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Abstract

In this research, we present a Bayesian model to aid the investment decision in early
stage start-ups and ventures. This model addresses both the venture and the angel
investing markets. The model is informed both by previous academic literature on
entrepreneurship and by venture capital investment practices. The model is validated
through an anonymized experiment where reviewers with previous experience in entre-
preneurship or investment or both scored a list of 20 anonymous real companies for
which we knew the outcome a priori. The experiment revealed that the model and
online scoring platform that we built provide an accuracy of 83% in identifying compa-
nies that would later on fail and where the investments would be lost. The model also
performs fairly well in identifying companies where the investors would not lose their
money but they would either have to wait for a very long time on their returns or they
would not receive large return on investment (ROI), and we also show that the model
performs modestly in identifying “big exit” companies or companies where the inves-
tors would receive high ROI and in a fairly short amount of time.

Keywords: Bayesian networks, investment, start-up, entrepreneurship, decision models

1. Introduction

One of the biggest challenges facing early stage investors is a lack of actionable data and

effective analytics. Most investment decisions are made based on the instinct (heuristics) of

the investor who may or may not have experience in the sector and decisions are often

inherently biased. In investment environment is increasingly complex, and investors cannot

process all of the factors that are critical to the success of a potential investment and make a

well-informed decision. Research suggests that well-built analytic models make better deci-

sions than human experts across virtually every field [1].
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Some of the newest data on the returns on angel investment show that these are about

2.5 times the value of the initial investment and the average period of recovery of investment

is 3.6 years [2].

In general, there is little literature with respect to automated techniques or models of invest-

ment decision. A very recently published paper shows an interesting risk analysis model that

would reduce the risk of investing in early entrepreneurs [3]. This research takes a similar

approach—reduce the “bad” investment decisions—but it uses a different model, based on a

Bayesian model, which performs well in identifying the future failures of new ventures.

While there is understandably little academic literature on forecasting future star-up success

and its relationship to investment decision-making, due to the confidentiality of the data in

this business, the decision-making practice in the venture capital and angel investment indus-

tries rely heavily on the experience of the investors and on the “collective” thinking of the

investors that gather together to rate or assess the pitches or business proposals for various

funding rounds of investment.

Therefore, this chapter presents a model for investment decision-making that is informed

mainly by the practitioners and is intended to be applied in to investment practice. Its aim is

to be a tool that helps the process of rating seed and start-up ventures become more informa-

tive and transparent both for investors and for entrepreneurs.

The model built for this research is mainly informed by the interviews and discussions

conducted with investors during the summer of 2014. The nodes of the model and the depen-

dencies between the nodes have been created based on these interviews, while the distribu-

tions of the prior probabilities have been informed by the academic literature where such

information could be found, otherwise they are normal.

This research describes the model in general terms, how it has been implemented in practice

and the results of two experiments that have been run to provide validity of its forecasting

accuracy. The construction, implementation, and validation of the model, as well as a discus-

sion of findings are presented in the following sections below.

The rest of this chapter is structured as follows: Section 2 describes the model and the rationale

behind building it; Section 3 describes the experiments that were conducted using this model,

mainly with the purpose of validating its accuracy; Section 4 presents the results from the

experiments and an analysis of the accuracy of the model; and Section 5 summarizes succinctly

the conclusions of this research.

2. The Bayesian investment decision model

We used Bayesian networks modeling to build a probabilistic assessment model of early stage

companies or ventures. We based our selection of nodes/factors on a series of interviews and

working closely with practitioners in venture capital funding. We afterwards implemented this

model on an online platform, available at www.exogenius.net (see Figure 1).
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The Bayesian model scores on a scale of [0, 100] the potential performance of a company/start-up

by identifying three key measures: business execution, value proposition, and exit potential (see

Figure 2). These measures are aggregated (nonlinearly) into an overall score of performance.

Each of these three important measures scores the future potential of a project or start-up in

regard to their proposition (which may be a technological innovation, a social value, or any

business value that the entrepreneur presents as the core proposition), their ability to sustain,

carry out, and fulfill their proposition (business execution) and the potential of this new venture

to exit (either through IPO, buy-out, or in anymanner that would be satisfactory for the investor).

Each of these three measures is a child of five subnetworks in the model, which are represented

by more granular parent-children nodes each. These five subnetworks are business/entrepre-

neurship factors or indicators that are measuring the new venture on the following aspects of

the business proposal: technical difficulty, uniqueness of innovation, readiness for market,

customer engagement, team performance, entrepreneurial and managerial experience, foun-

ders and incorporation of the company, and many more. Each of the granular nodes in the

model is represented by three to five states and they are informed either by the evidence from

published literature (as described below) or otherwise by a uniform distribution priors [4].

The conditional tables of each node have been readjusted after sensitivity analysiswas performed,

based on data and facts previously published in the entrepreneurship and high-growth compa-

nies literature [5–7].

Figure 1. The Bayesian model for investment decision.
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For example, the states of the technology (marginal versus breakthrough) node are defined

according to the literature on entrepreneurship [7–9]; the number of founders is also determined

based on these prior findings, i.e., the state of 2–4 founders has the highest positive impact on the

final score, while the other states have low impact or negative impact (more than 5 founders

lower the chances of success significantly) [5, 6].

The nodes representing the team complementarity, coordination, and learning are based on the

findings of the Startup Genome Project, which was run at Berkley and Stanford Universi-

ties [5, 10, 11]. In other words, since the findings show that team complementarity and learning

are critically important for the success of the early ventures, the team node in the model reflects

these findings through the distribution of prior in its states.

Similarly, the nodes that are assessing the infrastructure of the start-up (broadly construed as

not only physical requirements to develop the proposed technology, but also legislative,

financial, or logistic infrastructure), are informed by the currently published probabilistic

values in previous studies on organizational emergence [12].

The placement of the new venture in the current market is also assessed, and this is done based

on the assessment of the projected growth of the company relative to the projected growth of

the market or of the industry [7, 12].

For the development of the model, we used both UnBBayes [13] and GeNIe/SMILE [14] open-

source softwares dedicated to Bayesian modeling. After the model was built, tested, and

developed, it was migrated on the online platform, with easy to use user interface, and where

we ran our experiments.

The implementation of the model on an online platform facilitated experimentation for fore-

casting accuracy. The nodes of the model that provide new evidence, specific to each venture,

are represented as a series of 23 questions in a user-friendly interface. For example, the evidence

Figure 2. Example of one of five subnetworks of the model—the technology offering is represented by three granular

nodes.
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node in the model that represents the uniqueness of the offering became the question “How

unique is the proposed offering (idea/innovation/technology/product/service)?” in the online

platform. The nodes that were not evidence in the model have obviously not been represented

as questions in the online implementation. The reviewers/users have the possibility to see the

progression of the three key scores (value proposition, business execution, and exit potential) as

well as the final score as they go through answering the individual assessment questions.

3. The experimental design for model validation

In order to validate the accuracy of the model scores, an anonymized experiment was designed,

where 20 case studies of companies were recreated from real, historical companies. These case

studies included the state of funding and potential of various companies while they were start-

ups, before their first or second seed funding and the aim of the experiment was to showwhether

the exit or the overall scores of the model align statistically with what happened in real life.

In the experiment, there were randomly picked 20 historical cases for which we know the

ground truths about their financial history (how they started, how much was their initial

funding, and how much was their exit), by using publicly available information from Crunch-

Base website, Wikipedia and various failed start-ups, and postmortems case studies. The

companies in the sample for the experiment had either high exits (were bought for more than

$500 million), medium exits (were bought for 100–1000K or they took a very long time to exit,

i.e., 20 years), or no exits (they shut down or went bankrupt soon after their launch).

Each of these 20 case studies in the sample were recreated as anonymous business proposals,

given the information at the time when they were seeking initial funding (i.e., 2010). Therefore,

each of these anonymized case studies included the following information: the year when the

reviewer had to “travel back in time” (i.e., 2010), with a hyperlink toward published most

important business and technological events of that year (i.e., the economist), the company

location, the number of founders, the type of incorporation, anonymized information about

the founders experience, information about the market and industry at that time, information

about the customers, the team, the infrastructure, about the financial past of the company if it

existed and, most importantly, information about the product or technology without disclos-

ing its brand name. The reviewers were also free to look for additional information on the web

regarding the state of technology and business at that particular time in the past. The oldest

case study was placed in 1999 and the newest one in 2014.

In other words, all the possible information about a company that could be included prior to

the time of their initial funding request was we included, as long as it could be anonymized.

We conducted two experiments: one with experts in business or investing and other with MBA

students at the University of Maryland.

The first experiment was carried by 24 volunteer reviewers, who reviewed five of these

anonymous case studies each, by answering the questions from online platform at the forefront

of our model for each of their assigned five case studies. The reviewers in the experiment are
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experienced as either entrepreneurs or investors; therefore, they are a panel of experts that

completed the experiment.

The second experiment was carried by MBA students at the University of Maryland, in a 1 h

long session. The students were also randomly assigned five case studies each and answered

the same questions from the online platform as the experts did.

4. Results and accuracy analysis

The first experiment started on March 22, 2016 and by April 13, 2016, 54% of reviewers

completed their reviews. We collected 68 (reviews) X-4 (scores) data points. The second exper-

iment was carried out during 1 day in October 2016.

Figure 3. The distribution of overall reviewing scores in the expert experiment. This figure shows the scores on a scale of

0–100 that were given by the professional reviewers (investors and entrepreneurs) in the overall rating for the companies

in each of the three groups—high-exits; medium exits; and no exits. The distributions of the reviewers scores show that

low exits were scored between 0 and 40 with most scores around a value of 20; medium exits were scored between 0 and

80 with most scores around 40; and the high exits were scored either with scores around 20 or scores around 60.
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A reviewer provides the observations for the evidence nodes/questions in the model. The

model then provides a distribution on all scores as output, conditional on these observations.

Thus, the Bayesian model here is a three-layer model where the metrics are at the top level in

the network and the observations (market evaluation, team evaluation, etc.) are at the bottom

layer of granular nodes.

Both the measures in the model and the observations are discrete.

The data from the anonymized experiments were rematched with the ground truth data from

the real case studies and compared the experiments with the evidence on three groups of

companies (high exits, medium exits, no exits). The distributions of the exit scores and the

overall scores from the experiment for each of these groups are plotted on the following figures

(see Figures 3–7).

Figure 4. The distribution of overall reviewing scores in the MBA students experiment. Similarly to the plot above, this

figure shows the scores on a scale of 0–100 that were given by the University of Maryland students in the overall rating for

the companies in each of the three groups—high exits; medium exits; and no exits. The distributions of the reviewers

scores show that low exits were scored between 0 and 40 with most scores around a value below 20; medium exits were

scored between 0 and 80 with most scores around either 20 or 40; and the high exits were scored either with scores

between 20 and 60.
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Figure 5. The distribution of exit reviewing scores in the expert experiment. This figure is similar to Figure 3, except that

these are the scores of the professional reviewers for the exit node and not the overall score. The low exits were scores

mainly with values close to 0, medium exits with scores between 10 and 60, and high exits scores were very close to a

uniform distribution.

Figure 6. The distribution of exit reviewing scores in the MBA students experiment. Similarly as above, this figure shows

the distribution of the exit scores for the student reviewers. The scores of the low exit companies were close to zero, the

ones of the medium exits around 30 and the ones of the high exits exhibit a much larger range of scores, from 0 to 100.
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We can observe from these distributions that the “no exits” or “failures” scored low in both

experiments, that the medium exits had medium scores in both experiments, and that the high

exits had low, medium, and high scores in both experiments, whether we look at the final

overall score or only at the exit key intermediate score (see Figure 8).

Figure 7. The overall accuracy of the Bayesian model in the expert panel experiment.

Figure 8. The overall accuracy of the Bayesian model in both experiments.
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In other words, there is consistency between the two groups of reviewers with respect to each

of the three groups of companies. Moreover, there is consistency in the reviewers responses

and the ground truth data with respect to low-exit and medium-exit companies, but less so for

high-exit companies. In other words, we can use this model to identify failures or low exits, but

less so to identify high exits and, therefore, the model is designed to prune out “bad” proposals

from a pool of varied investment opportunities.

Between the two experiments, we can also observe that the experts are still slightly better than

MBA students at identifying low and medium exits.

The responses from the experiment for the “no exits” had a mean exit score of 20% and a

median exit score of 16% and a mean and median overall score of 27% with a standard

deviation of 16–17%. This means that the companies that failed in real life were reviewed with

scores in the range of 16–27% in our model.

The medium exits experimental data had a mean exit score of 31%, a median of 28% and an

overall mean and median of 34 and 36%, respectively, with standard deviations of 20 and 17%,

respectively. This means that the companies that had medium exits (either low in capital value

or took very long to exit) scored around the probabilities of 28–36% in our model.

The high exits had a mean and median exit score of 42%, an overall mean and median of 46%

and a standard deviation of 28and 25%, respectively. This means that companies that were

bought for more than $500 million in real life scored around 42–46% in our model (see Table 1).

The accuracy performance of the model was analyzed by using simple quantitative forecasting

analysis. Specifically, the mean absolute deviation was used as a metric to calculate the fore-

casting error. The resolution value of 1 was considered for the companies with high exits, 0.5

for the medium exist, and 0 for the failed or no exit companies. The difference between these

resolutions and the actual probabilities given by the reviewers was calculated as a mean

absolute deviation. Based on this calculation, the overall accuracy of the model is situated at

75%, the accuracy for the no exits is valued at 83% and the accuracy for the medium and high

exits is 77 and 41%, respectively (see Table 1).

5. Conclusions

In this research, a probabilistic model that assesses the potential for exit and overall performance

of new ventures (start-ups) is presented, from building it based on practice and published

statistical data, to its implementation in a readily available online platform that can be used by

Failed companies Medium-exit companies High-exit companies

Experiment mean scores 0.20 0.31 0.42

Experiment median scores 0.16 0.28 0.46

Accuracy 0.83 0.77 0.41

Table 1. A summary of the model accuracy based on the experimental results.
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entrepreneurs and investors alike. The model is designed to assess quantitatively the potential of

business while they are still at the very initial stages. The model is well informed with facts that

we know from previous academic literature on entrepreneurship and high-growth companies,

as well as informed in detail with venture capital experience and practices by working closely

with them during the development phase of the model.

The model is validated using two anonymized experiments with experts in the field and MBA

students and is currently translated into a commercial product. The results of these experi-

ments and the details of the model are being presented in this chapter as both a validation

method and as a viable metric or indicator that can detect ahead of time the future failures and

“bad investments.” This model can thus be also used by entrepreneurs to self-assess and

identify points of weakness in their proposals and current seed ventures. Therefore, this

research is presenting a tool for investment decision that can be easily automated and scaled

up for the use of any potential investor, either angel or venture or any entrepreneur.

At the same time, these research efforts are also a good pathway to shed more transparency in

the investment road map.
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