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1. Introduction

The science and technology of materials have as objective provided access to specific knowl-

edge in this field and besides generated matters of interest for the development of original

researches leading to new materials and, as a consequence, to proper protection methods to

achieve high economic impact.

Since iron and steels constitute a group of widely used materials in civil and industrial

construction, this chapter describes firstly the fundamental concepts of metal corrosion and

the most frequent failures originating on service. Besides, in this chapter, it was considered of

interest to include aspects inherent to the physicochemistry of fire and its mechanism of

spreading because of the significant human and material losses produced year after year by

action of the fire.

It is appropriate to mention that the different chapters of this book describe innovative

methods of surface treatment to control the kinetics of metallic corrosion and the action of fire

on several materials.

2. Metallic corrosion and failures

Accidents arising from themetallic corrosion can produce injury or death of people by explosion,

fire, and so on. The economic losses are classified into direct and indirect; the first includes the

replacement of corroded materials, labor, periodic maintenance (coatings, cathodic protection,

inhibitors in closed circuits, etc.) while the last involve aspects such as the discontinuity in the

productive system, the loss and the contamination of raw materials and finished goods, and so

on. The indirect losses are usually between 8 and 10 times the direct ones.

In industrialized countries, the total economic losses reach values between 3.5 and 4.5% of

gross national product, despite applying all available technologies. It should also be mentioned
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that the frequency of failure in metals by the various forms of corrosion reaches an average

level of 60% (the remaining 40% is due to mechanical failures).

Metallic corrosion is usually defined as the destructive attack of a metal by chemical or electro-

chemical reaction with the environment [1]. Chemical corrosion involves the alteration of a

metal in a non-ionic medium, such as gases or non-condensed vapors, high temperature, and

so on. On the other hand, the electrochemical corrosion occurs with a simultaneous transport of

electricity through the metal and the electrolyte (saline, atmosphere, seawater, etc.).

The most common metallic corrosion takes place electrochemically; it requires, as it is already

put, electrical conductivity. Metals are electronic conductors of first specie while solutions and

pure liquids are electrolytes of second specie.

Metallic or electronic conductors transport electricity through the electrons. The metals consist

of a relatively rigid network of positive ions and of mobile electrons. When an electrical

potential is applied, the electrons move in one direction while the positive ions remain static;

the quoted electricity transport is produced without appreciable movement of matter. Since the

electrons have a negative charge, the direction in which they move is the opposite at which is

conventionally considered as positive current.

Meanwhile, the electrolytes carry the electric current through ions, that is, with a significant

movement of matter. Ions are atoms or groups of atoms that have lost or gained electrons,

reaching in this way positive charges (loss of electrons) or negative (gain of electrons), Figure 1.

The positive ions (cations) move in the direction of current and the negative ions (anions) in the

opposite one.

The determinant factors of metallic corrosion are the heterogeneity of metal (phases in alloy,

remainder mechanical stresses, etc.) and/or of electrolyte (gradients of concentration, differen-

tial aeration, etc.). Meanwhile, the chemical nature of electrolyte (ion conductivity or equiva-

lent) significantly influences the kinetics of the corrosive process and the geometry of the

corrosion cell (higher conductivities usually favor the location of electrodes more distant from

each other than solutions of high resistivity).

Figure 1. Corrosion mechanism.
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A measure of the electrochemical kinetics (rate of reaction on electrode) is given by the

equation i ¼ z F V, where i is the current density (current per unit area of electrode), z the

number of equivalents per mole, F the Faraday constant (96,500 Coulomb/equivalent), and V

the rate of reaction in moles per unit area and time.

The abovementioned heterogeneity leads at the metal-solution interface to a gradient of elec-

tric potential between two adjacent areas. From a thermodynamic point of view, the quoted

potential gradient is correlated with a difference of free energy ∆G. This is a thermodynamic

function that is used as a criterion of spontaneity; it depends only on the initial and the final

states, that is, that it is independent of the path: it decreases its value in a spontaneous

transformation, either of physical or of chemical nature at constant temperature and pressure.

Accordingly, it is possible to conclude that metal surfaces with high free energy are thermody-

namically unstable and therefore tend to spontaneously evolve into a state of lower energy and

greater stability.

The free energy is related to the electromotive force of a corrosion cell through the equation

∆G ¼ - z F E, where E is the reversible potential in volt, z the number of equivalent by mol, and

F the Faraday constant.

Consequently, ∆G is the electrical work carried out by corrosion cell; it is observed that a

reaction occurs spontaneously, at a constant temperature and pressure, when the value of E is

positive.

Electrochemical corrosion is actually a network of shorted galvanic cells arranged on the

metallic surface. Metal dissolves in the anode areas in equivalent relation to the reaction that

takes place in the cathodic areas. In general, the anodic reaction is faster in almost all media,

that is, that cathodic reaction is usually the decisive stage of the overall speed of corrosion

process.

The cathodic reaction, in deaerated solutions, involves the reduction of protons (fast in acid and

slow in neutral and alkaline media); instead, the quoted reaction, in aerated solutions, is

accelerated by the reduction of dissolved oxygen:

2 Hþ
þ 2 e $ H2 (1)

O2 þ 2 H2O þ 4 e $ 4HO� (2)

In both cases, there is an alkalization of the cathodic area, either by the decrease of the

concentration of protons or directly by the generation of hydroxyl groups.

Meanwhile, the anodic reaction involves loss of electrons, from atoms of higher free energy,

arranged on the metallic surface:

Fe0 $ Feþ2
þ 2 e (3)

Fe0 $ Feþ3
þ 3 e (4)

As a result of the ferrous and/or ferric ions reacting with ions hydroxyl of the medium for

generating hydroxides, acidification of the anodic area occurs.
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The sum of the anodic and cathodic hemi-reactions, in aerated media, is as follows:

Fe0 þ H2O þ 1=2 O2 $ Fe OHð Þ2 (5)

2 Fe0 þ 3 H2O þ 3=2 O2 $ 2Fe OHð Þ3 (6)

The reaction in a corrosion cell involves the formation of hydrated ferrous oxide (ferrous

hydroxide), which forms a first barrier for the diffusion of oxygen (polarization). This hydrox-

ide is white in its pure state and has a pH of 9.5 in saturated solution. In a second sequential

reaction, the hydrated ferrous-ferric oxide, which is the intermediate layer, is formed. This

product, black in color, has magnetic properties. Subsequently, the reaction leads to the gener-

ation of hydrated ferric oxide, which makes up the third (external) layer of the oxidized

system. This compound is orange/dark red in color and has a nearly neutral pH in saturated

solution; exists as αFe2O3 (non-magnetic, with higher free negative energy of formation, i.e.,

more stable) and as γFe2O3 (magnetic).

On the other hand, the failures of metals take place by different causes due to the great amount

of variables involved; as previously mentioned, the frequency of failure in the metals by

corrosion reaches average levels of 60% in the different productive sectors. The types of

corrosion failure and their frequency are given in Table 1.

Uniform corrosion. It is characterized in that the cathodic and anodic areas are modified alter-

nately in space and time; as examples, it is possible to cite the case of a metal in direct contact

with a solution of reduced electrical conductivity (the corrosion products, due to the reduced

distance between the electrodes, are deposited simultaneously on the anodic and cathodic

areas controlling the kinetics of process) and also the case in which the metal is exposed to

Type of failure Failure frequency, %

Uniform corrosion 31.2

Corrosion-fatigue and corrosion under tension 23.4

Corrosion by pitting 15.7

Inter-granular corrosion 10.2

Corrosion-erosion, corrosion-wear and corrosion-cavitation 8.4

High-temperature corrosion 2.3

Corrosion by welding 2.1

Thermo-galvanic corrosion 2.0

Galvanic corrosion and corrosion in concentration cells 1.4

Corrosion by electrolysis 1.1

Corrosion by selective attack 1.0

Microbial corrosion 0.7

Corrosion by hydrogenation 0.5

Table 1. Types of failure and frequency.

New Technologies in Protective Coatings6



high temperature in a relatively dry atmosphere. Preventive measures generally include

selecting suitable materials for each aggressive medium, changing or inhibiting the electrolyte

(closed systems), specifying resistant coatings, and designing anodic protection (passivation).

Corrosion fatigue. It is characterized by the action of alternating tensions in the presence of a

corrosive medium. The causes are basically the same that can be attributed to static fatigue but

adding cyclic loads. The deteriorating effect of combined fatigue and corrosion is much greater

than the sum of individual damages. The most suitable measures to avoid this type of corro-

sion are to eliminate the cyclic tensions, increase the size or thickness in critical sections, reduce

the concentration of stresses or redistribute them, provide sufficient flexibility to diminish

over-fatigue by thermal expansion, control the vibration or shocks, eliminate the sudden

changes in loads, temperature, or pressure, specify the right surface finishing, and select the

appropriate protective system.

Corrosion under tension. It consists of premature breakage caused by the combined action of

corrosive medium and residual or applied stress on the piece of metal, that is, that it takes

place by combining high efforts and the presence of an electrolyte. Efforts by static charges in

the metal surface and corrosive action that diminishes the section of the piece may exceed the

elastic limit and even the breaking load. The forms of controlling this failure are to reduce

mechanical tensions, ensure a sufficient flexibility, increase the size of the critical sections,

select materials in the joints with a similar expansion coefficient, design adequate protection,

and use a medium of suitable nature and composition.

Corrosion by pitting. It is a localized phenomenon that produces an appreciable penetration in

the metal, generating either cavities or a discontinuity of the protective coating that lead to the

formation of a concentration cell. To avoid this pathology, it is convenient to control the

properties and the main characteristics of protective film (dry and wet adhesion, thickness,

permeability, etc.), select a good geometry to prevent attacks, and specify properly the electro-

lytic medium.

Inter-granular corrosion. It is the preferred attack on grain boundaries of a metal or an alloy; it is

characterized by a selective deterioration and an inter-crystalline cracking along inter-granular

streaks (e.g., in stainless steels in chrome-deprived areas). Frequently, the specifications con-

template to select materials with a suitable thermal treatment for each particular case and

realize weldings that do not generate temperatures superior to those used in the pretreatment

of material.

Corrosion-erosion. The failure generated by the relative movement of the electrolytic medium

(generally accelerated by abrasion due to the presence of solid particles in suspension) releases

the corrosion products adhered to metal (depolarization) and also causes surface wear. For

satisfactory corrosion-erosion control, it is appropriate to decrease the fluid velocity to achieve

laminar movement, suppress the localized turbulence and the discontinuous flows, eliminate

the abrupt changes in the direction of flow (aligning sections of ducts), avoid the obstructions,

increase the material thickness in critical areas, design anodic parts so they can be changed

quickly, specify the surface roughness, select the suitable coatings, and carry out cathodic

protection.
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Corrosion wear. It is defined as the deterioration located at the interface between two surfaces in

contact, accelerated by a relative movement of sufficient amplitude to produce slippage.

Generally, it occurs under heavy loads and instantaneous movements produced by high-

frequency vibrations; the wear of surface-protective film (inorganic primers, organic coatings,

etc.) can initiate a corrosion process. The main prevention methods to avoid corrosion wear are

to eliminate the transmission of vibrations, introduce barriers between metals that slip,

increase the load to slow the movement, provide protective layers to porous materials or use

suitable lubricants, isolate those moving parts of the static ones, and finally increase the

abrasion resistance.

Corrosion cavitation. It is associated with vapor bubbles arranged inside the liquid that collapse

on the surface of the solid. Repeated collapses on a metal surface can deteriorate the protective

film and severely deform the surface, fracturing it or generating fatigue. Low-pressure areas

are created by divergent flows, vibrations, and so on. To control these damages, it is very

important to select conditions that diminish absolute pressure, reduce hydrodynamic pressure

differences, control the vibration, design the system to avoid formation or accumulation of

bubbles, prevent the entry of dispersed air, select resistant materials or coatings, specify the

finishing polishing, use cathodic protection, and so on.

Corrosion by high temperature. It is associated to the effect of atmospheric conditions and the

presence of gases, metals, and/or molten salts at high temperature; the kinetics depends on the

nature of the metals, the composition of the medium, and the time of exposure. The reduced

dimensional stability of the corrosion products (hydration/dehydration by thermal changes)

produces tangential cutting stress to the surface leading to the partial detachment of the

different oxide layers, generating heterogeneities that favor corrosive processes. The most

recommended therapies are to select materials stable to the thermal action, adjust the nature

and/or composition of the medium, and regulate, if possible, the contact time.

Corrosion by welding. A weld can have low corrosion resistance due to the chemical nature of

the electrode (e.g., it should be used with those having a low hydrogen content), to the residual

stress and to the metallurgical structure of the weld zone. Corrosion in welding joints can be

avoided by careful selection of materials, of the technique used, and of the type of finishing.

Thermo-galvanic corrosion. It is the result of the operation of a galvanic cell generated from a

temperature gradient; the heating and the heat dissipation in heterogeneous form are the

responsible factors for the formation of this cell. The most efficient actions are to avoid point

heating and/or unequal cooling, use a continuous and adherent coating, and introduce

thermostated components from the outside to the system.

Galvanic corrosion. It involves the corrosion associated with the current resulting from the

contact of different electrodes (metals of dissimilar chemical nature) arranged in a conducting

electrolyte that closes the circuit of the cell. The most important preventive measures are to

eliminate interaction of diverse metals or to produce a complete dielectric insulation, avoid

contact of a small anode and a large cathode, extend the distance between dissimilar metals

in conductive media, design the anodic parts that can be easily replaced or apply thicker
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protective films, use suitable protective systems and regulate the degree of aeration, tempera-

ture, composition, or movement of the medium that is suitable for the metal coupling.

Corrosion by concentration cells. It is made up of a galvanic cell in which the electromotive force

is due to the concentration difference of one or more reagents. The main causes are given either

by differential aeration (different partial pressure of oxygen) generated in cracks, adherent

deposits, and deep depressions that influence the diffusional process of oxygen and the

existence of gradients of concentrations in the electrolyte generated by different causes. The

most effective measures are to reduce surface irregularities especially in areas of heat transfer

or where chemical reagents or oxygen are introduced, design drainage and a uniform environ-

ment, select forms that allow easy cleaning and application of protective layers, remove solids

in suspension by filtration, use continuous welds, suppress porosity and cracking, and elimi-

nate fibrous and/or absorbent packings.

Corrosion by electrolysis. It is generated by a current flow, that is, electric currents generally of an

alternating nature, which cannot be controlled; they are often originated by sources external to

the structure (e.g., bad ground connections, etc.), which enter through a conducting medium.

It is convenient to connect properly the equipment to ground, isolate the apparatus from

structures, use non-conducting fluids, eliminate errant or vagabond current sources, and

incorporate sacrificial (cathodic protection) plates in the anodic areas near insulation joints.

Corrosion by selective attack. It is based on a process of extracting a soluble component from an

alloy; generally, the percolation of the alloy occurs by the action of a solvent on an element of

the metal (e.g., zinc, aluminum, etc.), which separates and consequently generates a corrosive

action. The most appropriate measures involve selecting materials suitable for performing

efficiently in the electrolytic medium in which the part or structure is inserted, reducing the

aggressiveness of the medium if feasible (e.g., in closed systems), and using suitable protection

methods.

Microbial corrosion. Bacteria and fungi, individually or together, and the subproducts of the

biological activity attack the metal and/or the coating. The mentioned products (e.g., organic

and inorganic acids and alkalis) display a significant aggressiveness to materials. Conse-

quently, considering the causes described, it is convenient to avoid contamination, use specific

biocides, control chemically the environment, select properly the protective coatings, and clean

the surfaces as often as necessary.

Corrosion by hydrogenation. It is manifested by the reduction of the mechanical resistance

produced by the inclusion of hydrogen gas in the crystal structure of the metal. The most

common causes are linked to an inadequate de-oxidation and, fundamentally, to an oversizing

of the cathodic protection. The most suitable therapies are to perform a suitable surface

preparation, select properly coating systems, induce compressive stresses, heat the metallic

substrate to 90–150�C, and systematically control the electrical potential of the metal substrate

modified by the cathodic protection.

It is worth mentioning that coating systems are the most convenient methods for controlling

the kinetics of metallic corrosion from a technical-economical viewpoint [2–6].
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3. Fire action on materials

Fire is an energetic manifestation that constantly accompanies human activity; therefore, the

emerging risk must be assumed.

Fire develops strongly exothermic chemical reactions, starting when oxidizer and combustible

are in a sufficient energetic state (activation energy). The combustible includes substances that

are not in their maximum oxidation state; in general, any material containing carbon and/or

hydrogen can be oxidized and therefore be combustible. The most important oxidizer is air,

which is composed in its fifth part by oxygen; during combustion, the other components

remain unchanged (except at very high temperatures) and accompany the products of com-

bustion in the fumes. Part of the energy released in the reaction is dissipated, generating an

increase in the temperature of the medium and the remainder is transferred to the reaction

products providing the activation energy for the process to continue; if this is not enough, the

combustion stops.

The knowledge of the physicochemical theory of combustion has allowed the development of

products and systems of defense against fires. Nevertheless, the losses occasioned continue to

be one of the greatest tragedies of modern civilization. Taking into account the current tech-

nology of fire-retardant treatments (impregnation, coatings, etc.), it is important to mention the

generic concept of “passive protection against fire,” in which the efficiency is independent of

human activity.

The research and development studies are thus significant to reduce the combustibility of

materials and the speed of propagation of the flame front as well as to keep during the

conflagration the mechanical properties of structures based on either combustible and non-

combustible materials. The design of the constructions also plays a very important role.

The true magnitude of the fire problem is remarkable when considering the human and

material losses occurring year after year. Thus, for example, 25% of the deaths caused by fire

are due to people remain trapped inside buildings; the majority of victims are younger than 10

or older than 70 years. Considering accident deaths, those caused by the fire action are only

surpassed by the car crashes.

With regard to economic losses, they reach in many countries a value nearly to 0.25% gross

national product. Fire generates significant problems in civil constructions, ships, offshore

structures and industrial plants; in many cases, the use of both untreated materials and

conventional coatings contribute to the fire spreading.

Often, there are also significant indirect losses of difficult evaluation such as the decrease of

income by the total or partial interruption of the activity of a company, the decrease in

customers, the increase of replacement costs of installations and equipment, and so on. It is

estimated that out of every five companies that have had a major fire, four of them disappear

within three years of the incident.

In relation to cultural heritage and historical buildings, material losses are remarkable. For

example, the Argentinian Theater of La Plata (Buenos Aires, Argentina) was completely

New Technologies in Protective Coatings10



destroyed by a fire and the Theater della Scala (Venice, Italy) was seriously affected by another

conflagration, in the decades of the 70 and 90 of the previous century, respectively.

As a consequence of the spectacular fires in historic and massive concurrence buildings, many

countries adopted regulations for the control of materials flammability. The latter led to

developments of intrinsically fire-resistant materials, retardant treatments, and a large number

of test methods to evaluate the reaction to fire of the materials. It is also important to mention

that for many years now, insurance companies have found that the way to deal with fire is

through the prevention and the use of fire-proofing materials.

Stability of construction materials. The fire action on construction materials is significant; thus,

for example, calcareous collapses rapidly by dilation and by contraction during drying.

Concerning the concrete, it exhibits satisfactory response to high temperatures if perfectly

anchored. For its part, reinforced concrete presents adequate behavior up to 300–330�C if its

aggregates are small in size; the iron framework begins to lose resistance when reaching a

critical temperature of 500–550�C.

As regards gypsum, it is gradually dehydrated above 120�C and up to 180�C, loosing cohesion

at 700–800�C.

The load-bearing iron and steel structures (made by forging or rolling) are plastically

deformed by the action of heat, essentially when the pressure leads to lose their static equilib-

rium; at approximately 500�C, these materials halve their structural strength.

Wood and wood products were widely used in the construction of historic buildings; in spite of

behaving like combustible materials and to be vulnerable in cases of fire, in general they display

a considerable fire resistance (small decrease of area attributable to the low thermal conductiv-

ity of the superficially formed carbonaceous layer). Untreated wood begins to burn at 300�C but

that treated with suitable fire retardants does not release so much smoke (the gases are non-

toxic and non-combustible). The losses in cases of conflagration are always lower than in the

constructions with iron and other metals and, once the origin of the fire has been eliminated, the

wood is characterized by exhibiting a behavior corresponding to a self-extinguishing material.

All the abovementioned values have a singular meaning, since the average temperature of the

fire ranges usually between 700 and 800�C.

Fire spreading. The speed of propagation of the flames plays a preponderant role in the advance

of the fire front; as mentioned, the toxicity of gases and fumes is a significant variable. The

room propagation involves the three forms of heat transfer (convection, radiation, and con-

duction): in the interior of a building, by conduction through the walls when the thermal

insulation is reduced or by convection when there are open stairs while between adjacent

buildings by radiation through the openings, doors, and windows.

It is worth mentioning that in the buildings under construction, expansion, or demolition, the

probability of fire is particularly high during (i) the heating, welding, and cutting processes;

(ii) the transport of flammable liquids and materials; and (iii) the use of electrical equipment

with precarious installations.
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Total thermal load and fire load. It is significant to determine the degree of risk and adequate

security measures, particularly for civil buildings designed to permanently or transiently

accommodate a large number of people (schools, libraries, hospitals, hotels, restaurants, audi-

toriums, theaters, cinemas, shops, etc.) and industrial units built to store and/or manufacture

products, equipment, and appliances (petrochemicals, automotive terminals, medical labora-

tories, sawmills, etc.).

The total combustion risk of a building is calculated by considering the caloric content of the

building (fire load including the building itself) and the enthalpy level of the content (fire load

involving human lives and properties). The Pourt method was developed from the value of fire

load and is widely used to determine the total risk of buildings; the fire charge density, cal-

culated by dividing the fire load by the building surface, is also a widely considered variable.

Performance of coatings in fire. Coatings in particular and coating systems in general play well-

defined actions against fire action [7–19]; they may

• Promote the spreading. Generally, conventional coatings have a low ignition point, so by

thermal action they release combustible gases, which ignite and release caloric energy; the

last one in turn becomes the energy of activation that promotes the spreading of confla-

gration front.

• Display inertia. Some commercial products of reduced efficiency do not alter the fire

performance of the bare substrate or only achieve a limited retarding action.

• Delay evolution or extinguish fire. The retarding effect interrupts, in one or more stages,

the combustion; the process ends in an acceptable lapse, often before the ignition takes

place, Figure 2.

Testing methods. The analysis of the current regulations in the world indicates the existence of a

great number of tests of different characteristics to determine the reaction, the resistance, and

the stability against fire of the constructive elements. The results depend on the type and shape

of the specimen, the intensity and time of action of the external energy source, and so on.

Figure 2. Left, panel without treatment and right, film of intumescent coating, both after the fire action.
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The main variables considered include the size and position of specimen, the type and magni-

tude of energy source, the way and rate of heating, the duration of test, and valued indices; the

fire performance varies according to the method applied.

In many occasions, the abovementioned is a technological barrier for the export/import of

either fire retardants or treated materials. A political decision must be taken to impose com-

mon test methods at least at the regional or continental level, resulting in adequate reproduc-

ibility, that is, that in the case of operators working in different laboratories or in the same

laboratory at different times, achieve comparable individual results (low dispersion of the

mean value) by using the same method on an identical material.
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