamical application, see, e.g., [88]. Authors thoroughly analyzed

specific attributes of this class of problems and show doubtless advantages of α-stable

instead Gaussian processes in certain nondynamical cases. They obtained these conclusions

by means of theoretical and experimental procedures with white and arbitrarily colored

noise. Further contribution being neurophysiology motivated are papers [40, 41]. These large

Figure 14. α-stable, Gaussian, and Cauchy processes.
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studies treat problems of robust SR and adaptive SR in noisy neurons based on mutual

information assessment.

(ii) Impuls chains–Poisson driven processes. Concerning nonGaussian driving noise, the impuls

chains and various Poisson driven processes can be used in special cases [46]. A couple of

authors investigated the basis of signal detection and adaptation in impulsive driving noise in

framework of plasma physic, see [89].

(iii) Colored noise. Employment of colored noise is studied in review and particular problem

focused articles. This noise being used intentionally has an effect, which is close to window

filtering. It can be adjusted suitably to instantaneous needs. If it follows from the frequency

limited “white noise” (finite correlation times), then influence of this low pass filter should be

examined. The role of such physically realistic noise is studied for exponentially correlated

Gaussian noise with constant intensity, see, e.g., [46, 90], etc. In principle, in over-damped

dynamics (first order equation of SDOF system), the role of colored noise generally results in a

reduction of SR efficiency. In contrast, finite inertia effects (second order equation of SDOF

system), induced by moderate damping, tends to increase SR system response.

(iv) High frequency deterministic signal. Interesting idea is to use a high frequency deterministic

signal in a meaning of a driving noise instead a random noise. For this reason, the final

phenomenon is called vibrational resonance (VR), see [91]. This phenomenon analogous with

SR occurs when the excitation frequency is well separated from the forcing frequency of the

potential well. This setting approved very well when machine vibration is treated. Machine

vibration is never truly stochastic, this provides a mechanism to link stochastic resonance to

real mechanical devices, such as those used for vibrational energy harvesting, see section 3 or 4

referring among others about vibration damping.

6.3. Some other nonconventional settings

Let us briefly remark some specific SR settings. They are valuable not only for the area where

they usually have been evolved, but serve as a possible inspiration for the whole SR commu-

nity. Although for the full understanding, the adequate papers should be studied, have a look

at some of them:

(i) Useful signal has the impulsive or rectangular form. Driving random signal is still Gaussian

white noise. Amplification and distortion of a periodic rectangular driving signal by a noisy

bistable system has been studied in [92]. Impulsive signals emerging in plasma physics are

thoroughly reported in a series of publications by Nurujjaman et al. see [89]. Anyway, these

papers attract attention also beyond plasma physics being interesting from general methodo-

logical points of view.

(ii) SR in systems exhibiting chaos. Dynamical systems in the regime of deterministic chaos

evolve under certain conditions through a sequence of intermittent jumps between two pre-

ferred regions of phase space and without the intervention of a driving noise. Such systems,

which give rise to multi-modal probability distributions, display an enhanced sensitivity to

external periodic forcings through a stochastic resonance-like mechanism, see, e.g., [87]. For
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further reading about chaotic response of deterministic systems, see monographs e.g., [93]

or [94].

Let us include to this paragraph also reference to the adaptive SR, see, e.g., [41]. This approach

seems to be promising as it makes possible to change parameters of the system dynamically

during signal transmission in noisy neurons ambiance. The main goal of that concept consists

in the fact that fuzzy and other adaptive systems can learn to induce SR based only on samples

from the process. Application in other fields like control of electro-hydraulic testing equipment

or smart control of vibration damping are obvious.

(iii) Slowly varying parameters. In many systems, the dynamics in the absence of both noise and

forcing is controlled by a number of parameters λi describing the constraints acting from the

external world. Ordinarily these parameters are assumed to remain constant, but there are

situations where this strategy constitutes an oversimplification (gradual switching on/off a

device, man-biosphere-climate interactions, etc.). In the absence of external periodic forcing,

the simultaneous action of noise and of a slow variation of λi in the form of a ramp may lead to

freezing of the system in a preferred state by practically quenching the transitions across the

barrier. The interaction between SR and the action of the ramp provides an alternative method

for the control of the transition rates by allowing the system to perform (transiently) a certain

number of transitions (depending on the forcing frequency and the noise strength) prior to

quenching.

7. Conclusion

The chapter tried to indicate the essence of SR. This is for the first view counter-intuitive

phenomenon brings a large impact on physical, biological, and engineering systems. It is clear

that SR is generic enough to be observable in a large variety of systems. The SR emerges in all

scales, we can imagine. It governs the processes from nuclear fusion in the sun to the intra-

atomic structures on the level of quantum mechanics. Amazing results of the basic research

have been achieved and excellent industrial programs have been launched being based on

many variants of SR. This concept of SR enabled to obtain an insight and exact description of

many effects in macro and micro (nano) world and to fight successfully against various

nondesirable phenomena in engineering. It resulted in many actually nonreplaceable products

of signal sensing and processing, medical instruments, and treatment procedures. Many SR-

inspired neurophysiological implants represent cornerstones at the field.

The SR can be perceived as a natural phenomenon ruling inside of certain dynamic systems. In

such a case, it can act either positively as for instance to help stabilize the dynamic system and

therefore, to improve the system reliability or oppositely it can affect the system negatively,

e.g., as a strong periodic exciting force, which is necessary to be avoided. The second view of

SR understanding is considered in active synthesis and manipulation with the noise. Addition

of appropriate dose of (mostly) random noise onto the useful signal provides a significant

increase of sensitivity and reliability of the equipment and enlarge its ability of data sensing,
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processing, and possibly their usage in a feedback. The same is valid concerning an increase of

information transfer capacity and reliability.

The chapter outlines a short history of SR. An overview of SR utilization in various disci-

plines in physical, life, and social sciences is briefly looked through. Some possibilities of

modeling in dynamics using SR strategy are indicated. Mathematical treatment and the most

popular solution methods of investigation are pointed out including semi-analytic, numeri-

cal, simulation based and experimental approaches. Nevertheless, aspects related with Engi-

neering Dynamics make intentionally a core of the chapter. Also the section dealing with

energy harvesting has been highlighted as it shares many joint attributes with dynamics

itself.

The phenomenon of SR in whatever variant is worthy to be employed in Engineering

Dynamics having a large potential of specific basic research as well as of engineering

applications. Industrial aerodynamics seems to be promising wide branch where several

effects of stability loss could be explained as effects related with SR. This approach

approved to describe the divergence stability loss in the nonlinear formulation of a slender

beam post-critical behavior in a cross flow. Additional problems are waiting for similar

type of theoretical description and subsequent experimental verification. The same proba-

bly emerge at area of panel flutter, various variants of buffeting, etc. This strategy could

enable to formulate new ideas for development of nonconventional measures for vibration

damping. Another area of SR application prove to be problems of vehicle dynamic stability

and its post-critical behavior. Similarly like in aeroelasticity the results obtained can be used

for development of new generation of vibration quenching devices of both passive and

actively controlled types.

It should be highlighted that adequate experiments will be absolutely necessary. However,

they should be newly proposed and performed properly, as they will differ in many ways

from conventional experiments. On the other hand, a lot of inspiration at both theoretical

as well as experimental fields can be taken from solid state physics and energy harvesting

area.

Let us be aware that SR is a challenging discipline for Engineering Dynamics offering a large

variety of possibilities of new developments at theoretical as well as experimental platform. It

could significantly enhance the top areas of nonlinear and stochastic dynamics closely related

with Computational Mechanics, which is very advanced and widely used in comparison with

other fields of numerical analysis. It provides strong support to Engineering Dynamics, which

stands on the threshold to enter the field of research and application of SR.
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