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Abstract

This chapter sums up and proposes some results related to classification problem by
Bayesian method. We present the classification principle, Bayes error, and establish its
relationship with other measures. The determination for Bayes error in reality for one and
multi-dimensions is also considered. Based on training set and the object that we need to
classify, an algorithm to determine the prior probability that can make to reduce Bayes
error is proposed. This algorithm has been performed by the MATLAB procedure that can
be applied well with real data. The proposed algorithm is applied in three domains:
biology, medicine, and economics through specific problems. With different characteristics
of applied data sets, the proposed algorithm always gives the best results in comparison to
the existing ones. Furthermore, the examples show the feasibility and potential application
in reality of the researched problem.

Keywords: Bayesian method, classification, error, prior, application

1. Introduction

Classification problem is one of the main subdomains of discriminant analysis and closely

related to many fields in statistics. Classification is to assign an element to the appropriate

population in a set of known populations based on certain observed variables. It is an impor-

tant development direction of multivariate statistics and has applications in many different

fields [25, 27]. Recently, this problem is interested by many statisticians in both theories and

applied areas [14–18, 22–25]. According to Tai [22], we have four main methods to solve the

classification problem: Fisher method [6, 12], logistic regression method [8], support vector

machine (SVM) method [3], and Bayesian method [17]. Because Bayesian method does not

require normal condition for data and can classify for two and more populations it has many

advantages [22–25]. Therefore, it has been used by many scientists in their researches.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Given k populations {wi}, with probability density functions (pdfs) and the prior probabilities

respectively {fi} and {qi}, i = 1, 2,…, k, where qi ∈ ð0; 1Þ,
Xk

i¼1

qi ¼ 1: Pham–Gia et al. [17] used the

maximum function of pdfs as a tool to study about Bayesian method and obtained important

results. The classification principle and Bayes error were established based on the gmax(x) =

max{q1f1(x), q2f2(x), …, qkfk(x)}. The relationship between the upper and lower bounds of the

Bayes error and the L1—distance of the pdfs and the overlap coefficient of the pdfs—were

established. The function gmax(x) played a very important role in the classification problem by

Bayesian method and Pham–Gia et al. [17] continued to do research on it. Using the MATLAB

software, Pham–Gia et al. [18] succeeded in identifying gmax(x) for some cases of the bivariate

normal distribution. With similar development, Tai [22] has proposed the L1—distance of the

{qifi(x)}—and established its relationship with Bayes error. This distance is also used to calcu-

late Bayes error as well as to classify new element. This research has been applied in classifying

ability to repay debt of bank customers. However, we think that the survey of two Bayesian

approach relevant research was not yet completed. There are some relations between Bayes

error and other statistical measures.

Bayesian method has many advantages. However, to our knowledge, the field of applications

of this method in practice is narrower than other methods. We can find many applications in

banking and medicine using Fisher method, SVM method, logistic method [1, 3, 8, 12].

Recently, all statistics software can effectively and quickly process the classification of large

data sets and multivariate statistics using either three of the methods mentioned above,

whereas the Bayesian method does not have this advantage. The cause of this problem is the

ambiguity in determining prior probability, in estimating pdfs, and the complexity in calculat-

ing Bayes error. Although all these issues have been discussed by many authors, the optimal

methods have yet to be found [22, 25]. In this chapter, we consider to estimate the pdf and to

calculate Bayes error to apply in reality. We will present the problem on how to determine the

prior probability in this chapter. In case of noninformation, we normally choose prior proba-

bilities by uniform distribution. If we have some types of past data or training set, the prior

probabilities are estimated either by Laplace method: qi = (ni + n/k)/(N + n) or by the frequencies

of the sample: qi = ni/N, where ni and N are the number of elements in the ith population and

training set, respectively, n is the number of dimensions, and k is the number of groups. The

above-mentioned approaches have been studied and applied by many authors [14, 15, 22, 25].

We will also propose an algorithm to determine prior probability based on the training set,

classified objective, and fuzzy cluster analysis. The proposed algorithm is applied in some

specific problems of biology, medicine, and economics and has advantages over existing

approaches. All calculations are performed by MATLAB procedures.

The next section of this chapter is structured as follows. Section 2 presents the classification

principle and Bayes error. Some results of the Bayes error are also established in this section.

Section 3 resolves the related problems in real application of the Bayes method. There are esti-

mation of pdfs and determination of Bayes error in case of one dimension and multidimension.

This section also proposes an algorithm to determine prior probability. Section 4 applies the

proposed algorithm in real problems and compares outcome results to those obtained using

existing approaches. Section 5 concludes this chapter.
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2. Classifying by Bayesian method

The classification problem by Bayesian method has been presented in many documents

[15, 16, 27], where the classification principle and the Bayes error are established based on Bayes

theorem. In this section, we present them via the maximum function of qifi(x), i = 1, 2, …, k that

they have advantages over existing approaches in real application [17, 18, 21–25]. This section

also establishes the upper and lower bounds of the Bayes error and the relationships of Bayes

error with other measures in statistical pattern recognition.

2.1. Classification principle and Bayes error

Given k populations w1, w2, …, wk with qi ∈ (0;1) and fi(x) are the prior probability and pdf of

ith population, respectively, i = 1, 2,…, k. According to Pham–Gia et al. [17], element x0 will be

assigned to wi if

giðx0Þ ¼ gmaxðx0Þ, i ¼ 1, 2,…, k (1)

where giðxÞ ¼ qif iðxÞ, gmaxðxÞ ¼ max q1f 1ðxÞ, q2f 2ðxÞ,…, qkf kðxÞ
� �

:

Bayes error is given by the formula:

Pe
ðqÞ
1,2,…,k ¼

X

k

i¼1

ð

Rn\Rn
i

qif idx ¼ 1�
X

k

i¼1

ð

Rn
i

qif iðxÞdx, (2)

where Rn
i ¼ xjqif iðxÞ > qjf jðxÞ, ∀i 6¼ j, i, j ¼ 1, 2,…, k

n o

, ðqÞ ¼ ðq1, q2,…, qkÞ:

From Eq. (2), we can prove the following result:

Pe
ðqÞ
1,2,…,k ¼

X

k

j¼1

ð

Rn\Rn
j

qjf jðxÞdx

¼
X

k

j¼1

ð

Rn

qjf jðxÞdx�

ð

Rn
j

max
1 ≤ l ≤ k

qlf lðxÞ
� �

dx

2

6

4

3

7

5

¼

ð

Rn

X

k

j¼1

qjf jðxÞdx�
X

k

j¼1

ð

Rn
j

max
1 ≤ l ≤ k

qlf lðxÞ
� �

dx

¼ 1�

ð

Rn

max
1 ≤ l ≤ k

qlf lðxÞ
� �

dx

or

Pe
ðqÞ
1,2,…,k ¼ 1�

ð

Rn

gmaxðxÞdx: (3)
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The correct probability is determined by Ce
ðqÞ
1,2,…,k ¼ 1� Pe

ðqÞ
1,2,…,k:

For k = 2, we have

Pe
ðq,1�qÞ
1,2 ¼

ð

Rn

min qf 1ðxÞ, ð1� qÞf 2ðxÞ
� �

dx ¼ λ
ðq,1�qÞ
1,2 ¼

1

2
1� kqf 1, ð1� qÞf 2k1
� �

, (4)

where

λ
ðq,1�qÞ
1,2 is the overlap area measure of qf1(x) and (1�q)f2(x) and kqf 1, ð1� qÞf 2k1 ¼

ð

Rn

jqf 1ðxÞ�

ð1� qÞf 2ðxÞjdx:

2.2. Some results about Bayes error

Theorem 1. Let fi(x), i =1, 2, …, k, k ≥ 3 be k pdfs defined on Rn, n ≥ 1, qi ∈ ð0; 1Þ: We have the

relationships of Bayes error with other measures as follow:

i.
Pe

ðqÞ
1,2,…,k ≤ 1�

1

k� 1
1�

Y

k

j¼1

q
αj

j DT f 1, f 2,…, f k
� �α

0

@

1

A, (5)

ii. Pe
ðqÞ
1,2,…,k ≤

X

i<j

q
β
i q

1�β
j DT f i , f j

� 	ðβ,1�βÞ
, (6)

iii.
ðk� 1Þ �

X

i

X

j

kgi ,gjk1

8

<

:

9

=

;

=k ≤Pe
ðqÞ
1,2,…,k ≤ 1� ð1=2Þmax

i<j
kgi ,gjk1

n o

�min
i

qi
� �

, (7)

iv. 0 ≤Pe
ðqÞ
1,2,…,k ≤maxi qi

� �

, (8)

where

α ¼ ðα1,α2,…,αkÞ; αj, β∈ ð0, 1Þ,
X

k

j¼1

αj ¼ 1, i, j = 1, 2,…, k, and

DT f 1, f 2,…, f k
� �α

¼

ð

Rn

Y

k

j¼1

f jðxÞ
h iαj

dx is affinity of Toussaint [26].
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Proof:

i. For each j = 1,2,…,k, we have

X

k

j¼1

qjf j

0

@

1

A

αi

≥ ðqif iÞ
αi , i ¼ 1, 2,…, k:

Therefore,

X

k

j¼1

qjf j

0

@

1

A

α1þα2þ…þαk

≥

Y

k

j¼

qjf j

� 	

αj

⇔

X

k

j¼1

qjf j ≥
Y

k

j¼

qjf j

� 	

αj

: (9)

On the other hand,

min
1 ≤ j ≤ k

qjf j

n o


 �

α1

≤ q1f 1
� �

α1 ,……, min
1 ≤ j ≤ k

qjf j

n o


 �

αk

≤ qkf k
� �

αk ,

So

min
1 ≤ j ≤ k

qjf j

n o


 �

α1þ⋯þαk

≤

Y

k

j¼1

qjf j

� 	

αj

:

or

min
1 ≤ j ≤ k

qjf j

n o

≤

Y

k

j¼1

qjf j

� 	

αj

: (10)

Combining Eqs. (9) and (10), we obtain

0 ≤
X

k

j¼1

qjf j �
Y

k

j¼1

qjf j

� 	

αj

≤

X

k

j¼1

qjf j � min
1 ≤ j ≤ k

qjf j

n o

:

Because
X

k

j¼1

qjf j � min
1 ≤ j ≤ k

qjf j

n o

includes (k�1) terms, we have

X

k

j¼1

qjf j � min
1 ≤ j ≤ k

qjf j

n o

≤ ðk� 1Þmax
1 ≤ j ≤ k

qjf j

n o

:

Thus,

0 ≤
X

k

j¼1

qjf j �
Y

k

j¼1

qjf j

� 	

αj

≤ ðk� 1Þmax
1 ≤ j ≤ k

qjf j

n o

:
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Integrating the above relation, we obtain:

1�
Y

k

j¼1

q
αj

j DT f 1, f 2,…, f k
� �α

≤ ðk� 1Þ

ð

Rn

gmaxðxÞdx: (11)

Using

ð

Rn

gmaxðxÞ ¼ 1� Pe
ðqÞ
1,2,…,k for Eq. (11), we have Eq. (5).

ii. From Eq. (2), we have

Pe
ðqÞ
1,2,…,k ¼

X

k

j¼1

ð

Rn\Rn
j

qjf jðxÞdx

¼
X

k

j¼1

X

j 6¼i

ð

Rn
j

min qif iðxÞ, qjf jðxÞ
n o

dx

¼
X

i<j

ð

Rn
i

min qif iðxÞ, qjf jðxÞ
n o

dx:

Since

min qif iðxÞ,qjf jðxÞ
n oh iβ

≤ qif i
� �β

and min qif iðxÞ,qjf jðxÞ
n oh i1�β

≤ qif i
� �1�β

,

then

min qif iðxÞ, qjf jðxÞ
n o

≤ qif i
� �β

qjf j

� 	1�β

:

Integrating the above inequality, we obtain:

Pe
ðqÞ
1,2,…,k ≤

X

i<j

ð

Rn
i

qif iðxÞ
� �β

qjf jðxÞ
� 	1�β

� 

dx ≤
X

i<j

q
β

i q
1�β

j DT f i , f j

� 	ðβ,1�βÞ
dx:

iii. We have
ð

Rn

max g1ðxÞ, g2ðxÞ,…, gkðxÞ
� �

dx ≥max
i<j

ð

Rn

max giðxÞ, gjðxÞ
n o

dx

On the other hand,

max
i<j

ð

Rn

max{giðxÞ, gjðxÞ}dx

8

<

:

9

=

;

¼ max
i<j

1

2
kgi ,gjk1 þ

1

2
ðqi þ qjÞ

� �

≥max
i<j

1

2
kgi ,gjk1

� �

þmin
i<j

1

2
ðqi þ qjÞ

� �

≥max
i<j

1

2
kgi ,gjk1

� �

þmin
i<j

ðq1, q2,…, qkÞ
� �

:
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Hence,
ð

Rn

gmaxðxÞdx ≥
1

2
max
i<j

kgi ,gjk1

n o

þmin
i<j

ðq1, q2,…, qkÞ
� �

: (12)

We also have

X

i<

X

j

jgi � gjj ≥
X

k

j¼1

max g1, g2,⋯gk
� �

� gj

h i

¼ k maxfg1, g2,⋯gkg
� �

�
X

k

j¼1

gj

Therefore,

max g1, g2,⋯gk
� �

≤
1

k

X

i<

X

j

jgi � gjj þ
1

k

X

k

j¼1

gj: (13)

Since

ð

Rn

giðxÞdx ¼ qi and
X

k

i¼1

qi ¼ 1, the inequality Eq. (13) becomes:

ð

Rn

gmaxðxÞdx ≤
1

k

X

i<j

kgi ,gjk1 þ
1

k
: (14)

Replacing

ð

Rn

gmaxðxÞ ¼ 1� Pe
ðqÞ
1,2,…,k to Eqs. (12) and (14), we have Eq. (7).

iv. We have

qif iðxÞ ≤max q1f 1ðxÞ, q2f 2ðxÞ,…, qkf kðxÞ
� �

≤

X

k

i¼1

qif iðxÞ for all i = 1,…,k.

Integrating the above relation, we obtain:

qi ≤

ð

Rn

gmaxðxÞdx ≤ 1:

Above inequality is true for all i = 1,…,k, so

max qi
� �

≤

ð

Rn

gmaxðxÞdx ≤ 1:

Replacing

ð

Rn

gmaxðxÞ ¼ 1� Pe
ðqÞ
1,2,…,k in above relation, we have Eq. (8).

From the result of Eqs. (5) and (6), with α1 ¼ α2 ¼ … ¼ αk ¼ 1=k, , we have the relationship

between Bayes error and affinity of Matusita [11]. Especially, when k = 2, we have the relation-

ship between Pe
ðq,1�qÞ
1,2 and Hellinger’s distance.
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In addition, we also have the relation between Bayes error and overlap coefficients as well as

L1–distance of {g1(x), g2(x), …, gk(x)} (see Ref. [22]). For special case: q1 = q2 = … = qk = 1/k, we

had established expressions about relations between Bayes error and L1–distance of {f1(x), f2(x),

…, fk(x)}, Pe
ð1=kÞ
1,2,…,k and Pe

ð1=ðkþ1ÞÞ
1,2,…,kþ1 (see Ref. [17]).

3. Related problems in applying of Bayesian method

To apply Bayesian method in reality, we have to resolve three main problems: (i) Determine

prior probability, (ii) compute Bayes error, and (iii) estimate pdfs. In this section, we propose

an algorithm to solve for (i) based on fuzzy cluster analysis and classified objective that can

reduces Bayes error in comparing with traditional approaches. For (ii), Bayes error is

established by closed expression for general case and determine it by an algorithm to find

maximum function of gi(x), i = 1, 2, …, k for one dimension case. The quasi-Monte Carlo

method is proposed to compute Bayes error in this section. For (iii), we review the problem to

estimate pdfs by kernel function method where the bandwidth parameter and kernel function

are specified.

3.1. Prior probability

In the n-dimensions space, given N populations Nð0Þ ¼ W
ð0Þ
1 ,W

ð0Þ
2 ,…,W

ð0Þ
N

n o

with data set Z =

[zij]nxN. Let matrix U ¼ ½μik�c�n, where μik is probability of the kth element belonging to wi. We

have μik ∈ ½0, 1� and satisfies the following conditions:

X

c

i¼1

μik ¼ 1, 0 <
X

N

k¼1

μik < N, 1 ≤ i ≤ c, 1 ≤ k ≤N:

We call

Mzc ¼ U ¼ μik

� �

cxN
jμik ∈ ½0, 1�, ∀i, k;

X

c

i¼1

μik ¼ 1, ∀k; 0 <
X

N

k¼1

μik, ∀i

( )

(15)

be fuzzy partitioning space of k populations,

D2
ikA ¼ kzk � vik

2
A ¼ ðzk � viÞ

TAðzk � viÞ is the matrix whose element d2ik is the square of dis-

tance from the object zk to the ith representative population. This representative is computed

by the following formula:

vi ¼

X

N

k¼1

ðμikÞ
mzk

X

N

k¼1

ðμikÞ
m

, 1 ≤ i ≤ c, (16)
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where m ∈ [1,∞) is the fuzziness parameter.

Given the data set Z including c known populations w1, w2,…, wc. Assume x0 is an object that

we need to classify. To identify the prior probabilities when classifying x0, we propose the

following prior probability by fuzzy clustering (PPC) algorithm:

In the above algorithm, we have:

i. ε is a really small number and is chosen arbitrarily. The smaller ε is, the more iterations

time is taken. In the examples of this chapter, we choose ε = 0.001.

ii. The distance matrix Dik depends on the norm-inducing matrix A. When A = I, Dik is the

matrix of Euclidean distances. Besides, there are several choices of A, such as diagonal

matrix or the inverse of the covariance matrix. In this chapter, we chose the Euclidean

distances in the numerical examples and applications.

iii. m is the fuzziness parameter, when m = 1, the fuzzy clustering becomes the nonfuzzy

clustering. When m! ∞, the partition becomes completely fuzzy μik = 1/c. The determin-

ing of this parameter, which affects the analysis result, is difficult. Even though Yu et al.

[28] proposed two rules to determine the supermom of m for clustering problems, the

searching of the specific mwas done by meshing method (see [2, 4, 5, 9] for more details).

By this process, the best m among several of given values will be chosen. In this chapter,

m is also identified by meshing method for the classification problem. The best integer m

between 2 and 10 will be used.

Algorithm 1. Determining prior probability by fuzzy clustering (PPC)

Input: The data set Z = ½zij�n�Nof c populations {w1, w2,…, wc}, x0, ε, m and the initial partition matrix U ¼ Uð0Þ ¼ ½μij�c�Nþ1,

where μij = 1 if the jth object belongs to the wi and μij = 0 for the opposite, i ¼ 1, c; j ¼ 1, N, μij ¼ 1=c for j = N + 1.

Output: The prior probability μiðNþ1Þ, i ¼ 1, 2,…c:

Repeat:

Find the representative object of wi: vi ¼

X

N

k¼1

ðμikÞ
mzk

X

N

k¼1

ðμikÞ
m

, 1 ≤ i ≤ c

Compute the matrix ½Dik�c�Nþ1 (the pairwise distance between objects and representative objects).

Update the new partition matrix U(new) by the following principle:

If Dik > 0 for all i ¼ 1, 2,…, c; k ¼ 1, 2,…, N þ 1 then

μik
ðnewÞ ¼ 1

X

c

j¼1

ðDik=DjkÞ
2=ðm�1Þ

, i 6¼ j ¼ 1, 2,…, c

Else, μ
ðnewÞ
ik ¼ 0

End;

Compute S ¼ kUðnewÞ �Uk ¼ maxik μ
ðnewÞ
ik � μik

�

�

�

�

�

�

�

�

�

�

 !

U ¼ UðnewÞ

Until S < ε;

The prior probability μiðNþ1Þ, i ¼ 1, 2,…c (the final column of the matrix U);
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At the end of the PPC algorithm, we obtain the prior probabilities of x0 based on the last

column of the partition matrix U ðμiðNþ1Þ, i ¼ 1, 2,…cÞ. The PPC algorithm helps us determine

the prior probabilities via the closeness degree between the classified object and the popu-

lations. Each object will receive its suitable prior probabilities.

In this chapter, Bayesian method with prior probabilities calculated by the uniform distribu-

tion approach, the ratio of samples approach, the Laplace approach, and the proposed PPC

algorithm approach are respectively called BayesU, BayesR, BayesL, and BayesC.

Example 1. Given the studied marks (scale 10 grading system) of 20 students. Among them,

nine students have marks that are lower than 5 (w1: fail the exam) and 11 students have marks

that are higher than 5 (w2: pass the exam). The data are given in Table 1.

Assume that we need to classify the ninth object, x0 = 4.3, to one in two populations. Using the

PPC algorithm, we have the following final partition matrix:

0:957 0:973 0:981 0:993 1 0:997 0:997 0:830 0:321 0:290 0:158 0:1 0:1 0:01 0:009 0:037 0:045 0:054 0:062 0:724
0:043 0:027 0:019 0:007 0 0:003 0:003 0:170 0:679 0:710 0:842 0:9 0:9 0:99 0:991 0:963 0:955 0:946 0:938 0:276


 �

This matrix shows the prior probabilities when assigning the ninth object to w1 and w2 are

0.724 and 0.276, respectively. Meanwhile, the prior probabilities determined by BayesU,

BayesR, and BayesL are (0.5; 0.5), (0.421; 0.579), and (0.429; 0.571), respectively.

From the data in Table 1, we might estimate the pdfs f1(x) and f2(x) and compute the values

q1f1(x) and q2f2(x), where q1 and q2 are the calculated prior probabilities. The results of classify-

ing x0 by four approaches: BayesU, BayesR, BayesL, and BayesC are given in Table 2.

Because the actual population of x0 is w1, only BayesC gives the true result. The Bayes error of

BayesC is also the smallest. Thus, in this example, the proposed method improves the draw-

back of the traditional method in determining the prior probabilities.

Objects Marks Groups Objects Marks Groups

1 0.6 w1 11 5.6 w2

2 1.0 w1 12 6.1 w2

3 1.2 w1 13 6.4 w2

4 1.6 w1 14 6.4 w2

5 2.2 w1 15 7.3 w2

6 2.4 w1 16 8.4 w2

7 2.4 w1 17 9.2 w2

8 3.9 w1 18 9.4 w2

9 4.3 w1 19 9.6 w2

10 5.5 w2 20 9.8 w2

Table 1. The studied marks of 20 students and the actual classifications.
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3.2. Determining Bayes error

Theorem 2. Let fi(x), i =1, 2,…, k, k ≥ 3 be k pdfs defined on Rn, n ≥ 1 and let qi ∈ (0;1),

Rn
1 ¼ x∈Rn

: q1f 1ðxÞ > qjf jðxÞ, 2 ≤ j ≤ k
n o

,

Rn
k ¼ x∈Rn

: qkf kðxÞ > qjf jðxÞ, 1 ≤ j ≤ k
n o

,

Rn
l ¼ x∈Rn

: qif iðxÞ > qlf lðxÞ, 1 ≤ i ≤ k, 2 ≤ l ≤ k� 1, i 6¼ l
� �

:

8

>

>

>

<

>

>

>

:

(17)

The Bayes error is determined by

Pe
ðqÞ
1,2,…,k ¼ 1�

ð

Rn
1

q1f 1ðxÞdx�
X

k�1

l¼2

ð

Rn
l

qlf lðxÞdx�

ð

Rn
k

qkf kðxÞdx: (18)

Proof:

To obtain Eq. (18), we need to prove two following results:

Rn
i ∩R

n
j ¼ φ, ð1 ≤ i 6¼ j ≤ kÞ

and ⋃
k

i¼1

Rn
i ¼ Rn

1∪⋃
k�1

i¼2

Rn
i ∪R

n
k ¼ Rn, fmaxðxÞ ¼ f iðxÞ, ∀x∈Rn

i :

Let A ¼ Rn\A, we have

Rij ¼ fx∈Rn
: qif iðxÞ ≤ qjf jðxÞg, Rij ¼ fx∈Rn

: qif iðxÞ > qjf jðxÞg, ð1 ≤ i, j ≤ kÞ:

From Eq. (17), we obtain

Rn
1 ¼ ⋂

k

j¼2

R1j, R
n
l ¼ ⋂

i 6¼k

Ril, ð2 ≤ l < kÞ:

Therefore,

Rn
1 ∩R

n
l ¼ ð⋂

k

j¼2

RijÞ ∩ ð⋂
i 6¼k

RilÞ⊂Ril ∩R1l ¼ φ) Rn
1 ∩R

n
l ¼ φ, ð2 ≤ l < kÞ:

Methods Priors gmax(x0) Populations Bayes errors

BayesU (0.5; 0.5) 0.0353 2 0.0538

BayesR (0.421; 0.579) 0.0409 2 0.0558

BayesL (0.429; 0.571) 0.0403 2 0.0557

BayesC (0.724; 0.276) 0.0485 1 0.0241

Table 2. The results when classifying the ninth object.
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On the other hand, from antithesis style of D’Morgan, we have

Rn
1 ∪ Rn

l ¼ ð⋃
n

j¼2

RijÞ∪ð⋃
i 6¼k

RilÞ⊂Ril ∩R1l ¼ φ ) Rn
1∪R

n
l ¼ Rn, ð2 ≤ l < kÞ:

Similarly,

Rn
k ∩R

n
l ¼ φ, ð2 ≤ l < kÞ, Rn

1 ∩R
n
k ¼ φ,

so

⋃
k

i¼1

Rn
i ¼ Rn, ∪ ð⋃

k�1

l¼2

Rn
l Þ ∪ Rn

k ¼ Rn
1 ∪ ð⋃

k�1

l¼2

Rn
l Þ ∪ Rn

k

¼ ð⋃
k�1

l¼2

Rn
1∪R

n
l Þ ∪ ð⋃

k�1

l¼2

Rn
k∪R

n
l Þ ¼ Rn

∪ Rn ¼ Rn ) ⋃
k

i¼1

Rn
i ¼ Rn:

In addition, from Eq. (17), we can directly find out

gmaxðxÞ ¼ giðxÞ, ∀x∈Rn
i , ð1 ≤ i ≤ kÞ:

For k = 2, q1 = q2 = 1/2, we consider the two following special cases:

i. If f1(x) and f2(x) are two one-dimension normal pdfs (Nðμi,σiÞ, i = 1, 2), without loss of

generality, we suppose that μ1 < μ2 (for μ1 6¼ μ2), σ1 < σ2 (for σ1 6¼ σ2), then

Pe
ð1=2,1=2Þ
1,2 ¼

1

2

ð

x1

�∞

f 2ðxÞdxþ

ð

þ∞

x1

f 1ðxÞdx

2

4

3

5, ifσ1 ¼ σ2,

1

2

ð

x2

�∞

f 1ðxÞdxþ

ð

x3

x2

f 2ðxÞdxþ

ð

þ∞

x3

f 1ðxÞdx

2

4

3

5, ifσ1 < σ2,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

where

x1 ¼
μ1 þ μ2

2
, x2 ¼

ðμ1σ
2
2 � μ2σ

2
1Þ � σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ1 � μ2Þ
2 þ K

q

σ22 � σ21
,

x3 ¼
ðμ1σ

2
2 � μ2σ

2
1Þ þ σ1σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðμ1 � μ2Þ
2 þ K

q

σ22 � σ21
, K ¼ 2ðσ22 � σ21Þln

σ2
σ1


 �

≥ 0:

For μ1 = μ2 =μ, the above result becomes:

Pe
ð1=2,1=2Þ
1,2 ¼

1, ifσ1 ¼ σ2,

1

2

ð

x4

�∞

f 1ðxÞdxþ

ð

x5

x4

f 2ðxÞdxþ

ð

þ∞

x5

f 1ðxÞdx

2

4

3

5

if σ1 < σ2,

8

>

>

>

<

>

>

>

:
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where x4 ¼ μ� σ1σ2

ffiffiffi

E
p

and x5 ¼ μþ σ1σ2

ffiffiffi

E
p

with E ¼ 2
σ2
2
�σ2

1

ln σ2
σ1

� 	

≥ 0:

ii. If f1(x) and f2(x) are two n-dimension normal pdfs ðNðμi,ΣiÞ, n ≥ 2, i ¼ 1, 2Þ then

Pe
ð1=2,1=2Þ
1,2 ¼ 1

2

ð

R1

f 2ðxÞdxþ
ð

R2

f 1ðxÞdx

2

6

4

3

7

5
,

where

Rn
1 ¼ x : dðxÞ ≤ 0f g, Rn

2 ¼ fx : dðxÞ > 0g,

dðxÞ ¼ μT
1 ðΣ1Þ�1 � μT

2 ðΣ2Þ�1
h i

x� 1

2
xT ðΣ1Þ�1 � ðΣ2Þ�1

h i

x�m,

m ¼ 1

2
ln

jΣ1j
jΣ2j

þ μ
T
1 ðΣ1Þ�1

μ1 � μ
T
2 ðΣ2Þ�1

μ2

� 

:

In case of n = 2, d(x) can be straight lines or parabola or ellipses or hyperbola.

3.3. Maximum function in the classification problem

To classify a new element by the principle (1) and to determine Bayes error by the formula (3),

we must find gmax(x). Some authors, such as Pham–Gia et al. [15, 17] and Tai [21, 22], have

surveyed relationships between gmax(x) with some related quantities of classification problem.

The specific expression for gmax(x) in some special case has been found [18]. However, the

general expression for all of cases is a complex problem that has not been still found yet.

Given k pdfs fi(x) and qi, i = 1, 2,…, kwith q1 + q2 +…+ qk = 1 and let gi(x) = qifi(x), gmax(x) = max

{gi(x)}. Now, we take interest in determining gmax(x).

(a) For one dimension

In this case, we can find gmax(x) by the following algorithm:

Algorithm 2. Find the gmax(x) function

Input: gi(x) = qifi(x), where fi(x) and qi are the probability density function and the prior probability of wi, i = 1, 2, …, k,

respectively.

Output: The gmax(x) function.

Find all roots of the equations giðxÞ � gjðxÞ ¼ 0, i ¼ 1, k� 1 , j ¼ iþ 1, k.

Let B be the set of all roots.

For xlm ∈ B (the roof of equation glðxÞ � gmðxÞ ¼ 0) do

For p ∈{1,2,…,k}\{l,m} do

If glðxlmÞ < gpðxlmÞ then B ¼ B\fxlmg
End

End

End

Arrange the elements of B in order from smallest to largest:

B ¼ fx1, x2,…, xhg, x1 < x2 < … < xh
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In the above algorithm, ε1, ε2, ε3 are the positive constants such that:

x1 þ ε1 < x2, xh � ε3 > xh�1, xi � ε2 < xi�1 and xi þ ε2 < xiþ1:

From this algorithm, we have written a MATLAB code to find the gmax(x). When gmax(x) is

determined, we will easily calculate Bayes error by using formula (3), as well as classify a new

element by principle (1).

Example 2. Given seven populations having univariate normal pdfs {f1, f2,…, f7} with specific

parameters as follows (Figure 1):

μ1 ¼ 0:3,μ2 ¼ 4:0,μ3 ¼ 9:1,μ4 ¼ 1:9,μ5 ¼ 5:3,μ6 ¼ 8,μ7 ¼ 4:8,

σ1 ¼ 1:0, σ2 ¼ 1:3, σ3 ¼ 1:4, σ4 ¼ 1:6, σ5 ¼ 2, σ6 ¼ 1:9, σ7 ¼ 2:3:

Using codes written with qi ¼ 1=7, giðxÞ ¼ qif iðxÞ, i ¼ 1, 2, ::, 7, we have the results:

gmaxðxÞ ¼

g1 if �1:28 < x ≤ 0:99;

g2 if 2:58 < x ≤ 4:89;

g3 if 8:30 < x ≤ 12:52;

g4 if {� 7:86 < x ≤ � 1:28} ∪ {0:99 < x ≤ 2:58};

g5 if 4:89 < x ≤ 6:65;

g6 if {6:65 < x ≤ 8:30} ∪ {12:52 < x ≤ 23:33};

g7 if {x ≤ � 7:86} ∪ {x > 23:33}:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(b) For multidimension

In multidimension cases, it should be very complicated to obtain closed expression for gmax(x).

The difficulty comes from the various forms of the intersection space curves between the pdfs

surfaces. This problem has been interested by many authors in Refs. [17, 18, 21–25]. Pham–Gia

(Determine the function gmax(x) in interval (�∞,x1])

For i = 1 to k do

If giðx1 � ε1Þ ¼ maxfg1ðx1 � ε1Þ, g2ðx1 � ε1Þ,…, gkðx1 � ε1Þg then

gmaxðxÞ ¼ giðxÞ, for all x ∈ (�∞,x1]

End

End

(Determine the function gmax (x) in interval ðxj, xjþ1�, j ¼ 1, h� 1)

For i =1 to k do

For j =1 to h-1 do

If giðxj þ ε2Þ ¼ max{g1ðxj þ ε2Þ, g2ðxj þ ε2Þ,…, gkðxk þ ε2Þ} then

gmaxðxÞ ¼ giðxÞ, for all x∈ ðxj, xjþ1�

End

End

End

(Determine the function gmax (x) in interval (h,+∞))

For i = 1 to k do

If giðxh þ ε3Þ ¼ maxfg1ðxh þ ε3Þ, g2ðxh þ ε3Þ,…, gkðxh þ ε3Þg then

gmaxðxÞ ¼ giðxÞ, for all x∈ ðh, þ ∞Þ

End

End

Bayesian Inference52



et al. [18] have attempted to find the function gmax(x); however, it has been only established for

some cases of bivariate normal distribution.

Example 3. Given the four bivariate normal pdfs N(μi, Σi) with the following specific parame-

ters [16]:

μ1 ¼
40

20

" #

, μ2 ¼
48

24

" #

, μ3 ¼
43

32

" #

, μ4 ¼
38

28

" #

,

Σ1 ¼
35 18

18 20

 !

,Σ1 ¼
28 �20

�20 25

 !

,Σ1 ¼
15 25

25 65

 !

,Σ1 ¼
5 �10

�10 7

 !

With q1 = 0.25, q2 = 0.2, q3 = 0.4, and q4 = 0.15, we have the graphs of gi(x) = qifi(x) and their

intersection curves as shown in Figure 2.

Here, we do not find the expression of gmax(x). We compute Bayes error instead by taking

integration of gmax(x) by quasi-Monte Carlo method [17]. An algorithm for doing calculations

has been constructed, and a corresponding MATLAB procedure is used in Section 4.

3.4. Estimate the probability density function

There are many parameter and nonparameter methods to estimate pdfs. In the examples and

applications of Section 4, we use the kernel function method, the popular one in practice

nowadays. It has the following formula:

f
_

ðxÞ ¼
1

Nh1h2…hn

X

N

i¼1

Y

n

j¼1

f j
xj � xij

hj


 �

, (19)

where xj, j = 1,2,…,n are variables, xj, i = 1,2,…,N are the ith data of the jth variable, hj is the

bandwidth parameter for the jth variable, fj(.) is the kernel function of the jth variable which is

usually normal, Epanechnikov, biweight, and triweight. According to this method, the choice

Figure 1. The graph of seven one-dimension normal pdfs, fmax(x) and gmax(x).
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of smoothing parameter and the type of kernel function play an important role and affect the

result. Although Silverman [20], Martinez andMartinez [10], and some other authors [7, 13, 27]

had discussions about this problem, the optimal choice still has not been found yet. In this

chapter, the smoothing parameter is from the idea of Scott [19] and the kernel function is the

Gaussian one. We have also written the code by MATLAB software to estimate the pdfs in n-

dimensions space using this method.

We have written the complete code for the proposed algorithm by MATLAB software. It is

applied effectively for the examples of Section 4.

4. Some applications

In this section, we will consider three applications in three domains: biology, medicine, and

economics to illustrate for present theories and to test established algorithms. They also show

that the proposed algorithm presents more advantages than the existing ones.

Application 1. We consider classification for well-known Iris flower data, which have been

presented in many documents like in Ref. [17]. These data are often used to compare the new

Figure 2. The graph of three bivariate normal pdfs and their gmax(x).
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method and existing ones in classifying. The three varieties of Iris, namely, Setosa (Se),

Versicolor (Ve), and Virginica (Vi), have data in four attributes: X1 = sepal length, X2 = sepal

width, X3 = petal length, and X4 = petal width.

In this application, the cases of one, two, three and four variables are respectively considered to

classify for three groups (Se), (Ve), and (Vi) by Bayesian method with different prior probabil-

ities. The purpose of this performance is to compare the results of BayesC with BayesU,

BayesR, and BayesL. Because the numbers of the three groups are equal, and the results of

BayesU, BayesR, and BayesL are the same. The correct probability of methods is summarized

in Table 3.

Table 3 shows that in almost all cases, the results of proposed algorithm are better than those

using other algorithms, and in the case using three variables X1, X2, and X3, it gives the best

results.

Application 2. This application considers thyroid gland disease (TGD). Thyroid gland is

an important and the largest gland in our body. It is responsible for the metabolism and

work process of all cells. Some of the common diseases of gland thyroid are hypothyroidism,

hyperthyroidism, thyroid nodules, and thyroid cancer. They are dangerous diseases. Recently,

the rate of thyroid gland disease has been increasing in some poor countries. Data includes

3772 person with 3541 for ill group (I) and 231 ones for nonill group (NI). Detail for this

data is given in http://www.cs.sfu.ca/wangk/ucidata/dataset/thyroid–disease, in which the

surveyed variables are Age (X1), Query on thyroxin (X2), Anti-thyroid medication (X3),

Sick (X4), Pregnant (X5), Thyroid surgery (X6), Thyroid Stimulating Hormone (X7),

Variables B BayesU = BayesL = BayesR BayesC

X1 0.667 0.679

X2 0.668 0.579

X3 0.903 0.916

X4 0.815 0.827

X1, X2 0.715 0.807

X1, X3 0.893 0.895

X1, X4 0.807 0.850

X2, X3 0.891 0.898

X2, X4 0.809 0.815

X3, X4 0.843 0.866

X1, X2, X3 0.892 0.919

X1, X2, X4 0.764 0.810

X1, X3, X4 0.762 0.814

X2, X3, X4 0.736 0.822

X1, X2, X3, X4 0.725 0.745

Table 3. The correct probability (%) in classifying Iris flower.
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Triiodothyronine (X8), Total thyroxin (X9), T4U measured (X10), and Referral source (X11). In

this application, this chapter will use random 70% of the data size (2479 elements belong to

group I and 162 elements belong to group NI) as the training set to determine significant

variables, to estimate pdfs, and to find suitable model. About 30% of the remaining data will

be used as test set (1062 elements belong to group I and 69 elements belong to group NI). The

result of Bayesian method is also compared to others.

To assess the effect of independent variables in TGD, we build the logistic regression model log

(p/1�p) with variables Xi, i = 1, 2,…, 11 (p is the probability of TGD). The analytical results are

summarized in Table 4.

In Table 4, the three variables X1, X8, and X11 in bold face have statistical significance in

classifying the two groups (I) and (NI) at 5% level, so we use them to classify TGD.

Applying the PPC algorithm for cases of one variable, two variables, and three variables with

all prior probabilities, we obtain the results given in Table 5.

Table 5 shows that the correct probability is high, in which BayesC always gives the best result

in all three cases of variables. BayesC gives the almost exact result with three variables. We also

compare BayesC with existing methods (Fisher, SWM, and logistic) for all the above three

cases. All cases show that BayesC is more advantageous than others in reducing Bayes error.

Variable Sig. Variable Sig.

X1 0.000 X7 0.304

X2 0.279 X8 0.000

X3 0.998 X9 0.995

X4 0.057 X10 0.999

X5 0.997 X11 0.000

X6 0.997 Const 0.992

Table 4. Value Sigs of logistic regression model.

Cases Variables BayesU BayesR BayesL BayesC

One variable X1 91.13 97.47 97.46 97.97

X8 90.72 98.51 98.50 98.65

X11 90.53 97.48 97.47 98.19

Two variables X1, X8 98.73 98.77 98.77 99.78

X1, X11 98.11 98.65 97.65 99.44

X8, X11 98.71 98.77 98.77 99.82

Three variables X1, X8, X11 98.35 98.89 98.89 99.96

Table 5. The correct probability (%) in classifying TGD by Bayesian method from training set.

Bayesian Inference56



Using the best results for each case of methods from Table 6, classifying for test set (1131

elements), we have the results given in Table 7.

From Table 7, we see that with the test set, BayesC also gives the best result.

Application 3. This application considers the problem of repaying bank debt (RBD) by cus-

tomers. In bank credit operations, determining the repayment ability of customers is really

important. If the lending is too easy, the bank may have bad debt problems. In contrast, the

bank will miss a good business. Therefore, in the current years, the classification of credit

application on assessing the ability to repay bank debt has been specially studied and has been

a difficult problem in Vietnam. In this section, we appraise this ability of companies in Can Tho

city (CTC), Vietnam by using the proposed approach. We collect a data on 214 enterprises

operating in key sectors as agriculture, industry, and commerce, including 143 cases of good

debt (G) and 71 cases of bad debt (B). Data are provided by responsible organizations of CTC.

Each company is evaluated by 13 independent variables in the expert opinion. The specific

variables are given in Table 8.

Because of sensitive problem, author has to conceal real data and use training data set. The

steps to perform in this application are similar as in Application 2. Training set has 100

elements belonging to group G and 50 elements belonging to group B, and the test set has 43

elements belonging to group G and 21 elements belonging to group B. With training set, the

logistic regression model shows only three variables X1, X4, and X7 have statistical signifi-

cance at 5% level, so we use these three variables to perform BayesU, BayesR, BayesL, and

BayesC. Their results are given in Table 9.

From Table 9, we see that BayesC gives the highest probability in all the cases. We also use

logistic method, Fisher, and SVM with training set to find the best results. We have the correct

probability given in Table 10.

Methods One variable Two variables Three variables

Logistic 93.90 93.90 93.90

Fisher 72.30 73.60 71.70

SVM 93.87 93.87 93.87

BayesC 98.65 99.82 99.96

Table 6. The correct probability (%) for optimal models of methods in classifying TGD.

Methods Correct numbers False numbers Correct probability

Logistic 835 296 73.8

Fisher 835 296 73.8

SVM 1062 69 90.9

BayesC 1062 69 93.9

Table 7. Compare the correct probability (%) in classifying TGD from test set.
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Using the best model for each case of methods from Table 10 to classify the test set (67

elements), we obtain the results given in Table 11.

Once again from Table 11, we see that with test data, BayesC also gives the best result.

Cases variables BayesU BayesR BayesL BayesC

One variable X1 86.21 86.14 84.13 87.13

X4 81.12 82.91 86.16 88.19

X7 83.21 84.63 83.14 84.52

Two variables X1, X4 87.25 88.72 87.19 89.06

X1, X7 88.16 88.34 83.26 89.56

X4, X7 89.25 89.04 89.02 91.34

Three variables X1, X5, X7 91.15 91.53 90.17 93.18

Table 9. The correct probability (%) in classifying RBD by Bayesian method from training set.

Xi Independent variables Detail

X1 Financial leverage Total debt/total equity

X2 Reinvestment Total debt/total equity

X3 Roe Net profit/equity

X4 Interest (Net income + depreciation)/total assets

X5 Floating capital (Current assets � current liabilities)/total assets

X6 Liquidity (Cash + Short-term investments)/current liabilities

X7 Profits Net profit/total assets

X8 Ability Net sales/Total assets

X9 Size Logarithm of total assets

X10 Experience Years in business activity

X11 Agriculture Agricultural and forestry sector

X12 Industry Industry and construction

X13 Commerce Trade and services

Table 8. The surveyed independent variables.

Methods One variable Two variables Three variables

Logistic 84.04 88.29 88.69

Fisher 84.73 80.73 79.32

SWM 82.34 82.03 83.07

BayesC 88.19 91.34 93.18

Table 10. The correct probability (%) for optimal models of methods in classifying RBD.
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5. Conclusion

This chapter presents the classification algorithm by Bayesian method in both theory and appli-

cation aspect. We establish the relations of Bayes error with other measures and consider the

problem to compute it in real application for one and multidimensions. An algorithm to deter-

mine the prior probabilities which may decrease Bayes error is proposed. The researched prob-

lems are applied in three different domains: biology, medicine, and economics. They show that

the proposed approach has more advantages than existing ones. In addition, a complete proce-

dure on MATLAB software is completed and is effectively used in some real applications. These

examples show that our works present potential applications for research on real problems.
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