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Abstract

Phosphorylation of ecto‐domains of membrane proteins and extracellular matrix pro‐
teins, which is termed ecto‐phosphorylation, activates intracellular signalling and has 
roles in several physiological processes including cell adhesion, fertilisation and fibrino‐
lysis. We demonstrated that ecto‐phosphorylation can promote endogenous neurogen‐
esis in the damaged central nervous system (CNS), augmenting its functional recovery. 
Thus, regulation of ecto‐phosphorylation could be a platform for development of thera‐
peutic methods against CNS injury. Regeneration of the damaged CNS is long‐awaited. 
While transplantation of neuronal progenitor cells is expected to be the first platform 
to develop the therapy, the potential of endogenous neurogenesis as a source of new 
neurons has been expected to be an inexpensive and non‐invasive regenerative medi‐
cine for CNS injury. In this review, we focused on the spinal cord as a model of CNS 
recovery from traumatic injury. The spinal cord is the simplest part of the CNS and its 
function is well known. Therefore, estimation of recovery is easier than other part of the 
CNS. Firstly, we introduce endogenous neural stem cells (NSCs) in the adult spinal cord 
and their behaviour after injury and then discuss effects of ecto‐phosphorylation, which 
induces regeneration of the adult spinal cord.

Keywords: adult neurogenesis, adult neural stem cells, activation of quiescent stem 
cells, spinal cord injury

1. Introduction

The adult mammalian central nervous system (CNS) loses its self‐regeneration ability, 

whereas it contains neural stem cells (NSCs) that can differentiate into both neurons and glial 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



cells [1, 2]. Under physiological conditions, neurogenesis in the adult CNS can be observed 

at the dentate gyrus of the hippocampus and the subventricular zone [3]. Neurogenesis is 

strictly inhibited in other regions of the adult CNS. After injury of the adult CNS, endogenous 

NSCs produce glial cells that are involved in formation of the glial scar. However, the stem 

cells rarely produce neuronal cells, which can contribute to regeneration of the neuronal net‐

work damaged by the injury. Thus, when the adult CNS is damaged, its neuronal network is 

not regenerated and incurable paralysis can be occurred. If cell fate decision of endogenous 

NSCs could be controlled in the injured CNS, the cells might be a source of new neurons and 

remyelinating oligodendrocytes to repair the damaged neuronal network. A recent report 

demonstrated that application of adenosine triphosphate (ATP) and a protein kinase pro‐

moted differentiation of neuronal cells in the damaged spinal cord, and diminished paralysis 
caused by the injury [4]. Thus, ecto‐phosphorylation may provide a novel platform for regen‐

erative medicine of the damaged CNS, in which endogenous NSCs are used for a source of 

new neurons.

2. Neural stem cells in the adult spinal cord

NSCs can be characterised by the ability of self‐proliferation and of differentiation into 
both neuronal and glial cells [5]. Proliferating cells in the intact adult spinal cord are 

mostly oligodendrocyte precursors [6]. Other than that, ependymal cells existing around 

the central canal proliferate moderately, and radial glial cells existing throughout the spi‐

nal cord are also proliferative. These three types of cells are known to have potential to 

produce neurons at least in vitro and are proposed to be NSCs in the adult spinal cord 

[7–10].

When cultured NSCs derived from the spinal cord are transplanted into the adult spinal 

cord again, the differentiated cells from the transplanted NSCs are mainly astrocytes [11]. 

However, when the same NSCs are transplanted into a part of the hippocampus where neu‐

rons are generated through life, they produce neurons. This report demonstrates that NSCs 

derived from the adult spinal cord have ability to produce neurons, but the ability is inhibited 

by the microenvironment around NSCs in the spinal cord.

3. NSCs after spinal cord injury

The group of Frisen made transgenic mice, in which each type of stem cells was genetically 

labelled [6]. They observed cell fates of those stem cells after spinal cord injury. Radial glial 

cells produced only astrocytes after traumatic injury of the spinal cord, and oligodendrocyte 

precursors produced oligodendrocytes. Proliferation of ependymal cells was enhanced after 

spinal cord injury, and the cells moved to the injury site, producing astrocytes and very few 

oligodendrocytes (Table 1). Thus, endogenous neurogenesis is not activated after spinal cord 

injury.
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4. Regulation of NSCs in the spinal cord

Whilst transplantation of cultured neuronal precursor cells is expected to provide a new ther‐

apy for spinal cord injury, attempts to use endogenous NSCs as a source of new neurons have 
been examined, as summarised in the sections.

4.1. Inflammatory cytokines

After spinal cord injury, pro‐inflammatory cytokines including TNF‐alpha, IL‐6, and IL‐1beta 
are secreted in the injured site, inducing inflammation. IL‐6 promotes differentiation of NSCs 
into astrocytes. Suppression of IL‐6 signalling decreases the production of astrocytes induced 
by spinal cord injury, promoting functional recovery of damaged spinal cord [12, 13].

4.2. Growth factor

Growth factors can modulate not only proliferation and differentiation of NSCs, but also sur‐

vival, neurite outgrowth, and synapse plasticity of differentiated neurons. Both FGF2 and 
EGF suppress differentiation of NSCs, which in turn promoting proliferation. Administration 
of FGF2 and EGF into the lateral ventricle accelerates growth of not only subventricular zone 

NSCs but also NSCs around the central canal of spinal cord [14]. IGF‐1 induces the production 

of oligodendrocytes by inhibiting bone morphogenetic protein (BMP) signals through induc‐

tion of bone morphogenetic protein such as Smad6, Smad7 and Noggin [15]. When fibroblasts 
that can secrete Brain‐derived neurotrophic factor (BDNF) are transplanted into the spinal 

cord injury lesion, oligodendrocytes production is induced [16]. After spinal cord injury, the 

exogenous delivery of nerve growth factor (NGF) can induce growth of corticospinal axons 

in rats [17, 18], whereas NT3 elicits growth of corticospinal axons [19, 20]. Glial cell‐derived 

neurotrophic factor (GDNF) induces growth of motor and dorsal column sensory axons after 

partial and complete spinal cord transections and induces remyelination [21]. These reports 

NSCs in the intact 

spinal cord

Genetic labelling Protein markers Increase at the 

lesion (fold)

Descendant cells 

(contribution)

Ependymal cells FoxJ1 promoter Sox9 4–5 Astrocytes (53%)

Vimentin Oligodendrocytes 

(3.2%)

Astrocytes Connexin 30 promoter Sox9 2 Astrocytes (47%)

GFAP

Oligodendrocytes Olig2 promoter Olig2 2 Oligodendrocytes 

(97%)
Sox10

APC (mature 

oligodendrocytes)

Table 1. Cell fate of NSCs after spinal cord injury (based on data from Ref. [6]).
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suggest that control of growth factors in the injured area of the spinal cord may promote 

regeneration of the injured spinal cord. However, clinical trials using systemic delivery of 

growth factors for various disorders have failed either as a result of lack of efficiency or unac‐

ceptable side effects, or both [22, 23].

4.3. Transcription factor and growth factors

Neurogenin2 and Mash‐1 are transcription factors required for neuronal differentiation. 
Production of neurons and oligodendrocytes at the lesion of spinal cord is induced by infec‐

tion of retroviruses that express those transcription factors followed by application of BDNF, 
FGF2, and EGF [9]. However, it is unknown whether the treatment with transfection and 

growth factors can promote recovery of the function, or not.

5. Extracellular phosphorylation

Protein phosphorylation occurs not only in the intracellular space but also at the extracellular 

space (Figure 1). Phosphorylation of proteins located at the cell surface has been reported in 

many types of cells, including platelets [24, 25], monocytes [26], osteoblasts [27], vascular smooth 

Figure 1. Three types of phosphorylation. (1) Intracellular phosphorylation by intracellular PKs. This type of phosphorylation 

has been studied extensively and intensively. (2) Endogenous ecto‐phosphorylation by ecto‐PKs. Some PKs can be secreted 

from cells through typical exsocytosis. Those ecto‐PKs use extracellular ATP, which are secreted from many types of cells, 

including neurons and glial cells, as the donor of phosphorus residue for protein phosphorylation. (3) Artificial ecto‐
phosphorylation. In this case, both ATP and PKs are artificially applied. Any kinases that do not exist in the extracellular 
space can be applied, and they are applicable at any places even where endogenous PKs are not functional. Therefore, 

responses that endogenous ecto‐PKs do not evoke can be expected.
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muscle cells [28] and neurons [29]. Furthermore, some of extracellular matrix proteins are known 

to be phosphorylated [26, 30–32]. Yalak and Vogel identified 770 different phosphorylation sites 
in 66 extracellular proteins or in proteins with extracellular domain by annotation of secreted 

phosphorylated protein data available in public repositories [33]. Extracellular protein phos‐

phorylation, which is termed ecto‐phosphorylation, has been implicated in several physiologi‐

cal processes, including adhesion and migration of leukocyte and macrophage, fertilisation and 

fibrinolysis. Ecto‐protein kinases (ecto‐PKs) acting on the outer surface of the plasma membrane 
are reported to catalyse those phosphorylation. Ecto‐PKs use extracellular ATP as a source of 

the phosphate group [28]. Thus far, FAM20C, protein kinase C (PKC), protein kinase A (PKA), 
casein kinase 1 (CK1) and casein kinase 2 (CK2) are reported as ecto‐PKs [34, 35]. In addition to 

phosphorylation by ecto‐PKs, ecto‐domain of membrane proteins and proteins secreted from 

cells can be phosphorylated by kinases in the Golgi apparatus, which proteins pass through for 

secretion and for location to the plasma membrane. Ecto‐domains of neuroglican C [36] and of 

amyloid beta precursor protein [37] can be phosphorylated by both ecto‐PKs and kinases in the 

Golgi apparatus. Endogenous ecto‐phosphorylations described in this chapter are summarised 

in Table 2.

These findings demonstrate that ecto‐phosphorylation, as well as intracellular phosphoryla‐

tion, can activate substrate proteins, inducing intracellular signalling.

6. Extracellular phosphorylation and neurite outgrowth machinery of 

neurons

In 1989, extracellular ATP was reported to stimulate uptake of noradrenaline into PC12 adre‐

nal pheochromocytoma cells [38]. Addition of either ATP or ATPgammaS, but not adenosine 

diphosphate (ADP), guanosine tri‐phosphate (GTP) or AppNHp, increased noradrenaline 

Ecto‐phosphorylation Location Effects Cells

105, 39, 20 kDa proteins Membrane NGF‐dependent neurite 

outgrowth

PC12 cells

12, 13 kDa proteins Membrane Correlation with neurite 

outgrowth

Primary embryonic chick 

neurons

48/50 kDa protein Membrane Long‐term potentiation Hippocampal pyramidal 

neurons

Laminin Extracellular matrix Cell adhesion and migration –

Collagen XVII Extracellular matrix Unknown –

Vitronectin Extracellular matrix Unknown –

Fibronectin Extracellular matrix Unknown –

NCAM Membrane Unknown Neuronal cells

MAP1B Post‐synaptic area Synapse formation Cortical neurons

Beta‐amyloid Secreted Promotion of aggregation –

Table 2. Endogenous phosphorylation of ecto‐domains of membrane proteins and extracellular matrix proteins 

described in the chapter.
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uptake into PC12 cells. This suggests that added ATP was used as the donor of phosphate 

group in the phosphorylation reaction. Although protein responsible for the regulation of 

noradrenaline uptake is still unknown, 105, 39 and 20 kDa proteins at the surface of PC12 cells 
were identified as substrates for ecto‐phosphorylation [39]. NGF, which can induce neuronal 

differentiation and neurite outgrowth of PC12 cells, enhances extracellular phosphorylation 
of PC12 cells [39]. A non‐permeable and non‐specific inhibitor of kinases, K252b, blocked 
both NGF‐dependent neurite outgrowth and enhancement of extracellular phosphorylation 

[39, 40].

In 1995, primary embryonic chick neurons were incubated with radioactive ATP to show ecto‐

protein kinase activity [41]. Incorporation of radioactivity was detected with 116, 105, 67, 53, 

17, 13 and 12 kDa proteins. Addition of either a pseudo‐substrate peptide for PKC or a neutral‐
ising antibody against catalytic domain of PKC inhibited phosphorylation of 67, 13 and 12 kDa 
proteins, indicating that ecto‐PKC catalysed phosphorylation of those proteins. Extracellular 

phosphorylation of 12 and 13 kDa proteins by PKC is regulated by development of the brain 
and is correlated with neurite outgrowth of neurons in the CNS. The 12 and 13 kDa proteins 
have not been identified.

7. Long‐term potentiation and extracellular phosphorylation

Long‐term potentiation is the long‐lasting improvement in neuronal communication, which 
is the major cellular mechanism for learning and memory [42, 43]. Extracellular phosphory‐

lation of neuronal surface proteins is implicated in long‐term potentiation in the hippocam‐

pus [44–46]. Using mouse hippocampal slices, addition of either ATP or ATPgammaS, but not 

AppNHp, was reported to amplify permanently the magnitude of the population spike [44]. A 

48/50 kDa protein at the surface of hippocampal pyramidal neurons becomes phosphorylated 
during the amplification [45]. Addition of a neutralising antibody against PKC inhibits the 

extracellular 48/50 kDa protein phosphorylation, and it blocks the stabilisation of long‐term 
potentiation in hippocampal slices [45]. Thus, PKC‐mediated extracellular phosphorylation 

is required for maintenance of hippocampal long‐term potentiation. However, the 48/50 kDa 
protein has not been identified.

8. Extracellular phosphorylation and synapse

Synapse formation is an essential step to make neuronal network. K‐252b, which is a non‐

permeable and non‐specific inhibitor of kinases, inhibits synapse formation between cortical 
neurons in vitro [47]. This suggests that ecto‐kinase sensitive to K‐252b has a role in synapse 

formation. Lately, the same group has indicated that MAP1B, which is a tubulin‐binding pro‐

tein distributed in axon, especially in growth corn, is a substrate of ecto‐protein kinases, and 

K‐252b inhibits phosphorylation of MAP1B [48]. Originally, MAP1B was thought to be located 
in the cytoplasm. However, at least some splice valiant forms of MAP1B can be located at the 
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plasma membrane [49]. The membrane‐bound MAP1B is located in the post‐synaptic area, but 
not in pre‐synaptic area [50]. The membrane‐bound MAP1B can interact with myelin‐associ‐
ated glycoprotein (MAG) and the binding enhances phosphorylation of MAP1B [51]. Neither 

the kinase catalysing MAP1B phosphorylation nor the phosphorylation site in MAP1B has 
been elucidated. These reports suggest a possibility that ecto‐phosphorylation of membrane‐

bound MAP1B has a role in regulation of synapse formation.

These findings suggest that ecto‐phosphorylation can regulate neurite outgrowth, long‐term 
potentiation and synapse formation of neurons. This gives an idea that ecto‐phosphorylation 

may promote regeneration of the damaged neuronal network.

9. Ecto‐domain phosphorylation of NgR

9.1. Effects on terminally differentiated neurons

NgR is a receptor of myelin‐associated glycoproteins, Nogo‐A, MAG and oligodendrocyte‐

myelin glycoprotein (OMgp) [52, 53]. Binding of those glycoproteins to NgR inhibits axonal 
outgrowth of neurons, at least in vitro. NgR signals activate intracellular Rho protein regulat‐

ing rearrangement of cytoskeleton, which suppresses axonal outgrowth and synapse forma‐

tion. Paralysis by spinal cord injury can be reduced by administration of an antibody against 

Nogo‐A protein [54]. Genetic depletion of NgR shows NgR is partially responsible for limit‐

ing the regeneration of certain fibre systems in the adult CNS [53, 55].

We found that the extracellular domain of NgR can be phosphorylated by PKA and CK2, and 

that the phosphorylation inhibits binding of NgR agonists [56]. Interestingly, both kinases 

phosphorylate the same amino acid residue of the ecto‐domain of NgR (Figure 2). In vitro 

study indicated that ecto‐domain phosphorylation of NgR by either PKA or CK2 can over‐

come the inhibition of axonal outgrowth by NgR agonists Nogo‐A, MAG and OMgp.

Figure 2. Phosphorylation sites in the ecto‐domains of NgRs. (▼) indicates the phosphorylation site detected by mass 

spectrometer after the in vitro phosphorylation assay.
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9.2. Effects on differentiation of NSCs

We reported that neurogenesis in the injured spinal cord can be augmented by artificial ecto‐
phosphorylation with continuous application of active PKA and ATP [4]. Since the treatment 

promoted functional recovery of the injured spinal cord, ecto‐phosphorylation can be a novel 

target of therapies against paralysis caused by spinal cord injury.

In vitro assay indicated that NgR is expressed in ependymal cell‐like NSCs derived from adult 

mouse spinal cord [4]. Noteworthy, proliferation of ependymal cells is enhanced after spinal 

cord injury, and the cells move to the injury site [6]. When differentiation of the NSCs was 
induced in the presence of NgR inhibitors, a transient increase of cells expressing a transcrip‐

tion factor Olig2 was observed on day 5 of in vitro differentiation. Olig2 can suppress differenti‐
ation into astrocytes but can promote differentiation into oligodendrocytes and motor neurons. 
Whereas oligodendrocytes were not observed in the descendant cells on day 14 of in vitro dif‐

ferentiation, increased proportion of neuronal cells was observed. When active PKA and ATP 

were applied on mice with spinal cord injury, NgR within the spinal cord was phosphorylated, 

and cells expressing neuronal precursor cell markers, such as doublecortin and neurogenin2, 

were increased. Significant improvement of hindlimbs’ paralysis was also observed.

Our report proposed that myelin proteins released from damaged oligodendrocytes can sup‐

press both axonal outgrowth from survived neurons and neurogenesis of NSCs, through 

Figure 3. Possible effects of artificial ecto‐phosphorylation induced by direct application of active kinases. Application 
of active PKA and ATP induces ecto‐phosphorylation of NgR expressed in both differentiated neurons and NSCs and of 
other proteins. The phosphorylation can promote neurogenesis, enhancing functional recovery of the spinal cord from 

traumatic injury.
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NgR activation. However, our results do not eliminate corporation of ecto‐phosphorylation 

of other proteins. Application of active PKA and ATP to the injured spinal cord should phos‐

phorylate many ecto‐domains of membrane proteins and extracellular matrix proteins, in 

addition to NgR. The favourable effects on recovery from spinal cord injury could result from 
cooperation of ecto‐phosphorylation of those proteins (Figure 3).

10. Phosphorylation of cell adhesion molecules and extracellular matrix 

proteins

Ecto‐phosphorylation of proteins described below was originally reported with non‐neuronal 

cells or in the extracellular matrix. However, when active PKA and ATP were applied to the 

damaged spinal cord, phosphorylation of these extracellular matrix proteins can be expected 

and similar effects should be induced.

10.1. Laminin

Laminin is an extracellular matrix protein found in basement membranes. Laminin interacts 
with cell surface proteins, influencing not only cell attachment on the basement membrane 
but also cell function and differentiation. Laminin is phosphorylated by CK2 [26]. This phos‐

phorylation enhances heparin binding to laminin, cell attachment and migration. Laminin 
can be phosphorylated by PKC, in addition to CK2. Phosphorylation by PKC enhances self‐

assembly, heparin binding and cell attachment [57].

Laminin has important roles in neuronal differentiation of human embryonic stem cells [58], 

proliferation of human neural stem cells [59], netrin‐mediated axonal guidance [60] and NGF‐

mediated neurite outgrowth from both PC‐12 cells [61] and primary cultured neurons derived 

from mouse dorsal root ganglia [62]. Thus, phosphorylation of laminin could contribute to 

regulation of neuronal differentiation, migration and neurite outgrowth.

10.2. Collagen XVII

Collagen XVII can bind to alpha6 integrin, contributing to cell adhesion and motility. The serine 

544 in the extracellular domain of collagen XVII is phosphorylated by CK2 and the phosphory‐

lation inhibits shedding of the extracellular domain by metalloproteases of the A disintegrin 

and metalloproteinase (ADAM) family [32]. Although the exact function of collagen XVII is 

unknown, collagen XVII is expressed in the CNS and its distribution is changed in neurode‐

generative disorders [63].

10.3. Vitronectin

Vitronectin is a glycoprotein in blood and extracellular matrix. Threonine 50 and 57 of vitro‐

nectin can be phosphorylated by CK2 [31] and the phosphorylation enhances its binding to 

both alpha(v)beta3 integrin [64] and urokinase receptor [65]. Furthermore, the serine 378 of 
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vitronectin is phosphorylated by PKA, which induces a conformational change and enhances 

the phosphorylation by CK2 [66]. Vitronectin is known to regulate differentiation of cerebellar 
granule cell precursor cells [67].

In addition, fibronectin [30] and neuronal cell adhesion molecules [29] are known to be phos‐

phorylated. However, effects of their phosphorylation are unknown.

11. Perspective

It has been expected to develop a CNS injury treatment via activation of endogenous stem 

cells, because it may provide simple and inexpensive therapy with minimal invasion. We 

demonstrated that application of PKA and ATP can induce neurogenesis of endogenous NSCs 

in the damaged spinal cord, diminishing paralysis caused by the damage. The ecto‐domain of 

NgR in the spinal cord is phosphorylated by the PKA application. NgR expression is detected 

in ependymal cell‐like NSCs derived from the spinal cord, and ecto‐phosphorylation of NgR 

promotes neuronal differentiation. However, multiple sites of extracellular proteins and 
domains should be simultaneously phosphorylated by the application. The favourable effects 
of the application are possibly due to a cooperation of phosphorylation of those proteins, 

including ecto‐phosphorylation of NgR. Artificial ecto‐phosphorylation could be the platform 
for development of therapies for cure of paralysis caused by spinal cord injury. More study 
is required for revealing the precise mechanism of which artificial ecto‐phosphorylation pro‐

motes regeneration of the damaged CNS.
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