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Abstract

In this work, a first-order autoregressive hidden Markov model (AR(1)HMM) is pro-
posed. It is one of the suitable models to characterize a marker of breast cancer disease
progression essentially the progression that follows from a reaction to a treatment or
caused by natural developments. The model supposes we have observations that increase
or decrease with relation to a hidden phenomenon. We would like to discover if the
information about those observations can let us learn about the progression of the phe-
nomenon and permit us to evaluate the transition between its states (supposed discrete
here). The hidden states governed by the Markovian process would be the disease stages,
and the marker observations would be the depending observations. The parameters of the
autoregressive model are selected at the first level according to a Markov process, and at
the second level, the next observation is generated from a standard autoregressive model
of first order (unlike other models considering the successive observations are indepen-
dents). A Markov Chain Monte Carlo (MCMC) method is used for the parameter estima-
tion, where we develop the posterior density for each parameter and we use a joint
estimation of the hidden states or block update of the states.

Keywords: autoregressive hidden Markov model, breast cancer progression marker,
Gibbs sampler, hidden states joint estimation, Markov Chain Monte Carlo

1. Introduction

The main motivation behind this work is to characterize progression in breast cancer. In fact,

disease progression cannot be assessed correctly without the use of biomarkers, which would

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



effectively monitor the evolution of the patient health state, and this is the case for breast cancer.

The major challenge in this matter for researchers and clinicians is to unravel the stage of the

disease, so as to tailor the treatment for each patient and to monitor the response of a patient to a

treatment.

Currently, studies have shown that there is a correlation between the levels of certain markers

such as cancer antigen CA15-3, carcinoembryonic antigen (CEA), and serum HER2 Neu with

the stage of the disease [1]. This gives an opportunity of using a hidden Markov model (HMM)

to predict the stage of the disease based on biomarker data and to address the effectiveness of

the treatments in their influence on the transition of the cancer from one state to another. In

HMM, we have two constituents: the Markovian hidden process suitable to represent the

breast cancer stage and the observation process given by the biomarker data. By the way, we

can learn about the disease transition rates and how it progresses from primary breast cancer

to advanced cancer stage, for example.

Indeed, HMM is a useful tool for tackling numerous concrete problems in many fields but some

possible applications of HMM are in speech processing [2], in biology [3], in disease progres-

sion [4], in economics [5, 6], and in gene expression [7]. For a complete review of HMM, the

reader is referred to Zucchini and MacDonald [8], in which properties and definitions of HMM

are presented in a plausible way with both classical estimation by maximum likelihood method

and expectation maximization (EM) algorithm and the new Bayesian inference is addressed.

The model we consider here is a variation of the regular hiddenMarkovmodel, since we will use

extensions to incorporate dependence among successive observations, suggesting autoregressive

dependence among continuous observations. Consequently, we have relaxed the conditional

independence assumption from a standard HMM, because we would like to add some dynamics

to the patient disease progression and because in reality the current patient biomarker observa-

tion is dependent on the past one. In fact, the autoregressive assumption in HMM has shown its

advantage over regular HMM that cannot catch the strong dependence between successive

observations (e.g., Ref. [9]). A similar model to ours can be found in Ref. [10]. This kind of

models, which were first proposed in Ref. [11] to describe econometrics time series, is generali-

zation of both HMM and autoregressive models, will be effective in representing multiple

heterogeneous dynamics such as the disease progression dynamics, and can be even generalized

to a regime-switching ARMAmodels such as in Ref. [12].

Moreover, Our model can also be viewed as an extension of the multivariate double-chain

Markov model (DCMM) developed by Ref. [13], where there are two discrete Markov chains

of first order: the first Markov chain is observed and the second one is hidden. In contrast to

this DCMM, our multivariate first-order autoregressive hidden Markov model (MAR(1)HMM)

will lead to continuous observations, where each observation conditional on the hidden pro-

cess will depend on the previous observation according to an autoregressive process of first

order. This dynamic is promising for continuous observed disease biomarkers.

Parameter estimation is very challenging for HMM family models since the likelihood is not

available in a closed form most of the time. Thus, we call for a Markov Chain Monte Carlo

(MCMC) procedure instead of a maximum likelihood-based approach. This choice rises from

the fact that the Bayesian analysis uses prior knowledge about the process being measured,
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and it allows direct probability statements and an approximation of posterior distributions for

the parameters. Instead in the maximum likelihood approach, we cannot have declared prior

or have exact distribution for the parameters when the likelihood is untractable or when we

have missing data (e.g., Refs. [14–16]).

Since the realization of HMM includes two separate entities: the parameters and the hidden

states, the Bayesian computation is carried out after augmenting the likelihood by the missing

hidden states [17]. The hidden states are sampled using a Gibbs sampler adopting a joint estima-

tion of the hidden states or block update of the states (instead of a single update of each state

separately) by means of a forward filtering/backward smoothing algorithm. Given the hidden

states, we can compute the autoregressive parameters and the transition probabilities of the

Markov chain by Gibbs sampler from their posterior densities after specifying conjugate priors

for the parameters. Hence, the MCMC algorithm will alternate between simulating the hidden

states and the parameters. Finally, we can obtain posteriors statistics such as the means, standard

deviations and confidence intervals after assessing the convergence of the MCMC algorithm.

This chapter is organized as follows: after a preliminary on HMM, a description of the model is

given in Section 3. In Section 4, we will give the Bayesian estimation of the parameters and the

hidden states and provide the details of the MCMC algorithm, before presenting the results of

a simulation studies in Section 5 and we will finish by a conclusion.

2. Preliminary

Since the model suggested is of the HMM type, we will describe HMM in more detail: an

HMM is a stochastic process Xt ,Ytf gTt¼0, where Xtf gTt¼0 is a hidden Markov chain

(unobservable) and Ytf gTt¼0 is a sequence of observable independent random variables such

that Yt depends only on Xt for the time t = 0,1,…T. Here the process Xtf gTt¼0 evolves indepen-

dently of Ytf gTt¼0 and is supposed to be a homogeneous finite Markov chain with probability

transition matrix Π of dimension a � a, where a indicates the number of the hidden states and

Π0 = (Π01,…,Π0a) is the initial state distribution.

We denote the probability density function of Yt = yt given Xt = k for k ∈ {1,…, a} with Pxtðyt,θkÞ,

where θk refers to the parameters of P when Xt = k. We suppose further that the processes Yt|Xt

and Yt0|Xt0 are independent for t 6¼ t0. Let Θ = (θ1,…, θa) and θ = (Π0, Π, Θ), and then, the HMM

can be described as follows: First, the likelihood of the observations and the hidden states can be

decomposed to Pðy0,…, yT , x0,…, xT ,θÞ ¼ Pðy0,…, yT jx0,…, xT ,θÞPðx0,…, xT ,θÞ: Since Xtf gTt¼0

is a Markov chain, Pðx0,…, xT ,θÞ ¼ Π0ðx0Þ
YT

t¼1

Πðxtjxt�1Þ. Under the conditional independence of

the observations given the hidden states, Pðy0,…, yT jx0,…, xT ,θÞ ¼ Px0ðy0jθx0Þ
YT

t¼1

PxtðytjθxtÞ.

Consequently, the likelihood function for the hidden states and the observations is given by

Pðy0, y1,…, yT , x0, x1,…, xT ,θÞ ¼ Πðx0ÞPx0ðy0jθx0Þ
YT

t¼0

Πðxtjxt�1ÞPxtðytjθxtÞ.
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3. Model description and specification

The MAR(1)HMMmodel we consider in this work is a hidden Markov model, where condition-

ally on the latent states, the observations are not independent like it is the case for a regular

hidden Markov model. Instead, the current observation is allowed to depend on the previous

observation according to an autoregressive model of first order. As in an HMMmodel, the latent

states evolve according to a discrete first-order time homogeneous Markov model. We consider

data of n continuous random variables observed over time, each of potentially different lengths,

i.e., for each individual i = 1,2,…, n, we observe a vector yi;: ¼ ðyi,ui , …, yi,mi
ÞT, with ui < mi.

Define u0 ¼ min
1 ≤ i ≤ n

uif g and M ¼ max
1 ≤ i ≤ n

mif g and note that the times ui and mi may vary over the

entire observation period from u0 to M with the restriction that ui – mi ≥ 1, for i = 1,2,…,n.

We assume, for i = 1,2,…,n for integer time t = ui,…,mi, that the random variable Yi,t taking

nonnegative values depends only on the states Xt and the previous observation Yi,t–1, and

based on the model developed by Farcomeni and Arima [10], we get the following model:

Yi, tjXt¼xt
¼ βðxtÞYi, t�1 þ μðxtÞ þ εi, t: (1)

The choice of the autoregressive part of the model is motivated by the fact that successive

biomarker observations are most of the time correlated from many diseases unlike the hypoth-

esis of independence between observations in HMMs.

We interpret x as the vector of the hidden health states of the patients; in the case of breast cancer,

those states would be localized or advanced metastatic breast cancer for example, while y is the

vector of the biomarkers observed and measured for the patients. The εi,t are normal variables

with mean 0 and variance σ2 such that εi,t and εi0,t0 are uncorrelated, (i, t) 6¼ (i0, t0).

The parameters βðxtÞ and μðxtÞ are parameters taking values in R for each hidden state and

σ2 ∈ Rþ.

Similar to Ref. [13], the transition matrix of the Markov chain Π is time homogeneous with

dimension a � a where a is the number of hidden states, and Π = (Πgh, g = 1,…,a; h = 1,…,a)

whereΠgh = P(Xt = h|Xt–1 = g), for g = 1,2,…,a; h = 1,2,…, a; and t = u0+1,…,M. We let the first state

Xu0 to be selected from a discrete distribution with vector of probabilities r = (r1,…,ra). Also we

consider the time of initial observation ui, the initial observed state yi,ui , and the number of

consecutive time points that were observed mi – ui + 1. Let μ = (μ(1),…, μ(a)), β = (β(1),…,β(a)), and

θ = (μ, β, σ2, r, Π) be the set of all parameters in the model. We suppose that the individuals, i.e.,

Yi,t, behave independently conditionally on X. Therefore, for i = 1,…,n, Pðyi;:jyi,ui , x,θÞ ¼

Ymi

t¼uiþ1

Pðyi, tjyi, t�1, xt,ΘÞ and PðxjθÞ ¼ Pðxu0Þ
YM

t¼u0þ1

Pðxtjxt�1,ΠÞ, where Pðxtjxt�1,ΠÞ ¼ PðXt ¼

xtjXt�1 ¼ xt�1,ΠÞ ¼ Πxt�1,xt : Then, the likelihood density for the observations of all individuals

y = (y1,…,yn) given first time vector of observations y0 ¼ ðy1;u1
,…, yn,unÞ, x, and θ is

Pðyjy0, x,θÞ ¼
Yn

i¼1

Pðyi;:jyi,ui , x,θÞ,
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This is due to the conditional independence of the yi, given x and θ. The joint mass of each yi,.

and x given yui and θ can be written as follows: Pðyi;:, xjyi,ui ,θÞ ¼ Pðyi;:jyi,ui , x,θÞ � Pðxjyui ,θÞ:

Using the Markov property of the hidden process, we have after simplification Pðxjyi,ui ,θÞ

∝ Pðyi,ui jx,θÞPðxjθÞ ¼ Pðyi,ui jxui ,θÞrxu0Πxu0 ,xu0þ1
�⋯�ΠxM�1,xM : In addition, Pðyi;:jyi,ui , x,θÞ ¼

Y

mi

t¼uiþ1

Pðyi, tjyi, t�1, x,θÞ, and consequently,

Pðyi;:, xjyi,ui ,θÞ ∝ rxu0Pðyi,ui jxui ,θÞ
Y

M

t¼u0þ1

Πxt�1,xt

Y

mi

t¼uiþ1

Pðyi, tjyi, t�1, x,θÞ: Finally, under the hypoth-

esis of normal error distribution for the autoregressive parameters of the model (Eq. (1)) and

the Chapman-Kolmogorov property, the joint distribution of yi,. and x given yi,ui and θ can be

simplified to:

Pðyi;:, xjyi,uiθÞ∝Pðyi,ui jxui ,θÞ
Y

a

h¼1

r
χ

xu0f g
ðhÞ

h

Y

M

t¼u0þ1

Y

a

g¼1

Y

a

h¼1

Πg,h
χ xt,xt�1f gðg,hÞ

�
Y

mi

t¼uiþ1

Y

a

h¼1

1
σφ

yi, t�μðhÞ�βðhÞyi, t�1

σ

� �� �χ xtf gðhÞ

,

where φ denotes the density of a standard normal distribution N ð0; 1Þ and χ Af gðxÞ is the usual

indicator function of a set A. Finally, the joint distribution of y and x has the following form:

Pðy, xjy0,θÞ∝
Y

a

h¼1

r
χ

xu0f g
ðhÞ

h

Y

M

t¼u0þ1

Y

a

g¼1

Y

a

h¼1

Πg,h
χ xt,xt�1f gðg,hÞ

�
Y

n

i¼1

Y

a

l¼1

1
σφ

yi,ui
�μðlÞ

σ

� �� �χ xtf gðlÞ

�
Y

n

i¼1

Y

mi

t¼uiþ1

Y

a

h¼1

1
σφ

yi, t�μðhÞ�βðhÞyi, t�1

σ

� �� �χ xtf gðhÞ

:

(2)

4. Bayesian estimation of the model parameters

We will use a Bayesian approach to estimate the model parameters. Inference in the Bayesian

framework is obtained through the posterior density, which is proportional to the prior multi-

plied by the likelihood. The posterior distribution for our model, as in most cases, cannot be

derived analytically, and we will approximate it through MCMC methods specifically

designed for working with the augmented likelihood with the hidden states. In fact, MCMC

methods start by specifying the prior density Π(θ) for the parameters. Since the data Y are

available, the general sampling methods work recursively by alternating between simulating

the full conditional distributions X given y and θ given x and y.

4.1. Prior distributions

Under the assumption of independence between the parameters θ ¼ ðμ, β, σ2, r,ΠÞ, the prior

density could be written as PðθÞ ¼ PðrÞPðΠÞPðμÞPðβÞPðσ2Þ. r is the parameters of a multino-

mial distribution; hence, the natural choice for the prior would be a Dirichlet distribution
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r � Dðα01,…,α0aÞ. Later on,
X

a

j¼1

Πij ¼ 1, and we assume that Πi � Dðδi1,…, δiaÞ for each row i

of the transition matrix. This choice of the Dirichlet prior can be even the default Dð1;…; 1Þ as

recently discussed in Ref. [18]. In fact, a Dirichlet prior is justified because the posterior density

of each row of the transition matrix is proportional to the density of a Dirichlet distribution,

and hence, choosing a Dirichlet prior would give a posterior Dirichlet. This can be justified as

follows for a given set of parameters λ ¼ ðλ1,…,λaÞ from a discrete or from a multinomial

density:

πðx1,…, xa,λ1,…,λaÞ ¼
n!

x1 !…xa!
λx1
1 …λxa

a for the nonnegative integers x1,…, xa, with
X

a

i¼1

xi ¼ n:

This probability mass function can be expressed, using the gamma function Γ, as

πðx1,…, xa,λ1,…,λaÞ ¼

Γ

X

a

i¼1

xiþ1

 !

Y

a

i¼1

Γðxiþ1Þ

Y

a

i¼1

λxi
i : This form shows its resemblance to the Dirichlet

distribution, and by starting from supposing the prior λ∝Dðα0,…,αaÞ, the posterior is

PðλjxÞ∝PðλÞPðxjλÞ∝
Y

i

λxi
i

Y

i

λαi�1
i ∝

Y

i

λxiþαi�1
i ∝Dðx1 þ α1,…, xa þ αaÞ:

Furthermore, concerning the priors for parameters of the autoregressive model, we suppose

for h ¼ 1;…, a: μðhÞ � N ðαh, τhÞ, β
ðhÞ � N ðbh, chÞ, and inverse gamma (IG) prior for σ2 � IG

ðε, ζÞ. αh, τh, bh, ch, E, ζ are hyperparameters to be specified. For more details on Bayesian

inference and prior selection in HMM, the reader is referred to Ref. [19]. In our case, prior

distributions for the autoregressive parameters were proposed by Ref. [20] for a mixture

autoregressive model, who points out that they are conventional prior choices for mixture

models.

4.2. Sampling the posterior distribution for the hidden states

Chib [21] developed a method for the simulation of the hidden states from the full joint

distribution for the univariate hidden Markov model case. We will describe his full Bayesian

algorithm for the univariate hidden Markov model before a generalization to our MAR(1)

HMM.

4.2.1. Chib’s algorithm for the univariate hidden Markov model for estimation of the states

Suppose we have an observed process Yn ¼ ðy1,…, ynÞ and the hidden states Xn ¼ ðx1,…, xnÞ,

θ are the parameters of the model. We adopt for simplicity Xt ¼ ðx1,…, xtÞ the history of the

states up to time t and Xtþ1 ¼ ðxtþ1,…, xnÞ the future from t + 1 to n. We use the same notation

for Yt and Yt+1.

For each state xt ∈ 1; 2;…, af g for t ¼ 1; 2;…, n, the hidden model can be described by a condi-

tional density given the hidden states πðytjYt�1, xt ¼ kÞ ¼ πðytjYt�1,θkÞ, k ¼ 1;…, a, with xt
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depending only on xt–1 and having transition matrix Π and initial distribution Π0, and the

parameters for π(.) are θ ¼ ðθ1,…,θaÞ.

Chib [21] shows that it is preferable to simulate the full latent data Xn ¼ ðx1,…, xnÞ from the

joint distribution of x1,…, xnjYn,θ, in order to improve the convergence property of the

MCMC algorithm because instead of n additional blocks if each state is simulated separately,

only one additional block is required. First, we write the joint conditional density as

PðXnjYn,θ,ΠÞ ¼ PðxnjYn,θÞPðxn�1jYn, xn,θ,ΠÞ �⋯� Pðx1jYn, X
2,θ,ΠÞ:

For sampling, it is sufficient to consider the sampling of xt from PðxtjYn, X
tþ1,θ,ΠÞ. Moreover,

PðxtjYn, X
tþ1,θ,ΠÞ∝PðxtjYt,θ,ΠÞPðxtþ1jxt,ΠÞ. This expression has two ingredients: the first is

Pðxtþ1jxt,ΠÞ, which is the transition matrix from the Markov chain. The second is PðxtjYt,θ,ΠÞ

that would be obtained by recursively starting at t = 1.

The mass function Pðxt�1jYt�1,θ,ΠÞ is transformed into PðxtjYt,θ,ΠÞ, which is in turn

transformed into Pðxtþ1jYtþ1,θ,ΠÞ and so on. The update is as follows: for k ¼ 1;…, a, we

could write

Pðxt ¼ kjYt,θ,ΠÞ ¼
Pðxt ¼ kjYt�1,θ,ΠÞπðytjyt�1,θkÞ

Xa

l¼1
Pðxt ¼ ljYt�1,θ,ΠÞπðytjyt�1,θlÞ

:

These calculations are initialized at t = 0, by setting Pðx1jY0,θÞ to be the stationary distribution

of the Markov chain. Precisely, the simulation proceeds for k ¼ 1;…, a, recursively by first

simulating Pðx1 ¼ kjY0,θÞ, from the initial distribution Π0(k) and Pðx1 ¼ kjY1,θ,ΠÞ

∝Pðx1 ¼ kjY0,θ,ΠÞπðy1jY0,θkÞ: Then, we get by forward calculation Pðxt ¼ kjYt�1,θÞ ¼
Xa

l¼1
ΠlkPðxt�1 ¼ ljYt�1,θÞ, for each t ¼ 2;…, n, where Πlk is the transition probability and

Pðxt ¼ kjYt,θÞ∝Pðxt ¼ kjYt�1,θ, PÞΠðytjYt�1,θkÞ: The last term in the forward computation

Pðxn ¼ kjYn,θÞ would serve as a start for the backward pass, and we get recursively for each

t ¼ n� 1;…; 1:; Pðxt ¼ kjYn, X
tþ1,θÞ∝PðxtjYt�1,θ,ΠÞPðxtþ1jxt ¼ k,ΠÞ, which permits the

obtention of Xn ¼ ðx1,…, xnÞ.

4.2.2. Simulating the hidden states for the MAR(1)HMM

Returning to our model, and adopting notations and algorithm developed by Fitzpatrick and

Marchev, f will denote the observation density for the MAR(1)HMM, and for u0 < t < M;

x�t ¼ ðxu0 ,…, xtÞ, xt ¼ ðxt,…, xMÞ, yðtÞ ¼ ðyi, t, i ¼ 1; 2;…, nÞ, y, t ¼ ⋃
i:ui<t

yi,ui ,…, yi,min t,mif g

n o

,

and yt ¼ ⋃
i:t<mi

yi,max tþ1;uif g,…, yi,mi

n o

. The posterior distribution of the hidden state could be

written as: Pðx�Mjy,M,θÞ ¼ PðxMjy,M,θÞ �⋯� Pðxu0 jy,M, x
u0þ1,θÞ. So we could sample the

whole sequence of states by sampling from Pðxtjy,M, x
tþ1,θÞ: Hence, the estimation of the

hidden states is performed recursively by first initializing
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Pðxu0 jy,u0 ,θÞ∝Pðy,u0 jxu0ÞPðxu0 jrÞ; y,u0 ¼ yi,ui, , ui ¼ u0, i ¼ 1;…, n
n o

:

Pðxu0þ1 ¼ kjy,u0 ,θÞ ¼
X

a

l¼1

ΠlkPðxu0 ¼ ljY,u0Þ; k ¼ 1;…, a:

Pðxu0þ1 ¼ kjy,u0þ1,θÞ∝Pðxu0þ1 ¼ kjy,u0 ,θÞf ðyðu0Þjy,u0 ,θkÞ:

We perform a similar calculation for every state at time t, and we conclude by calculating

PðxM ¼ kjy,M�1,θÞ ¼
Xa

l¼1
ΠlkPðxM�1 ¼ ljY,M�1,θÞ, and PðxM ¼ kjy,M,θÞ∝PðxM ¼ kjy,M�1,θ

Þf ðyðMÞjy,M�1,θkÞ. Later on, we get PðxM ¼ kjy,M,θÞ, which permits the simulation of

PðxMjy,M,θÞ: Finally, by backward calculation, we simulate from the probabilities

Pðxtjy,M, x
tþ1,θÞ∝Pðxtþ1jxt,ΠÞPðxtjy, t,θÞ for each time t ¼ M� 1;…, u0. Those backward

probabilities would permit the simulation of the latent states.

4.3. Sampling from P(θ|x, y)

4.3.1. Sampling Π

Under the prior assumption of Dirichlet prior for each row of the transition matrix

PðΠiÞ∝Dðδi1,…, δiaÞ, and the independence assumption between those rows, the posterior

distribution for Πi can be developed using Eq. (2) as follows: Let nij denote the number of

single transitions from state i to state j, so

PðΠijy, xÞ∝PðΠiÞ
Y

M

t¼u0þ1

Y

a

j¼1

Π
χ xt�1,xtf gði, jÞ

∝PðΠiÞ
Y

a

j¼1

Π
nij
ij ∝

Y

a

j¼1

Π
δijþnij�1

ij

∝Dðδi1 þ ni1,…, δia þ niaÞ:

4.3.2. Sampling posterior distribution for initial distribution

Let n0l ¼ χxu0
ðlÞ, for l ¼ 1;…, a. Using (2), under Dirichlet prior Dðδ01,…, δ0aÞ for the parameter

r, we obtain Pðrjx, yÞ∝PðrÞ
Y

a

l¼1

r
χ

xu0f g
ðlÞ

l ∝

Y

a

l¼1

rδ0lþn0l�1
l ∝Dðδ01 þ n01,…, δ0a þ n0aÞ:

4.3.3. Sampling posterior distribution for the autoregressive parameters μ, β, σ2

When a complete conditional distribution is known such as the normal distribution or beta

distribution, we use the Gibbs sampler to draw the random variable. This is the case for our

model. Let us define nuiðlÞ ¼
X

n

i¼1

χ xui¼lf g, nl ¼
X

n

i¼1

X

mi

t¼uiþ1

χ xt¼lf g, N ¼
X

a

l¼1

nl, n0l ¼ χ xu0f gðlÞ: So for

l ¼ 1; 2;…, a; by supposing N ðαl, τlÞ as prior distribution and using Eq. (2), the conditional

posterior distribution of μ(l) is:
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PðμðlÞjy, xÞ∝PðμðlÞÞ
Y

n

i¼1

1
σφ

yi,ui
�μðlÞ

σ

� �� �χ
xuif g

ðlÞ

�
Y

n

i¼1

Y

mi

t¼uiþ1

1
σφð

yi, t�μðlÞ�βðlÞyi, t�1

σ Þ

� �χ xtf gðlÞ

:

∝ exp
�1

2

ðμðlÞ � αlÞ
2

τl
þ

X

n

i¼1;xui¼l

yi,ui � μðlÞ

σ

 !2

þ
X

n

i¼1

X

mi

t¼uiþ1;xt¼l

yi, t � μðlÞ � βðlÞyi, t�1

σ

 !2
8

<

:

9

=

;

:

then μðlÞ=y, x � N ð~τ l, ~α lÞ with inverse mean ~τ l
�1 ¼

nui ðlÞþnl
σ2

þ 1
τl
and variance

~α l ¼ ~τ l

X

n

i¼1;xui¼l

yi,ui þ
X

n

i¼1

X

mi

t¼uiþ1;xt¼l

ðyi, t � βðlÞyi, t�1Þ

σ2
þ
αl

τl

0

B

B

B

B

@

1

C

C

C

C

A

:

For βðlÞ, l ¼ 1;…, a, and similar to μ(l), N ðbl, clÞ was proposed as prior choice to obtain:

PðβðlÞjy, xÞ∝PðβðlÞÞ
Y

n

i¼1

Y

mi

t¼uiþ1

1

σ
φ

yi, t � μðlÞ � βðlÞyi, t�1

σ

 !" #χ xtf gðlÞ

,

and therefore, βðlÞ=y, x � N ð~cl,~b lÞ with inverse mean ~cl
�1 ¼ 1

cl
þ

X

n

i¼1

X

mi

t¼uiþ1;xt¼l

y2
i, t�1

σ2 and variance

~bl ¼ ~cl
bl
cl
þ

X

n

i¼1

X

mi

t¼uiþ1;xt¼l

ðyi, t � μðlÞÞyi, t�1

σ2

0

B

B

B

B

@

1

C

C

C

C

A

:

For the posterior distribution of σ2, by supposing IGðε, ζÞ as prior, we deduce from Eq. (2)

Pðσ2jy, xÞ∝ ðσ2Þ�ðεþ1Þ exp ð�
ζ

σ2
Þ
Y

n

i¼1

1

σ
φ

yi,ui � μðxui Þ

σ

 !" #

�
Y

n

i¼1

Y

mi

t¼uiþ1

1

σ
φ

yi, t � μðxtÞ � βðxtÞyi, t�1

σ

 !" #

,

consequently σ2=y, x � IGð~ε, ~ζÞ with parameters ~ε ¼
nuiþ N

2 þ ε and

~ζ ¼

X

n

i¼1

ðyi,ui � μðxui ÞÞ2 þ
X

n

i¼1

X

mi

t¼uiþ1

ðyi, t � μðxtÞ � βðxtÞyi, t�1Þ
2

2
þ ζ:
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Finally, the algorithm is ran for d = 1,…,D iterations by alternating between the following steps,

where in each step we compute a conditional posterior for the given parameter:

The MCMC algorithm:

1. For h ¼ 1; 2; ::::; a, give reference values for the hyperparameters αh, τh, ah, bh, δ0h, and δih
for i ¼ 1; 2; ::::; a:

2. Initialization (Step d = 1 of the MCMC iterations): Initialize Π(1), r(1), μ(1), β(1), and σ2(1).

3. Simulation of the hidden states:

a. Initialization of forward simulation: Pðx
ðdÞ
u0 jy,u0 ,θÞ∝Pðy,u0 jx

ðdÞ
u0 ÞPðx

ðdÞ
u0 jr

ðdÞÞ, with y,u0 ¼

yi,ui, , ui ¼ u0, i ¼ 1;…; n
n o

:

b. Forward simulation: For k ¼ 1;…:;a and t ¼ u0 þ 1;…:;M :

Pðx
ðdÞ
t ¼ kjy, t�1,θÞ ¼

Xa

l¼1
Π

ðdÞ
lk Pðx

ðdÞ
t�1 ¼ ljY, t�1,θÞ and

Pðx
ðdÞ
t ¼ kjy, t,θÞ ¼

Pðx
ðdÞ
t ¼kjy, t�1,θkÞf ðyðtÞjy, t�1,θkÞ

Xa

l¼1
Pðxdt¼ljy, t�1,θÞf ðyðtÞjy, t�1,θlÞ

.

c. Initialization of backward simulation: For k ¼ 1;…:;a, given

Pðx
ðdÞ
M ¼ kjy,M,θÞ from forward simulation, we get Pðx

ðdÞ
M jy,M,θÞ:

d. Backward simulation: For k ¼ 1;…:;a and t ¼ M� 1;…;u0 :

Pðx
ðdÞ
t jy,M, xtþ1ðdÞ,θÞ∝Pðx

ðdÞ
tþ1jx

ðdÞ
t ,πÞPðx

ðdÞ
t jy, t,θÞ:

4. Estimation of the initial distribution and the transition distribution

a. for l ¼ 1;…:;a, k ¼ 1;…:;a. Calculate n0l ¼ χ
x
ðdÞ
u0

f gðlÞ and nkl ¼ ΣM
t¼u0þ1χ x

ðdÞ

t�1
,xðdÞtf gðk, lÞ:

b. Sample ðr
ðdþ1Þ
1 ;…:;r

ðdþ1Þ
a Þ∝Dðδ01 þ n01;…:;δ0a þ n0aÞ:

c. For i ¼ 1;…:; a; sample ðΠ
ðdþ1Þ
i1 ;…:;Π

ðdþ1Þ
ia Þ∝Dðδi1þ ni1;…:;δiaþ niaÞ:

5. Simulation of μ: For l ¼ 1;…:; a,

a. ~τl
�1 ¼

nui ðlÞþnl

σ2
ðdÞ

þ 1
τl
:

b. ~αl ¼ ~τl

X

n

i¼1;xui¼l

yi,ui
þ

X

n

i¼1

X

mi

t¼uiþ1;xt¼l

ðyi, t�β
ðlÞ

ðdÞ
yi, t�1Þ

σ2
ðdÞ

þ αl

τl

0

B

B

B

B

@

1

C

C

C

C

A

:

c. Simulate μ
ðlÞ
ðdþ1Þ=y, x � N ð~αl, ~τlÞ:
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6. Simulation of β: For l ¼ 1;…:;a,

a. ~cl
�1 ¼ 1

cl
þ

X

n

i¼1

X

mi

t¼uiþ1;xt¼l

y2
i, t�1

σ2
ðdÞ

:

b. ~bl ¼ ~cl
bl
cl
þ

X

n

i¼1

X

mi

t¼uiþ1;xt¼l

ðyi, t�μ
ðlÞ

dþ1
Þyi, t�1

σ2
ðdÞ

0

B

B

B

B

@

1

C

C

C

C

A

.

c. Simulate β
ðlÞ
ðdþ1Þ=y, x � N ð~bl,~clÞ:

7. - Simulation of σ2:

a. ~E ¼
nuiþN

2 þ E.

b. ~ζ ¼

X

n

i¼1

ðyi,ui
�μ

ðxui
Þ

ðdþ1Þ
Þ2þ

X

n

i¼1

X

mi

t¼uiþ1

ðyi, t�μ
ðxtÞ

ðdþ1Þ
�β

ðxtÞ

ðdþ1Þ
yi, t�1Þ

2

2 þ ζ.

c. Simulate σ2ðdþ1Þ=y, x � IGðE, ~ζÞ.

5. Simulation study

In this section, we apply our results to the breast cancer model discussed earlier. The main

reason behind our work is that the progression of breast cancer cannot be seen directly unless

we use observations related to the disease that could characterize its progression; those obser-

vations here are quantities which could be measured; they are called biomarkers, where the

word biomarker is used to designate any objective indication of a biological process or disease

condition including during treatment and should be measurable. Furthermore, biomarkers are

increasingly used in the management of breast cancer patients. One example is reported in Ref.

[22], stating that there is correlation between elevation of CEA and/or CA15-3 and disease

progression, in breast cancer patients. Also we use the autoregressive dependence among the

observations to add more dynamics to the model unlike conventional HMMs where the

successive observations given the Markov process are independent. We used the classification

of breast cancer in three states: local where the disease is confined within the breast, the

regional phase when the lymph nodes are involved, and the distant stage where the cancer is

found in other parts of the body. We restrict ourselves to these three stages unlike other stage

classifications that divide the progression in more than three stages such as the TNM (tumor,

node, and metastasis) system. By lack of finding data about breast cancer biomarkers, we will

confine ourselves to simulate an MAR(1)HMM model for observation time M = 24, and a

number of individuals n = 210, a = 3 for Markov states number, with the length observation
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time for each individual selected uniformly between 2 and M. The simulation process sup-

poses we have for the autoregressive means μ ¼ ðμð1Þ,μð2Þ,μð3ÞÞ ¼ ð12; 24; 36Þ, since markers

such as CA15–3 increase as the disease advances toward metastatic breast cancer. In addition,

CA15–3 increase rapidly between successive observations, and thus, we take in the simulation

the parameters β ¼ ðβð1Þ, βð2Þ, βð3ÞÞ ¼ ð0:2; 0:4; 0:8Þ.

The algorithm of simulation works as follows:

1. For each individual i ¼ 1;…, n, choose mi the length of observation for that individual i.

2. Generate each discrete disease state xt using transition matrixΠ ¼ ð0:7; 0:2;0:1; 0:1; 0:6; 0:3;

0:2; 0:3; 0:5Þ for t ¼ u0þ1,…,M.

3. Generate the observations yi,t for all individuals using our model 1.

We choose a prior σ2 � IGð0:001; 0:001Þ, a Dð1;…; 1Þ prior for each row of Π, and Gaussian

noninformative priors for the μs and the βs. Having the hidden states and the observations,

we ran our algorithm for 8000 MCMC iterations. MCMC algorithm convergence was

assessed by analyzing MCMC iterations mixing plots that are shown in Figure 1, autocorre-

lation sample graphs checking as illustrated in Figure 2, and inspecting histograms of poste-

rior densities for the parameters of the models in Figure 3. All parameters show good mixing

of chains, autocorrelations that decay immediately after a few lags, and perfect posterior

densities fitting. Also the Gelman [23] potential scale reduction factor (PSRF) was plot. The

PSRF is measured for more than two MCMC chains (three chains in this works are consid-

ered), and it is measured for each parameter of the model; it should show how the chains

have forgotten their initial values and that the output from all chains is indistinguishable. It is

based on a comparison of within-chain and between-chains variances and is similar to a

classical analysis of variance; when the PSRF is high (perhaps greater than 1.1 or 1.2), then

we should run our chains out longer to improve convergence to the stationary distribution.

Each PSRF declines to 1 as the number of iterations approaches infinity to confirm conver-

gence. All the parameters have shown a PSRF less than 1.1 as the number of iteration

increases and by the way a good sign of convergence (Figure 4). Moreover, we should point

out that in the family of Markov switching model there is the so-called label switching

problem (e.g., Ref. [24]) which arises identifiability problem, and hence, we would not

estimate perfectly the parameters. In addition, the posterior densities could show evidence

of multimodality. some authors postprocess the output of the MCMC to deal with the issue

(e.g., [25]), while other uses a random permutation of the parameters in each iteration of the

MCMC algorithm (e.g., [26]) or one can call for an invariant loss function method (e.g., [27]).

In our case, no identifiability issue is noticed since we used well-separated prior hyper-

parameters. Even when we start from different initial values for the parameters, our algo-

rithm converges immediately after a few iterations.

Finally and before giving our results, we should report that the simulation of the Dirichlet

posterior was carried out following ([28, p. 22], [29, p. 155]) who reported that the posterior

Dirichlet parameters should be simulated using the beta distribution approach. Table 1 shows

how the posterior values estimated from algorithm are very close to the true ones.
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Figure 1. Markov chain mixing for each parameter through MCMC algorithm simulation.
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Figure 2. Autocorrelation sample plots for parameters of the model.
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Figure 3. Posterior densities for the parameters of the model (after 8000 iterations).
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Figure 4. Potential scale reduction factor convergence to less than 1.02 with more iterations.
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6. Conclusion

We have extended the method of Chib [21] for block update estimation of the states to a MAR

(1)HMM model. Furthermore, we would like to point out that our model can easily be

extended to include missing observations, as we should only add an extra step in each MCMC

iteration to estimate the missing observations. Also, we can estimate the autoregressive model

for different values of the autoregressive order, p ≥ 1, by evaluating the Bayesian information

criterion to select the best order that fits the observations of the model. Our model would

capture the complexity and the dynamics of the evolution of breast cancer by introducing the

latent states; the probabilities of transition between the latent states allow to compare among

the effects of treatments on slowing or accelerating the transition of the disease from one health

stage to another the autoregressive parameter mean values corresponding to different stages of

the disease would guide medical doctors and scientists to monitor patients in different phases

of the disease. The model incorporates individual observations with different lengths.

Last but not least, we like to mention the utilities of switching diffusion processes in addres-

sing and analyzing many complicated applications such as in finance and risk management.

Our future work would be to apply these processes to explore disease progression, because

they are characterized by the coexistence of continuous dynamics and discrete events as well

as their interactions.

Parameter True value Posterior statistics

Mean Standard deviation Confidence interval (5%)

μ1 12 11.929 0.047 (11.851–12.005)

μ2 24 23.923 0.047 (23.847–24.000)

μ3 36 35.843 0.070 (35.729–35.959)

β1 0.2 0.2016 0.0012 (0.1997–0.2035)

β2 0.4 0.4018 0.0009 (0.4004–0.4032)

β3 0.8 0.8022 0.0010 (0.8005–0.8038)

π11 0.7 0.688 0.068 (0.5715–0.797)

π12 0.2 0.223 0.062 (0.129–0.332)

π13 0.1 0.090 0.042 (0.032–0.17)

π21 0.1 0.091 0.035 (0.041–0.154)

π22 0.6 0.607 0.059 (0.507–0.701)

π23 0.3 0.302 0.055 (0.214–0.397)

π31 0.2 0.153 0.053 (0.075–0.250)

π32 0.3 0.368 0.071 (0.257–0.488)

π33 0.5 0.479 0.073 (0.358–0.599)

σ2 2 2.023 0.032 (1.970–2.077)

Table 1. Posterior inference for the parameters of the MAR(1)HMM model.
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