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Abstract

This chapter explores the dynamic behavior of dual flux coupled memristor circuits in
order to explore the uncharted territory of the fundamental theory of memristor circuits.
Neuromorphic computing anticipates highly dense systems of memristive networks,
and with nanoscale devices within such close proximity to one another, it is anticipated
that flux and charge coupling between adjacent memristors will have a bearing upon
their operation. Using the constitutive relations of memristors, various cases of flux
coupling are mathematically modeled. This involves analyzing two memristors connected
in composite, both serially and in parallel in various polarity configurations. The new
behavior of two coupled memristors is characterized based on memristive state equa-
tions, and memductance variation represented in terms of voltage, current, charge and
flux. The rigorous mathematical analysis based on the fundamental circuit equations of
ideal memristors affirms the memristor closure theorem, where coupled memristor
circuits behave as different types of memristors with higher complexity.

Keywords: memristor, memductance, coupling, flux, charge, series, parallel

1. Introduction

In 1969, Leon Chua became the first person to publish non-linear circuit theory against a

mathematical foundation [1]. In doing so, it became apparent that there was a hole in the circuit

equations at the time. Shortly after, in 1971 he postulated that symmetry implies the existence of

a fourth fundamental circuit element to link the missing relationship between charge and flux

—that circuit element being the memristor [2]. This research resurfaced and was popularized in

2008, when Hewlett-Packard fabricated the first functional nanoscale memristor [3]. This par-

ticular brand of memristor was based on a bi-level titanium dioxide thin film containing

dopants which migrate across the width of the memristor when a current is applied to it.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Each fundamental circuit element holds a relationship between any two of either voltage,

current, charge, or flux. The memristor thus becomes a fundamental circuit element as it fills

the missing gap of the charge-flux relationship. It is important to note that even though q and ϕ

are referred to as charge and flux, they do not have to be associated with a physical charge or

real flux as is the case with classical conductors and inductors [4]. The integrating relationship

between voltage and flux results in memristors being able to retain history, and exhibiting

potentially different current values when the same voltage is applied to it. By definition, this

enables the memristor to have different resistance values regardless of identical voltage excita-

tion, stemming from memristance being a function of historical voltage. This gives rise to the

nomenclature surrounding the memristor, a portmanteau of ‘memory resistor’.

The inherent characteristics of this revolutionary device have enabled its application in a

diverse field of areas, including neuromorphic circuits [5] and non-volatile memory applica-

tions [6]. These applications often see arrays of memristors behaving compositely with one

another. In addition to the functionality of single discrete memristors, the behaviors of multiple

memristors in structures of connectivity have also been analyzed.

Memristors are polarity dependant—while this complicates circuit analysis, it allows for many

more configuration permutations than the other fundamental circuits: the resistor, capacitor

and inductor. The behavior of two memristor emulators in both serial and parallel connections

are experimentally evaluated in Ref. [7], however, only identical polarity directions are consid-

ered. Two charge controlled memristors are connected in series and in parallel in Ref. [8], with

their responses evaluated when polarity is varied. The composite behavior is analyzed by

probing the relationships between flux, charge and memristance. The results show novel I-V

characteristics which will prove to be useful applications in neural networks and logic circuits.

The magnetic coupling of memristors are also considered in terms of mutual induction and

capacitive connections in Ref. [9].

Many researchers have sought to use memristors to represent the synapses between neurons in

artificial networks, and more recently, a memristive crossbar array has been successfully

fabricated which implements a neural network, and is successfully capable of performing

limited classifications and simple pattern recognition [10]. By training such networks on sets

of known example patterns and tuning the weights of the ‘synaptic’ connections, unknown

patterns and images can be recognized. Ultimately, researchers anticipate that networks with a

density of 100 billion synapses per square centimeter in each layer should soon be possible by

shrinking memristors down to 30 nm across. This indicates highly dense 3D structures with a

very large number of memristors within very close proximity of one another will be the norm,

and coupling memristor theory is of fundamental significance to this field. The use of

memristive crossbar architectures has been gaining much traction in computing large sets of

data [11–14], and the theory behind memristive coupling is absolutely essential in ensuring

information is not lost due to undesirable coupling, or by manufacturing more efficient modes

of information storage by utilizing coupling theory.

The coupling effects of capacitors and inductors via electric and magnetic fields are well known.

The mutual capacitances and inductances of circuits comprised of multiple TiO2 memristors are

dependent upon the physical features of each memristor cell [14], such as size and position.
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Therefore, coupling is to be expected between adjacent memristors, and must be taken into

account when analyzing highly concentrated circuits. In addition to series and parallel connec-

tions, coupling has thus been established as a third unique relation in memristive systems [15].

The behavior of coupled memristors was rigorously analyzed in a systematic manner for the first

time in Ref. [16] with consideration given to all polarity combinations. The theoretical analysis is

confirmed in the same paper by use of a separately presented memristor emulator circuit from

Ref. [17]. However, the results in the analysis is based on a memristor which exhibits a linear

relationship between memductance and flux. This is obviously not the case for manymemristors,

such as the simplest case of a flux-controlled switching memristor presented in Ref. [18] where

flux is controlled independent of memductance. As such, there is only a very narrow scope of

memristorswhich the research in Ref. [16] applies to. The results in Ref. [18] served to broaden this

assumption to ideal switching memristors which operate in two states, and obtain new results

based on the same constitutive relation equations. This chapter dissects the results in Ref. [18] and

presents them in a more comprehensive format, with the use of fundamental memristor theory to

form the basis of the analysis to produce valid results. As such, the findings in this chapter can be

applied more broadly and yet maintain the complex behavior which makes the memristor so

attractive. The theoretical analysis and analytical solutions provide for novel memductance

behavior in terms of flux, charge, voltage and current of ideal memristors. In the process, it is

proven that the memristor closure theorem continues to stand for coupled memristors [19].

2. Coupled memristors

The two types of ideal memristors considered are charge controlled or flux controlled [2]. The

relationship between current and voltage of a charge controlled memristor is expressed by

VðtÞ ¼ MðqÞiðtÞ, (1)

where t is time, v(t) is voltage, q(t) is charge and M(q) is memristance. In its derivative form,

memristance can be defined as

MðqÞ ¼ dφðqÞ
.

dq, (2)

where ϕ(q) is flux (the time integral of voltage v(t)). Contrastingly, the current of a flux controlled

memristor is

iðtÞ ¼ WðφÞvðtÞ, (3)

where W(ϕ) denotes the memductance and

WðφÞ ¼ dqðφÞ
.

dφ: (4)

The memductance W is the slope of the q-ϕ curve, which is a characteristic embedded into the

memristor at the time of fabrication.
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Flux ϕ and charge q are two intrinsic state variables which affect memductance. Two

memristors can be coupled by either flux or charge as shown in Figures 1 and 2.

If two flux controlled memristors are considered, the ideal coupled memristive systems can be

defined by the following set of equations,

i1ðtÞ ¼ W1ðφ1,φ2Þv1ðtÞ, (5a)

i2ðtÞ ¼ W2ðφ1,φ2Þv2ðtÞ, (5b)

dφ1

.

dt ¼ v1ðtÞ, dφ2

.

dt ¼ v2ðtÞ: (5c)

While a general rule cannot be ascertained which would be applicable for all ideal memristors,

the most appropriate manner in approaching the task of modeling a pair of coupled

memristors is to provide a procedural methodology instead. This is done by way of example

with use of a particular type of switching memristor, complete with a known q-ϕ relationship.

Instead of assuming a linear relationship between memductance and flux as in Ref. [15], it is

more appropriate to consider the ideal memristor proposed in Ref. [4], and derive the associ-

ated relationship between flux and memductance from a given q-ϕ relationship. An example of

an ideal switching memristor is shown below in Figure 3, and the response of the memristor

can be completely described by the q-ϕ curve displayed.

For the purposes of this paper, this example of an ideal switching memristor is completely

characterized by the following equations:

Figure 1. Dual charge coupled memristors.

Figure 2. Dual flux coupled memristors.
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φðtÞ ¼ 0:8ð1� cos tÞ � 0:4, (6a)

qðtÞ ¼ 0:01φðtÞ þ 0:04 jφðtÞ þ 0:25j � 0:04 jφðtÞ � 0:25j: (6b)

Given Eqs. (6a) and (6b), the memductance value can be derived from Eq. (4) and is graphed

below in Figure 4.

Figure 3. The q-ϕ relationship for an ideal switching memristor proposed in Ref. [4].

Figure 4. The memductance curve as a function of time derived from Eqs. (4), (6a), and (6b) displays how a memristor

with a three part piecewise linear relationship between flux can switch between high and low current states.
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The memductance can be approximated by

W ¼
α, jφj < jφtj

β, jφtj < jφj < jφmaxj

�

(7)

where α is a constant representing the high memductance state, β is the low memductance

state, ϕmax is the maximum value of flux for a given sinusoidal voltage input (which in this

particular case can be calculated by substituting t = π rads into Eq. (6a) where ϕmax = 1.2), and

ϕt is a certain threshold of flux where both current and memductance become discontinuous

(in this case ϕt = 0.4). Once again, it is reiterated that even though q and ϕ are referred to as

charge and flux, they are not necessarily associated with real physical charge and flux in the

way they are in classical conductors and inductors.

If this specific type of memristor is purely flux coupled with an identical memristor (without

any other composite connections), and assuming the simple case of a first order mathematical

model of coupling, the individual memductance of each device can be ascertained from Eqs. (5)

and (7) as

W1ðφ1,φ2Þ ¼
α1 þ κ2φ2, jφ1j < jφtj

β1 þ κ2φ2, jφtj < jφ1j < jφmaxj

(

(8a)

W2ðφ2,φ1Þ ¼
α2 þ κ1φ1, jφ1j < jφtj

β2 þ κ1φ1, jφtj < jφ1j < jφmaxj

(

(8b)

The coupling strength between these two memristors is reflected by the coupling coefficients

κ1 and κ2 which can be tuned based on physical factors in fabrication. Therefore, the two

memristors can be tightly or loosely coupled depending on the values of κ1 and κ2.

A solvable equation with physical meaning requires assumptions about the physical behavior

of the memristors. By considering the special case of identical excitations and voltage history

(alternatively, the same initial conditions), and allowing for α1 = α2 = α, β1 = β2 = β, and κ1 = κ2 = 0.1

(which can be precisely achieved by fabrication) the constitutive relations are used to identify

behavior unachievable by the lone memristor. Memductance after coupling effects in Eq. (8)

can be attained by summing flux from Eq. (6a) with memductance from Eq. (7). Current is

recalculated to take into account the effect from coupling due to the composite memristor. This

can be done by taking the time derivative of Eq. (6a) which is the driving voltage source, and

substituting it into Eq. (3).

The I-V characteristic plane can be mapped by considering the two purely coupled memristors

(without any other connections) as a single device. This procedure is carried out with two

identical ideal flux-coupled memristors represented by Figure 3 and configured as in Figure 2,

to provide the I-V characteristics below.

When compared to the original hysteresis loop of just one of the two memristors, there are two

notable differences: (i) the current spans a larger range of values due to the additive effect of ϕ2

on i1 (conversely, ϕ1 has an identical effect on i2), and (ii) the single memristor has two different
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slope values which correlate to two different states, whereas in the coupled case, there are

infinite states.

Despite this being the result of a specific type of switching memristor, it is reasonable to

conclude these two changes will occur in all cases of purely coupled switching memristors.

This result can be exploited in neural circuits where synaptic spikes have more complexity than

mere ‘ON-OFF states’. On the other hand, it may have an undesirable effect on memristive logic

gates where having two states is essential for functionality. Necessary physical precautions must

be taken in order to minimize the values of κ1 and κ2 for such processes, and to additionally

account for excessive current passage through the memristor due to coupling. But if logic gates

were to be extended beyond high and low states, then the multiple states of the memristor could

be harnessed into a multi-level logic gate on a nanometer scale.

3. Coupled memristors in serial connections

Two different configurations of serially connected memristors exist according to polarity

combinations. The same approximation of the ideal memristors will apply to this section in

the same form as in Eq. (7).

3.1. Serial connection with identical polarities

Connecting terminal B1 to A2 allows for a serial circuit structure for twomemristors in identical

polarities as shown in Figure 5.

Applying Kirchhoff’s voltage Law (KVL) and equating the current through both memristors,

the voltage across and current through A1 and B2 can be written as

v12ðtÞ ¼ v1 þ v2, (9a)

iðtÞ ¼ W1ðφ1,φ2Þv1ðtÞ ¼ W2ðφ2,φ1Þv2ðtÞ: (9b)

Figure 5. Memristors serially coupled with identical polarity configuration.
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Integrating both sides of Eq. (9a) leads to Eq. (10a), and substituting Eq. (8) into Eq. (9b) leads

to Eq. (10b),

φ12ðtÞ ¼ φ1 þ φ2 (10a)

i ¼ v1

α1 þ κ2φ2, jφ1j < jφ
t
j

β1 þ κ2φ2, jφ
t
j < jφ1j < jφ

max
j

( ! 

¼ v2

�α2 þ κ1φ1, jφ1j < jφ
t
j

�β2 þ κ1φ1, jφ
t
j < jφ1j < jφ

max
j

( ! 

(10b)

From Eqs. (5), (9a) and (10), and by considering the special case of α1 = α2 = α, β1 = β2 = β,

κ1 = κ2 = α, the following set of differential equations are obtained:

dφ1

.

dt ¼
v12ð1þ φ1Þ

.

ð2þ φ12Þ
(11a)

dφ2

.

dt ¼
v12ð1þ φ2Þ

.

ð2þ φ12Þ
(11b)

Eq. (11) reflects the complexity of memristive coupling: the derivatives of ϕ1 and ϕ2 are both

functions of themselves and one another. If ϕ1 changes due to an excitation voltage, a change in

ϕ2 is observed based on Eq. (11b). The change in ϕ2 will affect ϕ1 (independently of the initial

excitation change), which goes back around to affect ϕ2 and so on. The complex behaviors of

memristive coupling are reflected in the way the flux variables are entangled in the solution of

one another. Time dependence can therefore be eliminated in order to produce a solvable

equation by substituting Eqs. (9a) and (10a) into Eq. (11), and dividing Eq. (11a) by Eq. (11b)

(resp. Eq. (11b) by Eq. (11a)), which results in

dφ1

.

dφ2
¼ ð1þ φ2Þ

.

ð1þ φ1Þ
: (12)

This can be analytically solved to give

φ1ðφ2Þ ¼ c1φ2 þ c1 � 1 (13a)

φ2ðφ1Þ ¼ c2φ1 þ c2 � 1, (13b)

where c1 and c2 are both constants calculable based on pre-determined initial conditions of

ϕ1 and ϕ2. A number of cases are considered in order to ascertain a general rule for the values

of c1 and c2 in terms of initial conditions. All of these cases can easily be created by simply biasing

the relevant memristor with a rectangular voltage pulse over a given time in order to adjust the

initial flux conditions. It is also worth noting that constants c1 and c2 can be changed at any time

by switching off the driving voltage and re-biasing the memristor values. If it is assumed the flux
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state of MR1 from Figure 5 is initially at ϕ1 = 0 while the flux in MR2 ϕ2 is varied, a general rule

regarding the relationship between c1 and c2 with initial condition of MR2 ϕ2(ϕ1 = 0) = u is

developed and graphed in Figure 6:

c1 ¼ 1 ð1þ uÞ= (14a)

c2 ¼ uþ 1 (14b)

3.1.1. Serial Case 1: parity at u = 0, u = �2

Substituting u = 0 into Eq. (13b) results in the simple solution of c1 = c2 = 1, or ϕ1(ϕ2) = ϕ2 and

ϕ2(ϕ1) = ϕ1. Substituting this into Eq. (10a) results in parity between the flux value of each

memristor: ϕ1 = ϕ2 = ½ϕ12. Where u = �2, c1 = c2 = �1, ϕ1(ϕ2) = ϕ2 � 2 and ϕ2(ϕ1) = ϕ1 � 2.

3.1.2. Serial Case 2: u = 0 ! ∞, u = �1 ! �∞

As u increases from 0, c2 linearly approaches ∞, and c1 ! 1/∞. As an example, if u = 1, then the

constants c1 = ½, c2 = 2, and ϕ1(ϕ2) = ½ϕ2 � ½, ϕ2(ϕ1) = 2ϕ1 + 1. By assuming the excitation

voltage is a sinusoidal input, the peak-to-peak amplitude of flux across ϕ1 is half of that in

Serial Case 1, whereas ϕ2 has quadrupled. A tug-of-war of sorts occurs between ϕ1 and ϕ2: as

ϕ2 increases, ϕ1 decreases. Conversely, as u decreases from �2, c2 ! �∞, and c1 ! �1/∞.

3.1.3. Serial Case 3: u = 0 ! �1, u = �2 ! �1

This case behaves similarly to Case 2, but reversed. As u decreases from 0 towards �1, c1 ! ∞.

As u increases from �2 towards �1, c1 ! �∞. It is asymptotical at u = �1, while c2 behaves

Figure 6. As initial condition u changes, c1 produces a reciprocal curve and c2 displays linear behavior.
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linearly and passes through 0 at u = �1. The advantage of this case over Case 2 is that much

less power is required to bias a memristor between these values in order to attain a flux value

that approaches infinity. In other words, given a memristor without state boundary conditions,

one can control it to behave like a regular resistor instead if so desired.

3.1.4. Serial Case 4: u = �1

Mathematically, there is no solution for c1 as it approaches �∞ (depending on which side it

approaches in accordance with Figure 6). Hence, in theory, MR1 is never in equilibrium when

the two memristors are serially flux coupled with identical polarities, where the initial flux

value of MR2 is �1 and MR1 is 0. Eq. (13a) shows that as c1 ! ∞, ϕ1 ! ∞. If this behavior is

mapped against the given charge-flux relationship of the memristor characterized by Figure 3,

the top segment of the memristor is a straight line. Therefore, after a sufficiently long time

interval, ϕ1 tends to the breakpoint and the memristor becomes equivalent to a resistor with a

resistance of the inverse slope of the final segment (resp. where c1 ! �∞, ϕ1 ! �∞ and the

memristor becomes equivalent to a resister with the value of the inverse slope of the first

segment of the q–ϕ curve).

The effect seen here with flux approaching an infinite value is identical to an ideal memristor

being connected to a DC source. A constant non-periodic voltage source will also result in flux

tending indefinitely towards �∞, due to the integral relationship implied by Eq. (5c).

This result will not hold true for all ideal memristors [4]. If the memristor was defined by a

polynomial q – ϕ curve, while ϕ ! �∞, dq
dt ¼ iðtÞ ! �∞. This implies that the memristor in

question does not have a dc V-I curve, and in practice, the memristor would burn out long

before the current became too large. This must also be considered in both Case 2 and Case 3,

where current values can potentially go beyond the memristors capacity.

Given a sinusoidal voltage for v12 from Eq. (9a) in the general form of

v12 ¼ A sin ð2πf tÞ, (15)

where A is the amplitude of v12, both ϕ1 and ϕ2 will take on a sinusoidal form as well, and

functions for memductance, voltage and flux can be found in terms of time, initial conditions

and amplitude A—all of which can easily be predetermined.

For the sake of both attaining a meaningful solution and demonstration, flux is first deter-

mined as a function of time where the term from Eq. (15) (2πf) is assumed to be 1 rad. This

simplification yields

φ2ðtÞ ¼ �γ cos ðtÞ þ u, (16a)

where γ is the amplitude of ϕ2, and if Eq. (16a) is substituted into Eq. (13a) results in

φ1ðtÞ ¼ �c1γ cos ðtÞ þ ðc1uþ c1 � 1Þ: (16b)

Substituting Eq. (16) into Eqs. (9a) and (5c) results in
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v12 ¼ v1 þ v2 ¼ ðγþ c1γÞ sin ðtÞ (17)

Alternatively,

γþ c1γ ¼ A (18)

And substituting Eqs. (14) and (18) into Eq. (16) gives

φ1ðtÞ ¼ �A
ð2þ uÞ

.

cos ðtÞ (19a)

φ2ðtÞ ¼ �Að1þ uÞ
.

ð2þ uÞ cos ðtÞ þ u (19b)

The assumption used in deriving Eq. (14) was that the initial condition of MR1 was ϕ1 = 0, at

which time ϕ2 = u. Consider when t = π/2 s: ϕ1 is indeed 0, and ϕ2 is reduced to the initial

condition u.

To find memductances W1 and W2 after serial coupling Eq. (19) is substituted into Eq. (8) to

give

W1 ¼
α1 � κ1

ðAð1þ uÞÞ
.

ð2þ uÞ cos ðtÞ þ u
� �

, jφ1j < jφtj

β1 � κ1
ðAð1þ uÞÞ

.

ð2þ uÞ cos ðtÞ þ u
� �

, jφtj < jφ1j < jφmaxj

8

>

<

>

:

(20a)

W2 ¼
α2 � κ2

A
ð2þ uÞ

.

cos ðtÞ
� �

, jφ1j < jφtj

β2 � κ2
A

ð2þ uÞ

.

cos ðtÞ
� �

, jφtj < jφ1j < jφmaxj

8

>

<

>

:

(20b)

The memductance (and by extension, current) can therefore be adjusted based on u. Biasing

the initial state of MR2’s flux for a desired value allows the two memristors to behave harmo-

niously like a pair of complementary variable switching resistors (while still maintaining the

high-low voltage states of the single memristor represented in Figure 4).

When u = 0, and in the special case of α1 = α2, β1 = β2, and κ1 = κ2, Eq. (20) shows that W1 = W2

and v1 = v2 =½v12. As u increases from 0,W1 increases andW2 decreases. This is agreeable with

Serial Case 2 of Figure 6: ϕ2 increases and is the cause for coupling with MR1 which results in

the increase of W1 (resp. the decrease of ϕ1 as u increases is the cause of the decrease in W2).

The same methodology applies for the other cases too.

While a memristor has a variable resistance by its very definition, this variation is limited by

the value of dϕ/dq according to the charge-flux curve. However, when two memristors have an

additional parameter u which contributes to this variation, the two serially flux coupled

memristors behave as variable memristors which can be adjusted based on Eq. (20).

Figure 7 represents memductances derived from Eq. (18) at κ1 = κ2 = 0.02, α1 = α2 = 0.1,

β1 = β2 = 0.01, and as shown in Serial Case 1, when u = 0 the two memristors operate with

identical flux values which leads to identical memductance values W1 = W2 = W. When the

Modeling of Coupled Memristive-Based Architectures Applicable to Neural Network Models
http://dx.doi.org/10.5772/intechopen.69327

177



initial condition of MR2 is changed to u = 0.02, the memductance of MR1 shifts upwards while

the memductance of MR2 is approximately the same as W.

3.2. Serial connection with opposite polarities

Following a similar procedure to above where one of two memristors in Figure 8 are flipped

such that either terminals A1 and A2, or B1 and B2 are connected, as shown in Figure 9,

applying KVL to Eqs. (5) and (8) yields

i ¼ v1
α1 � κ2φ2, jφ1j < jφ

t
j

β1 � κ2φ2, jφ
t
j < jφ1j < jφ

max
j

(

¼ v2
�α2 þ κ1φ1, jφ1j < jφ

t
j

�β2 þ κ1φ1, jφ
t
j < jφ1j < jφ

max
j

( (21)

and substituting Eq. (5c) along with the same assumptions β1 = β2 = β, α1 = α2 = κ1 = κ2 = α into

Eq. (21) results in the following differential equations

dφ1

.

dt ¼ �ð1þ φ1Þ
.

ð1� φ2Þ
(22a)

dφ2

.

dt ¼ �ð1� φ2Þ
.

ð1þ φ1Þ,
(22b)

which solving simultaneously assuming initial conditions ϕ1(t) = ϕ2(t) = ϕ(0) results Eqs. (23a)

and (23b), pictorially represented in Figure 10.

Figure 7. The memductance curve of serially coupled memristors, u = 0 for W, and u = 0.02 for W1 and W2.
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φ1 ¼
1

2
ð�1þ e2tÞ, (23a)

φ2 ¼
1=2 � ðe�2tÞ=2 (23b)

Therefore, memductance of the individual memristor can be obtained by substituting Eq. (23)

into Eq. (8), and assuming β1 = β2 = β, α1 = α2 = α, κ1 = κ2 = κ.

Figure 8. The I-V characteristic of two identical flux-coupled memristors shown in Figure 2 denoted I-V2 compared to the

I-V characteristic of just one memristor I-V1.

Figure 9. Memristors serially coupled with opposite polarity configuration.
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W1ðφ1, tÞ ¼

αþ κ
1

2
�
e�2t

2

� �

, jφ1j < jφ
t
j

βþ κ
1

2
�
e�2t

2

� �

, jφ
t
j < jφ1j < jφ

max
j

8

>

>

>

<

>

>

>

:

(24a)

W2ðφ2, tÞ ¼
αþ

κ

2
ð�1þ e2tÞ, jφ2j < jφ

t
j

βþ
κ

2
ð�1þ e2tÞ, jφ

t
j < jφ2j < jφ

max
j:

8

>

<

>

:

(24b)

In Figure 10, ϕ1(t) never stops, but increases to +∞. Hence, just as calculated in Serial Case 4 of

‘Serial Connection with Identical Polarities’, one of two ideal memristors can never be in

equilibrium when coupled in anti-serial connection.

Once again, this behavior is mapped against the given charge-flux relationship of the

switching memristor characterized by the shape of the curve in Figure 3. The first and final

segments of the curve are theoretically non-ending straight lines, and thus, after a voltage

pulse is applied for a sufficiently long time interval to increase flux far beyond the upper

breakpoint ϕ1 = 0.25 (resp. a negative voltage pulse to decrease flux beyond the lower

breakpoint ϕ1 = �0.25), the memristor becomes the equivalent of a resistor with the resistance

value of the inverse slope of the final segment.

This behavior is considered comparatively against a single ideal memristor excited by a DC

voltage. Suppose a battery with voltage E volts is connected across this memristor at t = 0.

Where E > 0, ϕ(t) tends towards +∞. Just as in the case of MR1 of the two anti-serially flux-

coupled memristors, the DC-excited memristor is equivalent to a resistor with value of the

inverse of the charge-flux slope.

Ignoring threshold switching effects, the memductance of MR1 reaches a steady state value

while MR2 never achieves stability and instead tends towards a perfect conductor. However,

Figure 10. Flux variation with time in anti-serial connection: figure on left displaying ϕ1(t) from Eq. (23a); figure on right

figure showing ϕ2(t) from Eq. (23b).
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these memristors will not display this behavior independently and so it is more practical to

consider the two memristors as a single black box device. Equivalent memductance across A1

and A2 can be numerically obtained as W1W2/(W1+W2) based on values of α, β and κ.

4. Coupled memristors in parallel connections

Two different configurations of parallel connected memristors exist according to polarity

combinations, just as is the case with serially connected memristors. The same approximation

of the ideal memristors will apply to this section in the same form as in Eq. (7). The first case to

consider where memristors are configured with identical polarities is depicted in Figure 11.

4.1. Parallel connection with identical polarities

The current passing through A1 and B2 as well as flux ϕ12 can be derived from Kirchhoff’s

Current Law (KCL) and Eq. (8),

i ¼ i1 þ i2, φ12 ¼ φ1 þ φ2, (25)

i ¼
v1ðα1 þ κ2φ2Þ þ v2ðα2 þ κ1φ1Þ, jφ12j < j2φtj

v1ðβ1 þ κ2φ2Þ þ v2ðβ2 þ κ1φ1Þ, j2φtj < jφ12j < j2φmaxj

(

(26)

Integration both sides of Eq. (24) yields

q ¼
ðα1 þ α2Þφ12 þ

1

2
ðκ1 þ κ2Þφ

2
12, jφ12j < j2φtj

ðβ1 þ β2Þφ12 þ
1

2
ðκ1 þ κ2Þφ

2
12, j2φtj < jφ12j < j2φmaxj

8

>

>

<

>

>

:

(27)

Memductance can accordingly be calculated,

Figure 11. Coupled memristors connected in parallel with identical polarity configuration.
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W12ðφ12Þ ¼
dqðφ12Þ

dφ12

¼
ðκ1 þ κ2Þφ12 þ α1 þ α2, jφ12j < j2φtj

ðκ1 þ κ2Þφ12 þ β1 þ β2, j2φtj < jφ12j < j2φmaxj

(

(28)

In this case the variation between the memductance and flux ϕ12 is dependent on the total of

the coupling coefficient values, κ1 + κ2. While the total coupling coefficient is positive,

memductance is in positive proportion to the excitation flux: a higher flux will result in higher

memductance. Conversely, when the total coupling coefficient is negative, the memductance

will linearly decrease with the increase of flux. It can be clearly observed from Eq. (28) that flux

coupled memristors in parallel connection behave as a new flux controlled memristor, with the

equivalent memductance equivalent to the sum of the individual memductances.

4.2. Parallel connection with opposite polarities

A similar procedure can be used in order to ascertain the behavior of anti-parallel connected

flux coupled memristors.

In the case shown in Figure 12, the current and flux across terminals A1 and A2 are also derived

from KCL with the same relationship as in Eq. (25). When considered with respect to Eqs. (3)

and (8), and using similar mathematical derivations to the previous sections the following

result is obtained:

iðtÞ ¼
v1ðα1 � κ2φ2Þ þ v2ðα2 þ κ1φ1Þ, jφ12j < j2φtj

v1ðβ1 � κ2φ2Þ þ v2ðβ2 þ κ1φ1Þ, j2φtj < jφ12j < j2φmaxj

(

(29)

Integrating both sides of Eq. (29) results in a coupled charge-flux relationship as shown below,

q ¼
ðα1 þ α2Þφ12 þ

1

2
ðκ1 � κ2Þφ

2
12, jφ12j < j2φtj

ðβ1 þ β2Þφ12 þ
1

2
ðκ1 � κ2Þφ

2
12, j2φtj < jφ12j < j2φmaxj

8

>

<

>

:

(30)

Figure 12. Coupled memristors connected in parallel with opposite polarity configuration.
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Finally, substituting Eq. (30) into Eq. (4) gives the total memductance of the coupled memristors

in parallel connection:

W12ðφ12Þ ¼
dqðφ12Þ

dφ12

¼
ðκ1 � κ2Þφ12 þ α1 þ α2, jφ12j < j2φtj

ðκ1 � κ2Þφ12 þ β1 þ β2, j2φtj < jφ12j < j2φmaxj

�

(31)

For the uncoupled case of κ1 = κ2 = 0, the parallel memristors operate as a new memristor

where the memductance states (α1, α2, β1, β2) are additive, and all contribute towards the total

coupled memductance. This particular aspect of the relationship is common to both parallel

connection combinations when polarity is changed. The difference between the two cases is in

the effect of the coupling coefficient.

5. Conclusion

A comprehensive theoretical analysis of flux coupled memristors displays various kinds of

new behaviour which are otherwise unattainable from a single memristor. The simplest case

of coupling between two switching memristors is shown to have a diverse range of proper-

ties when memristors are acting in composite with each other. The results presented only

consider bi-state memristors, and as such, we can expect different types of memristors with

different charge-flux relationships to expand the types of dynamic behaviors exhibited, with

the ability to modify the states attainable by tuning the variables associated with the

coupling coefficient (such as physical proximity and device material just to name a couple

of examples).

In summary, two serially connected memristors with identical polarities are shown to produce

a pair of variable memristors determinable from initial conditions; two serially connected

memristors with opposite polarities display behavior often displayed by memristors connected

to DC sources, or otherwise resistive behavior. Parallel memristive systems are shown to

produce a variation rate in terms of the coupling coefficients. This is a feature that can be

determined at the time of fabrication.

Further, what has been considered in this paper is the simplest case of identical memristors

with identical initial conditions. The potential application of coupled memristors, in addition

to the undoubtedly interesting characteristics of arrays of coupled memristors will serve to

open up new avenues of applications, and also provide for guidelines on avoiding undesir-

able behaviors by having fabrication plants devise methods to reduce the coupling coefficient

as low as practicable where design specifications see it fit. In particular, where neural net-

works will see densely populated circuits which depend on memristors behaving function-

ally, the effects of coupling must either be mitigated to avoid unexpected and fallible

outcomes. The alternative view is that memristive coupling makes it possible to have more

than two states between a pair of memristors which would otherwise only be capable of

being switched either on or off, and as such, if these intermediary states are quantized, then a

large system of many varying states can be produced out of a mere two memristors

connected compositely.
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