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Abstract

Thermodynamic experimental techniques using titration are usually employed to study
the interaction between solutes in a diluted solution. This chapter deals with the under-
lying thermodynamic framework when titration technique is applied with densimetry,
sound speed measurement and isothermal titration calorimetry. In the case of partial
volumes and partial adiabatic compressibilities, a physical interpretation is proposed
based upon atomic, free volume and hydration contributions.

Keywords: thermodynamics, molar partial volumes, molar partial adiabatic compress-
ibilities, molar partial enthalpies, densimetry, sound velocity, isothermal titration
calorimetry

1. Introduction

The purposes of this chapter are twofold. First, the thermodynamics fundaments are studied in
detail to determine experimentally, calculate and interpret thermodynamic partial molar proper-
ties using different titration techniques. Second, the postgraduate students are provided with the
necessary thermodynamic background to extract behavioural trends from experimental tech-
niques including densimetry, sound speed measurement and isothermal titration calorimetry.

The first concept introduced in this chapter is “thermodynamic description”. It is defined as a
set of variables employed to define thermodynamically the studied system. For example, a
description by components of a multicomponent system is:
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] = ](Tll, 1, 7’l3) (1)

where | is an extensive thermodynamic property; n;, n, and n; are the number of moles of
components 1, 2 and 3. Other type of thermodynamic description is in terms of the concept of
“fraction of a system”. A fraction of a system is a thermodynamic entity, with internal compo-
sition, which groups several components. For example, the above-mentioned system can be
considered as being composed of the component 1, and a fraction F grouping components 2
and 3. In this way, | can be written as:

] =] (m1, ng, xg3) )

where 7r is the total number of moles of the fraction F and xg is a variable related to the
composition of the fraction. Depending on the system, one can choose the more adequate descrip-
tion. For example, in a liquid mixture, a description by components (Eq. (1)) can be suitable. Other
systems as those shown in Figure 1 could be better described in terms of fractions.

Figure 1A shows a system composed of the solvent (component 1), solute A (component 2) and
solute B (component 3). This system will be described in this chapter using a description by
fractions representing a “complex solute” composed of solutes A and B (see Figure 1B). This
description is appropriate to use in conditions of infinite dilution and dilute solutions. Other
example (see Figure 1C and D) is a functionalized latex particle. A latex is a system composed of
polymeric particles dispersed in a solvent. In a functionalized latex, particles are composed of non-
polar groups and functional groups (usually polar groups). In this case, a description by compo-
nents expressed in Eq. (1) and visualized in Figure 1C is very difficult to use and it is more
convenient to consider a fraction (polymeric particle) composed of non-polar groups (component 2)
and polar groups (component 3). Figure 1D shows a sketch of this description.

When different descriptions are considered for a system, we have to reconsider the relation
between the description and the thermodynamic object studied. In principle, one might think
that all descriptions are equivalent. But this is not true because not all descriptions can retain all

Description by components Description by fractions Description by components Description by fractions

A C D

Component 1 (Water) Component 1 (Water) Component 1 (Water) Component 1 (Water)

Component 2 (solute A) Component 2 (non-polar groups)
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Figure 1. Examples of different descriptions in two systems. (A) and (B) are several solutes in a solvent. (C) and (D) are a
functionalized latex with polar groups.
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features of a thermodynamic system. For example, it is not possible to speak about thermody-
namic partial properties at infinite dilution in multicomponent systems. This fact should not be
surprising because in differential geometry [1], there is the same problem associated with the
relation between a parametrization and a geometric object. Let’s consider, for example, the
sphere of radius equal to one, and a parametrization is:

Xa(x,y) = (vy4/1 - (2 +12) ©

The problem with this parametrization is that it only covers the top half of the sphere. In
addition, it is not differentiable in the points of the sphere’s equator. Other possibility is:

Xa(x, y) = (x,yf —/1- (x2+y2)) (4)

But, it only covers the lower half of the sphere and neither is differentiable in points of the
sphere’s equator. Even if we consider a combination of X; and X,, we have the problem of the
lack of differentiability in the points of the sphere’s equator. Another possible parametrization is:

X3(0, @) = (sin O cos ¢, sinOsin¢, cosO) )

where 0 is the colatitude (the complement of the latitude) and ¢ the longitude. X3 covers the
whole surface of the sphere and it is also differentiable in all points. For this reason, it contains
more information about the sphere (geometric object) than X; and X,. Backing to thermody-
namics, in the same case than for X;, the partial molar properties at infinite dilution cannot be
obtained and manipulated using the description by components, and it is necessary to use the
description by fractions.

The other concept also introduced in this chapter is the “interaction between components of a
system”. The first principle of thermodynamics establishes the way, in which systems interact
between them and/or with surroundings. In this case, we are interested in the interaction
inside the systems and this cannot be interpreted macroscopically using the first principle of
thermodynamics. With the concept of interaction between components, we can define mathe-
matically a dilute solution and characterize its thermodynamic behaviour in terms of molar
partial properties. In addition to this, we will consider the partial molar properties at infinite
dilution. These properties are essential in studies of polymeric particles because they contain
the information about the interactions inside the particles. These interactions determine the
architecture and final application of the particle.

2. Mathematical fundaments
In this section, some mathematical tools are presented such as changes of variable, changes of

size, the Euler theorem and limits in multivariable functions. Variable changes will allow us to
relate partial properties of different descriptions. Changes of size are the processes underlying
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the extensivity and non-extensivity of thermodynamic properties, which will be mathemati-
cally implemented by the concept of homogeneity. The Euler’s theorem will be treated in the
more general form, and in its demonstration we will avoid some aspects, which remain unclear
in the versions of the textbooks of Callen [2] and Klotz and Rosenberg [3].

2.1. Changes of variable

Let f be the function defined as:
f=f(x1, %2, %3) (6)

The gradient of f with respect to the variables x;, x, and x; is the vector:

(&)
ox1 X2, X3

Vf(x,x235) = | (25) @)

If we consider the change of variable:

x1=x1(Y1, Yo Y3)
x2 = x2(Y1, Yo Y3) (8)
x3 = x3(Y1, Yo Y3)

the function f will take the form:
f =Wy Y2 y3) )

where its gradient will be:

(

Vi1 Yo y3) = (

(

Our interest is to relate the partial derivatives with respect to the variables x4, x, and x; given in
Eq. (7) with the partial properties with respect to y4, ¥, and y; given in Eq. (10). From Eq. (8),
the total differential of x; is:

ox ox ox
dx; = (6—1) dy; + (a—1> dy, + <6—1) dy, (11)
Y1 Y2 Y3 Y2 Y1 Y3 Ys Y1 Y2

Using dx; given by Eq. (11) and similarly with equations for dx, and dx; we can write:

1>y2,y3
10
2>y1,y3 ( )

y3)yyyz i

Q Qv
gl g«
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dxq dy,
] x4
where the matrix T is:

(%), (2),, G,
TGrarin) = | G (B, B ®

<6x3> (6}(3) <BX3>
o )
Y1 Y2 Y3 % Y1/Y3 Y3 Y1 Y d

From (6) and using (7), the total differential of f can be expressed as:

dx1
(Y of o - .
v (ax1>x2,x3dx1+ <axz>xl,xadx” (ax3>xl,xzdx3‘ [Vf Gy 23] [dh} (14)

dX3

where the symbol “T” indicates “transpose”. From Eq. (9) using Eq. (10), the differential of f
can be written as:

dy

(), 0 (), e (), e |
df = | —=— d — d — dy, = [Vf(y,,y,, d 15
f <ay1 Y2/ Y3 h ' ayz Y1/Ys3 = ! ay3 Y1:Y2 . [ f(yl " y3)] dgz ( )

Equaling (15) to (14) and using (12):

VW v y)IT = [Vf (o132 xg)]TT(;‘j " ;z) (16)

Remembering that x being a vector and A a matrix, then (xT A)T = Al x, and taking the
transpose in both sides of (16):

X1 X2 X3

T
yl y2 y3 >:| Vf(xl, X2, X3) (17)

V(Y1 Y2 Y3) = {T<

Eq. (17) relates the vector gradient with respect to the variables (x;, x, x3) to the vector gradient
with respect to the variables (i1, i, ¥3), and it will allow us to express the partial properties in
two different descriptions.

2.2. Changes of size

In this paragraph, the process of size change in thermodynamic systems is analyzed. The behav-
iour of systems in a size change has consequences on the behaviour or nature of the thermody-
namic properties as well as on the form of the thermodynamic equations of the system. Figure 2
shows a visualization of this process in both directions: increasing and reduction.
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Change of size

Volume V = Volume V’
A-times
Change of size
Volume V > |:| Volume V’
A-times

Figure 2. Sketch of the change of size (increasing and reduction) of a system with volume V.

From Figure 2, it is clear that being V' the volume, N the number of moles and U the internal
energy, the configuration of this system is under increasing size A times:

A—times

VA Ly = AV
N N = AN (18)

A—times

U——Uu' =AU

Thermodynamic properties, which transform accordingly to (18), depend on the size of the system
and are named extensive variables. Not all thermodynamic variables transform according to
Eq. (18). An example is the molar fraction of the component 2 (x,) in a two-component system.
We can see this formally in the following way. For a two-component system:

Nl A—times Nll £ /\Nl (19)
Nz A—times le 1 /\NZ
and x, transforms as:
b N’ AN N
X A—times x,z _ 2 2 2 X (20)

N’1+N’2:/\N1+)\N2:N1+N2:

That is, the molar fraction of the component 2 is independent of the system size. Properties,
which remain constant upon size change, are named intensive properties. Other thermody-
namic properties with such characteristics are temperature, pressure, pH and concentration c,
(c2 = No/V). It is also interesting to look at the behaviour of functions, which depend on
thermodynamic variables (intensive and/or extensive), in a size change. Let, for example, the
function f be given by f= f(T, P, N;, N, ...). For particular values of the variables T, Py, N1,
Noy, ..., the function f takes the value f;, and in a change of size:
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A—times
To———T o =Ty

A—times
Pp———5P'y =P,

A—times

Noi—————N'o1 = ANg 1)

A—times ,
Nop—— N2 = ANp»

A—times
fo——F

If ', = If,, the function will behave as an extensive property. This concept is mathematically

implemented as:

f(T,P,AN1, ANy, ...) = Af(T,P,N1, Ny, ...) (22)

In this case, fis a homogeneous function of one degree. If ', = f,, f will behave as an intensive
property. Mathematically, fis expressed as a homogeneous function of zero degree as:

f(T,P,AN1,ANy, ...) = f(T,P,N1, Ny, ...) (23)

2.3. Euler’s theorem

Let f=f(x1, x2,...; Y1, Y2,...) be a function, which is a homogeneous function of one degree with
respect to the variables y, 5,...:

flx,x0, s Ay, AYy, ) = A (X1, X2, o Y Y o) (24)

Then,

v, (30,
— (= + (= T (25)
f (ayl X1,X2, ...,‘yz,y3,...‘yl ayZ xl,xz,...;yl,y3,....y2

The demonstration is as follows. The differential with respect to A in the left side of (24) is:

daf (x1, x2, ..., Ayy, Ay, ...) \ <6f(x1,x2, s AY AY,, )>
dA 0xy X2,X3, .. AYy, Aly, -
dX1 <af(x1,x2, ...;/\yl,)\yz, )>
4+
dA axz X1, X3, s AY, AYy, o
@_’_ <6f(x1,x2,...,-/\yl,)\yz,...)>
dA a(/\yl) X1, X2, 00 AYp, AY, e
d(Ay,) N <6f(x1,x2, s AYy AY,, )) d(Ay,) N 26)
dA a(/\y2) X1,X2, -, AY1, AY3, - dA

For the sets of variables x1, x,... and y1,»,..., we obtain respectively that:

105



106  Advances in Titration Techniques

dx _dx;
dAx  dA T

d(Ay,) d(Ay,)
v a o

=0 (27)

(28)

The following step in this demonstration is different from the step proposed in other text-
books [2, 3]. The partial derivative of f with respect to (1y;) can be expressed as:

(bf(xl,xz, s AY, AY,, ))
a(Ayl) X1,X2, -, AYp, AY3, -
~ limy_, fx1, x2, .. Ay + A Ay, A) flx1,x2, .. Ayy, Ay, .o0) 29)

Considering that fis a homogeneous function of one degree with respect to the variables 3,15,
... and making A= A/A in (29),

(bf(xl,xz,...;)\yl,)\yz,...))
a(}\yl) X1,X2, ., AYp, Y3, ..
_i flxnxo, sy + Ay, ) — (X1, X2, Y Y -) <6f(x1,x2,...;y1,y2, )>
= my’—o 7 = d
A yl X1,X2, s Yos Ygsne
(30)
The differential of f with respect to A in the right side of (24) is:
A[Af(x1, %2, <o Yy, Yoy oo )]
f o Y- %5 =f(x1, %0 .Yy Yo ) (31)

Eq. (25) is obtained by substituting Egs. (27), (28), (30), (31) in Eq. (26). In addition, it is
interesting to see that, defining f; as f; = (0f/0x;) and using (30), f; is a homogeneous function
of zero degree with respect to the variables v, v,...:

fi1xe, x2S Ay, Ay, ) = F1 (0, X2, Y Y ) (32)

3. Thermodynamic descriptions

3.1. Description by components

Let it be a three-component system (e.g., as those of Figure 1A and C). Being ] an extensive
property, a description by components is:

] = J(n1, na, n3) (33)

where 14, 1, and n3 are the number of moles of components 1, 2 and 3. The partial property of 1
is defined as:
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. of(n1,ny,n
]1;2,3(7’11/ ny, n3) == (%) (34)

From the above section, we know that j; » 5 is homogeneous function of zero degree with respect
to n1, ny and n3. With this and considering A = 1/(ny+ny+n3),

. (n " Vl)—' ni 1y ns .
T2 s T 18 = 23\ g Tt o ns) (35)

= Ji;2,3(¥1, X2, X3) = Jy.5 5(%2, X3)

where we have considered that x; is a function of x, and x3 because x; = 1—x,—x3. From (35), we
see that the partial molar properties depend only on the composition of the system. Alternatively
to (35), we could use other scales of composition/concentration to express ji .5 3.

The equation of Gibbs is obtained by differentiating | in (33) and using Eq. (34) and similar
definitions for components 2 and 3:

] = Ji,0,3811 + Jo,1,3012 + ], 5615 (36)
The Euler equation is obtained by considering that ] is a homogeneous function with respect to

ny, np and n3 and applying the Euler’s theorem:

] = ”1f1;2,3 + ”2j2;1,3 + ”3f3;1,2 (37)

The Gibbs-Duhem equation is obtained by differentiating in Eq. (37), equalling to Eq. (36) and
cancelling common terms:

0= mdjy;5 5 + nadjy;y 5 + n3djy,q 5 (38)
If we consider that partial molar properties are function of 1y, 1, and n3, Eq. (38) would be the

Gibbs-Duhem equation in the representation of variables 74, 1, and n3. The representation in
the variables x; and x3 is as follows. Dividing (38) by the total number of moles,

0= x1djy;5 3 + Xodjy;1 5 + X3djs;q (39)

Calculating the differentials by considering that partial molar properties depend on x; and x3,
and bearing in mind that x, and x3 are independent variables, (38) can be written in an alterna-

tive way as:
o Ojy: s
X1 1,2,3 + % 21,3 + x3 31,2 -0
6}(2 X3 OXQ X3 axz X3 (40)

92,3 91,3 \ 91,2 _
xl( O3 X + X2 0x3 v + X3 0x3 X =0

3.2. Description by fractions

In a description by fractions, we consider the three-component system as composed of a
component 1 and a group (or fraction) composed of components 2 and 3. Figure 1B shows
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the example when two solutes are grouped in a “complex solute”, and Figure 1D shows the
example in which a polymeric particle composed of polar and non-polar groups is considered
as a fraction of the system. In this case, the extensive property | is expressed as:

J = J(n, np, x¢3) (41)
where
ng = Ny + 13 (42)
ns
— 43
Xf3 My + 113 (43)

The variable np is the total number of moles of the fraction F, and xg is a variable related to its
internal composition. The partial molar properties of | in this description are:

. oJ (m, nr, Xfa))

(ny, g, xp3) = [ L 44
Ji.p(m, 1, Xp3) < o . (44)
. 6](n1,np,xf3)>

4 (m, np, xp) = | ———— 2 45
Jra (m, 1, x43) ( s - (45)

Because ] is a homogeneous function of n; and np, the partial properties j;.r and jr, will be
homogeneous functions of zero degree with respect to the variables #; and n. In this way and
similarly to Eq. (35):

jip(m, nE Xp3) = ji.p(XF, X53) (46)

where xp = ng/(n1+ng). Now, we will see the relation between both descriptions. From (42) and
(43), the change of variable of Eq. (8) is in this case:

ni(ny, ng, xfs) =m
na(ny, ng, xp3) = (1 — xp3)1F 47)

n3(1n1, ng, Xp3) = Xpanr

Substituting (47) in (13) and the result in (17), one obtains that:

jl;F = j1;2,3 (48)

Jr1 = Xp2Ja13 T Xf3)31 2 (49)
of . .

(@) . = ”F(73;1,2 - ]2;1,3) (50)

The equations of Gibbs, Euler and Gibbs-Duhem in this description are as follows. The Gibbs
equation is obtained by differentiating in (41) and considering the definitions given in (44) and (45):
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. . oJ
df =j,..d d — d 1
] ]1’F . +]F’1 e <axf3)n1,nF xf3 (5 )

The Euler equation is obtained by remembering that | is a homogeneous function of degree one
of n; and ny and using the Euler’s theorem:

J = mjyp + (52)
The Gibbs-Duhem equation in the representation of variables xr and xg is obtained by differ-

entiating in (52), equalling to (51) and cancelling common terms, and dividing by the total
number of moles:

x1djy.p + Xpdjp.q = XE(j3,1 2 = Joi1,3)0%f3 (53)

Considering that j;.r and jg;; are functions of the independent variables xr and x, then (53) will
take the form:

aer) Yr;1
X1 ( - + xXp (52 =0
ax;: xf3 6xp xf3

Oy jp: . . (54)
(), 0 (), =l

Calculating the partial derivative of jr,; with respect to x5 in Eq. (49) and substituting in
Eq. (54), we obtain:

ajl'P) a]'l-"'l
X1 <— + Xp| == =0
6xp fo axp xf3

;¢ 91,3 95:1,2 _
X1 (_bxfa o + XF |Xf2 o )y + xf3 s )y, =0

XF

(55)

It is interesting to observe that considering constant composition (dxg = 0) in Egs. (51)-(53),
then the system behaves as a two-component system. This fact cannot be obtained using the
description by components.

4. Partial properties in diluted solutions of multicomponent systems

We consider intuitively a diluted solution when the properties of the solution are similar to
those of its solvent in pure state. In this section, we will study the thermodynamic behaviour of
the partial molar properties in this region of concentrations.

4.1. Thermodynamic concept of interaction between components

In this paragraph, we will define the concept of non-interaction and prove that when applying
it to a system, the system behaves as an ideal mixing. From a thermodynamic point of view,
the components of a system are not interacting if both following points hold simultaneously.
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1. The state of each component in the system, expressed in terms of its partial molar proper-
ties, does not vary by changes of composition of the other components. It means each
component does not detect the presence of the other components.

2. The formation of the system from its pure components is carried out with any cost of
energy, neither for the system nor for the surroundings.

Mathematically, the first point can be written as:

(ajl; 2,3 (x2' X3)> _ (6]'1/. 2,3 (xz, x3)

0x o3 ) =055 =J1;2,5(x1) (56)

Substituting (56) in (40) and considering also that:

a]‘1;2,3 — 6]'1;2,3 oxy - ajl,’Z,S
oy 2 oy s oxy x3 0xq X3

‘ . . 57)
a]1;2,3 _ a]1;2,3 ox _ a]1;2,3 (
( 6x3 )xz o ( axl )JCZ <6X3>x2 o ( axl )Xz
it is obtained that:
af1;2,3 ajz,’l,
- ( oxg )x3 +x2( 6x23>x3 =0 (58)
o 95,3 91,3
X < ox1 )xz +X3( Ox3 )xz 0
Because j; ., 3 depends only on x;:
91,23 %1:2,3
= = = 59
(o), - (5, ®
and then (57) yields:
jy;0,5(¥1) o y.1,3(%2) - j3,1,0(X3)
x| —=—) =x| ) =xg| (60)
Oxl X bxz X bxg, X

Because the first term depends only on x; and the second and third terms depend only on x;
and x3, respectively, from (60), we have that:

dj1;2,3
dX1

x1 =k,(T, P) (61)

where k; is a function, which only depends on temperature T'and pressure P. Similar equations
to (61) are obtained for j». 3 and js,1 ». Integrating in (61) between x’; = 1 and x4,

J1:2,3(x1) = j; + ki (T, P)In(x1) (62)
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For components 2 and 3, similar equations to (62) are obtained. Now, we will apply the second
point of the above definition of non-interaction. The zero cost of energy for the system and
surroundings is equivalent to:

Ui;2,3 = U1
Qmix =Wuir =0= AUy =0= hl;2,3 =h (63)
01;2,3 =01

Considering u1. 5 3, h1; 2,3 and vy, » 3 as (62) and bearing in mind (63):

ku(T, P) = ky(T, P) = ky(T,P) = 0 (64)

In addition to this g1, 3 (free energy of Gibbs),

081,,3 Okg (T, P)
yg = [ —== ky(T, P) = | ————=~
hy. ) : ky(T, P 0 (ke(T,P
1,22,3:_ 0 (81,23 N H( ; ):_ 0 (ks(T.P) (66)
T T\ T ))pan T T\ T .
Combining Egs. (64)—(66), we have that:
kc(T, P) = kT (67)
where k is a constant. For the entropy, one gets:
08123 okg(T,P)
—gq. = | =22 — TP)=|—" 2
With this,
81:2,3 = & + kT In(x1) (69)
§1:2,3 = 51 — k ln(xl) (70)

and we have demonstrated that a system holding the non-interaction definition proposed is an
ideal mixing.

4.2, Diluted solutions

In this section, we will define the thermodynamic concept of diluted solutions and study the
behaviour of the partial molar properties of these solutions. Commonly and intuitively, we
consider a solution as diluted when its properties are similar to those of the pure solvent. We
can implement mathematically this concept in the following way. When we remove all solutes
from a solution, we have that:

1imx2+x3—>0j(x2’ X3) = jl (71)

11
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where j is the molar property of the extensive thermodynamic property J. In addition, the
partial derivatives must vanish:

0/;., 5 (X2, X 0J1.5 2 (X2, X
limy, ;-0 <%223)> = limy, 1,0 <%323)) —0 (72)
X3 X2

Otherwise, we would have memory effects and we can see this with an example. If we purify
water, the pure substance obtained does not depend on the initial diluted solution employed.
Actually, pure water is commonly used as a standard because it does not depend on the part of
world, in which it is obtained. The Taylor’s expansion of j 3 is:

. . . 1 .
a5 = ,(0.0) + 95007 | 32| 4 50 m)H0500.0) 2] o 03)

where Vj;,,3(0,0) and Hj; 5 5(0,0) are, respectively, the vector gradient and the Hessian of j;» 3
matrix at (0,0). Considering (71) and (72) in (73) and that all partial derivatives mush vanish at
(0,0), we have that for diluted solutions:

j1;2,3(XQ, x3)"~*j1 + ... (74:)

From Eq. (74), we have for diluted solutions:

a]'1;2,3 a]'1;2,3

The behaviour of molar partial properties of solutes is as follows. Considering a “complex

solute” S composed of 2 and 3 (as in Figure 1B),

jl;s(xS/ Xs3) = J (76)

and substituting Eq. (74) in the first equation of (55),

st ~0&] ~j 77
? N ]5;1(x51 sz) N]S;l(xs3) ( )
5 Xs3

Inserting Eq. (76) in the second equation of (55), it is obtained that:
0/,. 0j5.
Yo ( ]2, 1,3) 42 < J3; 1,2) ~0 (78)
ast Xs axs?; Xs

Until now, we have seen the effect of the dilution in the capacity of detecting the presence of
other components in a diluted solution. In order to gain an insight into the interactions, we
have to study the process of mixing in diluted solutions. From (71), we can write:

{ limxzﬂcgﬂo h= hl = limx2+x340 Tinix = limxz+x3H0 Amixh =0 (79)

limx2+x3ﬂo U=01 = limx2+x3HO Wmix = 1imx2+xﬁo - PAmixv =0
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It indicates that in the limit of infinite dilution, components do not interact because the process
of mixture does not have any energy cost. This result implicates that in diluted solutions,
according to the asymptotic approach given by Eq. (74), the interaction between solvent and
solutes is weak and it can be neglected.

4.3. Partial molar properties of interaction in diluted solutions

The molar property j of a diluted solution can be written as:

jEx1]; + Xsjgq (80)
where we are considering the interaction between components 2 and 3 since
Js;1 = X213+ X3]3,1, (81)
In a diluted solution without interaction between 2 and 3, the property j can be written as:
j© = xj; +xs (X521 + Xs3/3.1) (82)
In this way, we can calculate the interaction contributions to j as:
A =~ P s,y (83)
where
Ajg.1 = X287p.1 5 + X303, 5 (84)
is the partial molar property of interaction of the complex solute and

A]'2~1 3 :jZ'l 3 _j2'1
21 21 2 85
{ Ajs10 = J31,0 — J3:1 (85)

are the partial molar properties of interaction of the components 2 and 3, respectively. These
properties are not independent as we will see as follows. Combining (78) and (85),

0A/,. OA/,. ). .
Yo ( J2; 1,3> +xg < /3; 1,2) +xg <£> +xe ( ]3,1) ~0 (86)
6x53 Xs axsg Xs bxsg Xxs 6x53 Xs

In Eq. (85), Ajz;1,3 and Ajz.1 » are evaluated when using concentrations xg and x,3. Accordingly,
j2,1 is evaluated using the concentration x, given by x, = x5 (1—x43), and then,

9.1 _ d]i Oxp — _x @ (87)
axs3 Xs dXZ axS?’ Xs ’ dXZ

Considering the Gibbs-Duhem equation for a two-component system:
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X1~ 4 xp 2= =0 (88)
X2

in Eq. (87) and bearing in mind that solutions are diluted,

a] 2,1 d] 1,2
a5, a0 )
Similarly for component 3,
a] 3,1 d] 1,3
Xs3 <$53> . =X d—363 0 (90)

Substituting (89) and (90) in (86), we obtain:
0A/,. 0A,.
o < /2, 1,3) +xe < J3; 1,2) ~0 1)
axs3 Xs 6x53 xs

Eq. (91) indicates that in a diluted solution, the interaction between components 2 and 3 is not
vanished. The partial molar property of interaction of the complex solute can be calculated
experimentally as:

Ajsq =Js1 — (Xs2]p.1 + Xs3]3,1) (92)

and the partial properties of interaction of components 2 and 3 can be obtained from (92) using
the equations:

Ajyq 37 Njgy — Xs3———
X3 (93)

AJzq 2= Ajsy + (1 — x3)

Eq. (93) is obtained by differentiating in Eq. (92) with respect to x5, using Eq. (91) and combining
the result with Eq. (92). As we will see below, Eq. (93) will allow us to obtain the interaction
partial properties of 2 and 3 from experimental data.

4.4. Experimental determination of partial molar properties of interaction in diluted
solutions

4.4.1. Partial specific volumes of interaction and partial specific adiabatic compressibility
of interaction

As an example, we will consider the interaction between functionalized polymeric particles
and an electrolyte at 30°C [4]. For that, polymeric particles synthesized of poly(n-butyl
acrylate-co-methyl methacrylate) functionalized with different concentrations of acrylic acid
were used in this study. The electrolyte was NaOH. Similarly to Figure 1A, water (solvent) was
considered as component 1, polymeric particles as component 2 and electrolyte as component
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3. And similarly to Figure 1B, the system was fractionalized in component 1 and a complex solute
composed of polymeric particles and electrolyte. The experimental measurements were carried
out using a Density and Sound Analyzer DSA 5000 from Anton-Paar connected to a titration cell.
It is of full cell type, which is usually employed in isothermal titration calorimetry. Polymeric
particles were located in the titration cell, and electrolyte was located in the syringe. Concentra-
tions of polymeric particles (c;) and electrolyte (c3) after each titration were calculated as [4, 5]:

{ PR (94

=g (G -d)et

where Vis the effective volume of the titration cell, v is the titration volume and c} is the stock
concentration of electrolyte in the syringe. Figure 3A and B shows, respectively, data of density
(p) and sound speed (u) as function of the electrolyte concentration. The specific volume (v)
and the specific adiabatic compressibility (ks) were calculated as:

V= % (95)
2

Considering the solution in the cell as diluted, the partial specific volume (and similarly the
partial specific adiabatic compressibility) of the complex solute can be calculated as:

0 — t1”()1
ts

where t; and ts are the mass fraction of the water and of the complex solute, respectively.
Figure 3C and D shows the partial specific volume and partial specific adiabatic compressibil-
ity as function of ti (mass fraction of the electrolyte in the complex solute). The term of
interaction Avg.; is calculated by Eq. (92), where v,.; is obtained by considering that:

vp1 = limy,_vs;1 (98)

in Figure 3C. The term v3; is calculated by extrapolating the linear part of vg.; in Figure 3C as:

v31 = limy, 10,1 99)

The partial specific volume of interaction of the polymeric particles (Av,.;3) and the partial
specific volume of interaction of the electrolyte (Avs.;,) were obtained using Eq. (93). The
numerical method employed to calculate the derivatives is shown elsewhere [4]. Figure 4
shows the values of Avs;;, Av,.1 5 and Avs.; 5, and Figure 5 shows the values of Ak, g1, Aks 2,13
and Ak; 3.1, obtained in a similar way than for volumes.

Partial volume of polymeric particles (v,,;) can be broken down in the following contribu-
tions [6—11]:
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02,1 = U2;1/atom + U2;1/free + U2;1/hyd (100)

which are shown in Figure 6. The atomic volume contribution (v,,1/atom) i the sum of all volumes
of the atoms, which make up polymeric chains. The free volume contribution (v,1/ree) iS conse-
quence of the imperfect packing of the polymeric chains. The atomic volume contribution and
free volume contribution are both positive contributions. The hydration contribution (v2,1/nyq) is
negative, as a consequence of that the specific volume of water molecules in bulk is larger than
the specific volume in the hydration shell. The contributions to the partial specific adiabatic
compressibility are the free volume and hydration because the effect of the pressure on the
atomic volume is neglected [10, 12-21]:

vy 021 /free duy,
kro1 = —( 2’1> =— <L/f) — (M> = k1 2;1/free + KT 2:1/hya (101)
T T T

oP oP oP

The contribution kt 2;1/rce is positive, and the contribution kr 2;1/myq is negative [4, 8]. In this
chapter, we will take the adiabatic compressibility as an approximation of the isothermal

0.99827 3
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5 c D
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Figure 3. (A) Density as function of the electrolyte concentration c3 (g/L). (B) Sound speed as function of the electrolyte
concentration. (C) Partial specific volume of the complex solute composed of polymeric particles and electrolyte as
function of the mass fraction of the electrolyte in the complex solute (fs). (D) Partial specific adiabatic compressibility of
the complex solute as function of ts.
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Figure 4. (A) Partial specific volume of interaction of the complex solute (polymeric particles + electrolyte) as function of
the mass fraction of the electrolyte in the complex solute (ts). (B) Partial specific volume of interaction of the polymeric
particles as function of t;. (C) Partial specific volume of interaction of the electrolyte as function of f;.
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Figure 5. (A) Partial specific adiabatic compressibility of interaction of the complex solute (polymeric particles + electro-
lyte) as function of the mass fraction of the electrolyte in the complex solute (ts). (B) Partial specific adiabatic compress-
ibility of interaction of the polymeric particles as function of ¢.. (C) Partial specific adiabatic compressibility of interaction
of the electrolyte as function of tg;.
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Figure 6. Contributions to the partial volume in a polymeric particle.

compressibility. For the electrolyte, the free volume contribution is null, and then, v;, and kr 3
will take the following form:

U3;1 = U3;1/atom + U3;1/hyd (102)
0v3:1 0031 /hyd
T3:1 ( 3P )T ( 3P . T3;1/hyd (103)

For the complex solute, we can write a similar breakdown:

0s;1 = Us;1/atom + Us;1/free + Us;1/hyd (104)

Inserting Egs. (100), (102) and (104) in Eq. (92) and neglecting the variation in the atomic
contributions, the following equation for the interaction specific partial volume is obtained:

17
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Avs, 1 = Avs 1 /free + AVS, 1 /hya (105)

where
AV 1/free = Us;1/free — £202;1/free (106)
AV 1 fhyd = Us;1/hyd — (E2021/hyd + E303;1/mya) (107)

Substituting (105) in (93), we get

dA’Us;1 dAvS;l hyd
Avy,3 = <AUS;1/free —ts3 T/free) + <AUS;1/hycl —ts3 T;y)
SdA S dA (108)
Us;1 Us;1/hyd
Avg1,0 = <AUS;1/free + (1 —tg) Tm) + (Avs;l/hyd + (1 —tg) T;y>
S S,
Defining now:
dAvs;l
AUZ;l,B/free = AvS;l/free - ts3T53/fm
AdAUs; 1 /hya
AV, 3/myd = AUS;1/nyd — 3 T/y
2 A (109)
Us;1
A"73,'1,2/free = A"']S;l/j’ree + (1 - ts3) Te’/ﬁee
S
AAVs; 1 /hyd
Av31,2/1ya = NUs 1 hya + (1 — t3) T;y
S
One arrives at the following result:
Avyq,3 = AZ72;1,3/free + AvS;l/free (110)

Avz;1,2 = Av31,2/free + AV3;1,2/myd

where similar equations are obtained for the interaction partial specific compressibilities.

Considering these contributions, the interpretation of the partial specific volumes of interac-
tion of the particle as function of the electrolyte concentration is as follows. From tg = 0 to
around 0.05 (see Figure 4B), there is an increment in Av, ; 3 which can be interpreted as a gain
of free volume by the disentanglement of the polymeric chains. This increment of free volume
is accompanied by an increment in the hydrodynamic radius [4]. From around fz = 0.05 to
around 0.1, there is a decrement in Av, ; 5 due to hydration. In this region of compositions, the
separation of polymeric chains allows the entrance of water molecules in the polymeric parti-
cle. As a result, the hydrodynamic radius of the particle increases [4]. From around ¢;; =0.1 to 0.15,
Av, 1 5 increases sharply. This fact can be interpreted as an increment of the dehydration. Beyond
tss = 0.15, Av, 135 becomes constant, indicating that the interaction between particles and the
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electrolyte is saturated. Similar regions with similar interpretations are obtained for the partial
specific adiabatic compressibility (see Figure 5B).

4.4.2. Partial specific enthalpies of interaction

This section deals with the determination of the partial specific enthalpies of interaction of the
same system than in the latest example [4]. Partial specific enthalpy of interaction of polymeric
particles is:

Ahy1,3 = hp1,3 — ho1 (111)

and the partial specific enthalpy interaction of the electrolyte is:

Ahz1,0 = h3;1,20 — h31 (112)

The partial specific enthalpy of interaction of the electrolyte can be measured by isothermal
titration calorimetry using the combination of two experiments [6, 7]. The first experiment is
locating the polymeric particles in the cell and the electrolyte in the syringe. The heat per unit
of titration volume in an infinitesimal titration is:

dQCd
dv

= (p° — 3)h1;2,3 + 3h31,2 — ho(c3) (113)

where p® is the density of the stock solution and £, (c}) is the enthalpy of the stock solution per
unit volume. The second experiment consists of titrating water with the above stock solution,
and its heat per unit of titration volume in an infinitesimal titration is:

Qs
do

(P = c3)hy3 + G3his — ho(c3) (114)

The partial specific enthalpy of interaction of the electrolyte is obtained by subtracting (114)
from (113), considering Eq. (112), diluted solutions and bearing in mind that dn3 = cdv:

d ch d QC

S - S
dn§  dn§

= Ahz;1,0 (115)
Figure 7A shows the experimental values Al ». The partial specific enthalpy of interaction of
polymeric particles was calculated by integrating Eq. (91) [7]:

tr3

/ dAhs.
Ahz;l,B(th):—J /3 ( 3’“> dt' (116)

and the values of Ahy,; 3 are shown in Figure 7B. It is very interesting to observe in Figure 7B
that Ah,, 5 is zero from ti = 0 to around t,; = 0.1. This fact indicates that the changes, which
take place in the first two regions in Figures 4B and 5B, are entropic in origin.
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Figure 7. (A) Partial specific enthalpy of interaction of the electrolyte as function of the mass fraction of the electrolyte in
the complex solute (f3). (B) Partial specific enthalpy of interaction of the polymeric particles as function of t;.

5. Partial molar properties at infinite dilution

First, we will discuss the case of the two-component system and then make the extension to
three-component system. In this section, | can be U, H, V or their derivatives Cv = (0H/0T)y,
C, = (0H/dT)p or E = (0V/0T)p Kr=(0V/dP)rand Kg = (OV/OP)s.

5.1. Two-component systems

In a two-component system, we only have one way to calculate limits at infinite dilution and it
is to take a component as solvent (component 1) and the other as solute (component 2). For a
two-component system, j takes the form:

j(x2) = x1jy.5(x2) + X2fp.1 (x2) (117)
Because
limy, 0j(x2) = J; (118)
and using Eq. (117), we have:
limy, of;.,(%2) =J; (119)
For the solute, we have:
limy, ~ojy;1 (¥2) = J3,1 (120)

We can obtain experimentally the value of j;., as follows. The Taylor’s expansion of j(xy)

around x, =0 is:
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j2) = j(0) +%2)x2 +... (121)

Differentiating (117) with respect to x,, considering the Gibbs-Duhem equation for a 2-compo-
nent system and combining the results with equations (117), (120) and (121):

jlx2) =j; + (]g;l —Jp)x2 (122)

For this reason, we can obtain experimentally j;., from a linear fit in a plot of j(x) as function of x,.

5.2. Three-component systems

In three-component systems, we have two ways to calculate limits at infinite dilution. The first
way is to group two components in a “complex solvent” and to calculate the limit at infinite
dilution of the other component in this complex solvent (type I). The other way is considering a
component as solvent, to group the other two components in a complex solute, and to calculate
the limit at infinite dilution of the complex solute in the solvent (type II).

5.2.1. Limits of type I

In this case, we consider a complex solvent B composed of components 1 and 2 and a solute
(component 3). For this system,

] = J(n3, np, x2) (123)
where ng = ny+n, and x4, = n,/(n1+n,). With this, j can be written as:
j(x3, X42) = x5 (x3, Xp2) + X3]3, 5 (X3, Xp2) (124)
where x3 is the mole fraction of the component 3. At infinite dilution, we have:

lim, o  j(x3 xm) = jp(x2) (125)
Xpp constant

and then combining Eq. (124) with (125), one gets for the solvent:

lim x5 — 0 ]'B;s(xs, Xp2) = jp(xb2) (126)
Xpp constant

For the solute, it is obtained that:

lim,, _ g j3;B<x3/ Xpp) = ]g;B(xM) = jg;1,2(xb2) (127)
Xp2 constant

where we have used Eq. (48). Similarly to the case of two-component systems, the amount 3, ,
can be obtained experimentally by using the equation:
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o, 312) = g (02) + (1,2 — jn2) ) %3 (128)

This equation is obtained by using the first-order Taylor’s expansion of j(x3,x;,) around x5 =0,
the partial derivative of j(x3, x;2) with respect to x3, the Gibbs-Duhem equation of the fraction-
alized system considering the composition of the fraction as constant and Egs. (126) and (127).

5.2.2. Limits of type 11

In this case (see Figure 1A and B), we will consider the component 1 as solvent and a “complex
solute” S composed of 2 and 3 and then:

] = J(m, ns, xs3) (129)

where ng = ny+ng and x3 = n3/(n, + n3). The molar property j is:

j(xs, Xs3) = x1j3,5(xs, Xs3) + Xsfg,1 (%5, Xs3) (130)

Similarly to the above cases, at infinite dilution we have for the solvent:

hmxs =0 jl;s<x5f Xs3) = J (131)
X3 constant

Accordingly to case of the two-component system, one gets for the complex solute:

hmxs —0 jS;l (xS/ X53) = jg;l (x53) (132)
Xg3 constant

and in a similar way than for the type I limits, j¢.; can be calculated as
jlxs,xa) = fy + (g (60) =y ) xs (133)

In order to study the contributions of components 2 and 3 to j¢.,, we define the following limits

an infinite dilution:
. . A
hmxS -0 J2; 1,3(955/ Xs3) = J2; 1/3(x53)
Xg3 constant . A (1 3 4)
x5 — 0 ]3;1,2(965, Xs3) = ]3;1,2(xs3)
Xg3 constant

lim

In this way, taking limits in both sides of Eq. (49), and bearing in mind Eqs. (132) and (134), we
have that:

jg; 1(Xs3) = xs2]'§; 1,3 (xs3) + xs3]§,- 1,2 (xs3) (135)

Now, we will see some mathematical properties of limits of type II. One of them is for example:

limeB_'OjZA; 1,3(xs3) = jg;l (136)
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This property is demonstrated by using iterated limits:

. A T . .
hmxsa—>0]2; 1,3(x53) - hmxsg —0 hmxs —0 J2; 1,3(x5/ x53)
Xg constant Xs3 constant
|4 . . T . T . o
=lim,, lim, ¢ I2; 1,3(x5/ Xs3)| = hmxs—>0]2;1,3(x5/ 0) = hmxz—>0]2;l(x2) =J21
Xs3 constant Xs constant
(137)
The other mathematical property is:
. A )
hmxswl]:s; 1,2(xs3> =J2 1,3(0) (138)
where its demonstration is as follows:
. A T . .
hmxssHl]S; 1,2(x53) = hmxsg, —1 hmxs -0 J3; 1,2(x5/ x53)
Xxs constant Xs3 constant
= hmxs =0 hmxsg —1 ]3;1,2(x5/ Xs3) (139)
X3 constant xg constant

Now, it is necessary to consider other way to fractionalize the system. For convenience, we will
consider a complex solvent B composed of 1 and 3, and a solute 2 where the variable xg
represents the molar fraction of B and x5 = n3/(ny+n3). With this,

lim

va—1 Xe=lim, 7 xs(1-x3)=0
Xs constant Xs constant
o o (140)
lim,, .1 xp=lim,, 1 x3xs[l —xs(1—x3)] =xs
Xs constant Xs constant
and considering Eq. (140), (139) transforms into:
. A 1 . . -
hmxswl]a; 1,2(x53) = hmxS -0 lim x, — 0 I3; 1,2(x2/ xp)| =
Xs3 constant Xpp constant (141)

= limxs -0 ].g;llz(be) :jg;l,z(o)

Xs3 constant

Other interesting property of the limits of type II is that they are related to each other by the
following equation:

d]ZAl 3 d]§1 2
7 Ls 'y Lr — 142
Xs2 de3 + Xs3 dx53 0 ( )

The demonstration of this equation is as follows. Both sides of the following equation:
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i, i, jai s — 1 4)
Yo <%> n x53< é3, 1,2) —xg(1 — x5)< (13, 1,2a J2:1,3 > (143)
x53 Xs x53 Xs xS Xs3

are calculated in the following way. The left-hand side is obtained by deriving partially Eq. (49)
with respect to x,3. The right-hand side of (143) is calculated considering that:

6x53 2 bxsgbns 7 ai’lsaxsg

Using (50) in (144) and cancelling common terms, Eq. (143) is obtained. Taking the limit when
xs approaches to zero when x; is kept constant in both sides of Eq. (143) and considering that:

(6 (js; 1,2(x5f Xs3) — J; 1,3(xs/ xs3)) )
Xs3

lim

XS—>O

ox S
Xs3 constant

N Oxs e dxs

) ~ f(xa) (145)

Eq. (142) is obtained.

From values of j¢,, it is possible to obtain ]§ 13 and ]§ 1,» by using the following equations:

AN )
J2:1,3 = Js;1 — Xs3
dxs (146)

. 0 d]S'l
]?;1,2 =Js1 1+ (1 —xs3) dx;3

Eq. (146) was obtained by differentiating Eq. (135) with respect to x,3, considering Eq. (142) and
combining the result with Eq. (135).

5.2.3. Application of the limits of type 1 to the study of polymeric particles

The polymeric particles used were synthesized with a gradient of concentration of functional
groups (acrylic acid) inside the particle [9]. In this system, the content of acrylic acid represents
the polar groups, while poly(butyl acrylate-co-methylmethacrylate) is the non-polar groups. As
seen in Figure 1C and D, component 1 is water, component 2 is non-polar groups and compo-
nent 3 is polar groups. The polymeric particle (composed of polar and non-polar groups) is
taken as a fraction “P” of the system where the variable t,3 = n3/(n,+n3) will be the mass fraction
of polar groups in the particle. In this study [9], the same experimental equipment than in
Section 4.4.1 was used and measurements of density and sound speed were carried out by
titrating water (in the cell) with latex of polymeric particles (in the syringe). Figure 7A and B
shows the density p and u as functions of the concentration for several values of t,3. The density
and sound speed were transformed into specific volumes and specific adiabatic compressibil-
ities by using Egs. (95) and (96), and results are shown in Figure 1C and D.
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In this case, Eq. (133) will take the form:

j:j1 + (7%;1 _jl) tp (147)
and considering that t; = 1 — tp Eq. (147) transforms into:

j=ip1t+ Ui —jp1)h (148)

Using Eq. (148) as a fit function in Figure 8C and D, the partial specific volume at infinite
dilution of the particles (v}.;) and the partial specific adiabatic compressibility at infinite

dilution of the particles (k¢ ».,) were obtained from the independent term of Eq. (148) and the results
are shown in Figure 9A and B as functions of t,3. In this case, Egs. (100) and (101) take the form:

U?’,‘l = U?’;l/atom + U?’;l/free + v%;l/hyd (149)

S p:1 = K& p1ypree + K3 b1 nya (150)

The partial specific properties of polar (}? 1,2) and non-polar (]§ 1,3) groups were calculated by
using Eq. (146). The derivatives of Eq. (146) were calculated numerically by using schemes of
finite differences. Figure 9C and D shows, as functions of the amount of polar groups (t,3), the
values of specific partial volumes of non-polar and polar groups, respectively. Figure 9D and F
shows, respectively, the specific partial adiabatic compressibility of non-polar and polar
groups.

With similar arguments than in Section 4.4.1, we can get the following equations for the

volumes:
A A A A
02,1,3 = U2:1,3/atom T U2;1,3/free T U2;1,3/hyd (151)
A _ A A A
U3:1,2 = U3:1,2/atom T U3:1,2/free T U3;1,2/myd (152)

and for the adiabatic compressibilities:

Kro15 = k7o, 1,3/free T k7 o1, 3/hyd (153)
kr 31,2 = kr 31,2/free T kr 3;1,2/hyd (154)

In addition to this, by combining Egs. (135), (149), (151) and (152), one gets the following
equations:

A A

v%;l/utom = tpzv2;l,3/atom + tP3UB; 1,2 /atom (155)
A A

Zﬁ%l/free = tP2UZ; 1,3/free + tp303; 1,2/free (156)

A A
Vb1 nyd = 102021, 3/mya T+ 1p3V5:1,2/hya (157)
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Figure 9. (A) Partial specific volume of the polymeric particles at infinite dilution as function of the polar group content.
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where similar equations can be obtained for the adiabatic compressibilities. Figure 9A and B
shows that v, and kp.; decrease when the amount of polar groups increases. This fact indicates
an increment of the hydration in the interior of the particle when the amount of polar groups
increases. The distribution of this hydration is as follows. Figure 9C and D shows that v3.; ; and
kSAZ. 1.3 decrease from 0 to 15% of polar groups, while Figure 9E and F shows that v5;, , and kSA3/. 12

increase. This fact can be interpreted because the hydration is redistributed from the polar
groups to the non-polar groups. In the region of 15-25%, this behaviour is reversed.

6. Conclusions

In this chapter, we have developed common thermodynamic bases for isothermal titration
calorimetry, densimetry and measurement of sound speed in terms of thermodynamic partial
properties (interaction partial enthalpies, partial volumes and partial adiabatic compressibil-
ities). To build these common thermodynamic bases, it is necessary to introduce new concepts,
i.e., the concept of fraction of a system and the concept of thermodynamic interaction between
components of a system. An advantage of the proposed thermodynamic scheme is the possi-
bility of including new thermodynamic partial properties as partial heat capacities.
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