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Abstract

Combustion instability is often encountered in various power systems, a good under-
standing on the sound field in acoustic cavity as well as its coupling with boundary
flexible structure will be of great help for the reliability design of such combustion
system. An improved Fourier series method is presented for the acoustic/vibro-acoustic
modelling of acoustic cavity as well as the panel-cavity coupling system. The structural-
acoustic coupling system is described in a unified pattern using the energy principle.
With the aim to construct the admissible functions sufficiently smooth for the enclosed
sound space as well as the flexible boundary structure, the boundary-smoothed auxil-
iary functions are introduced to the standard multi-dimensional Fourier series. All the
unknown coefficients and higher order variables are determined in conjunction with
Rayleigh-Ritz procedure and differential operation term by term. Numerical examples
are then presented to show the correctness and effectiveness of the current model. The
model is verified through the comparison with those from analytic solution and other
approaches. Based on the model established, the influence of boundary conditions on
the acoustic and/or vibro-acoustic characteristics of the structural-acoustic coupling
system is addressed and investigated.

Keywords: enclosed sound space, acoustics analysis, structural-acoustic coupling,
flexible boundary structure

1. Introduction

Combustion instability is often encountered in various power systems, which will further

cause the combustion noise or even the dynamic damage of combustion chamber structure [1].

A good understanding on the vibro-acoustic coupling between the bounded flexible structure

and the thermo-driven acoustic oscillation will be of great significance for the correct design of

combustion system of various power plants. As an important part of such whole thermos-acoustic

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



coupling system, the acoustics in cavity and its coupling with its flexible boundary also plays

an important role. For many years, a lot of research effort has been devoted to the coupled

structural-acoustic system.

The acoustic analysis in enclosed space is a classical research topic in acoustics community, and

the rectangular cavity is widely used as the theoretical model. Morse and Bolt [2] first intro-

duced the normal modes theory into room acoustics, and developed a non-linear transcenden-

tal characteristic equation through combining the assumed sound pressure modes with

complex impedance boundary conditions on the walls. Maa [3] derived the transcendental

equation for a rectangular room with non-uniform acoustical boundaries which took the same

form as that of a uniform acoustic admittance case, while the impedance term was conse-

quently non-uniform on certain wall. Recent studies have been mainly focused on developing

more effective root searching algorithms for finding eigensolutions. For instance, Bistafa and

Morrissey [4] compared two different numerical procedures: one is the Newton’s method and

the other is referred to as the homotopic continuation technique based on the numerical

integration of differential equations. The roots are searched for the cases from soft walls to the

terminal impedance with small increments. They found that the latter procedure is much faster

in finding all the possible roots. Naka et al. [5] utilized an interval Newton/generalized

bisection (IN/GB) method to find the roots of the non-linear characteristic equation within

any given interval for the modal analysis of rectangular room with arbitrary wall impedances.

In many occasions, the acoustic cavity is bounded by the flexible structure, and the interaction

between the structural vibration and the acoustic cavity should be taken into account simulta-

neously for the determination of acoustic field characteristics. Among the existing studies, the

most popular modelling approach is the so-called modal coupling theory [6] in which the

structural modes in vacuo and the acoustic cavity modes with rigid walls need to be deter-

mined a priori. The two sets of modes are then combined together, via spatial coupling coeffi-

cients, to find the response of the coupled system. However, as pointed out by Pan et al. [7, 8],

there are two main limitations with the modal coupling theory. One is that such an approach is

only suitable for weak coupling and will be inadequate in dealing with strong coupling

conditions as in the cases where a very thin plate, a shallow cavity depth or a heavy medium

is involved. The other one is related to the use of the rigidly walled cavity modes since then the

particle vibrational velocity on contacting surface cannot be determined from the pressure

gradient, causing the discontinuity of velocity from the cavity to the vibrational panel. In other

words, the basic requirement of velocity continuity on the panel-cavity coupling interface

cannot be satisfied by the modal coupling theory. Then, this approach may be problematic

when the energy transmission is needed for the analysis, since it will be difficult to calculate

the high-order variable using the acoustic mode with rigid wall.

In this chapter, a unified structural-acoustic coupling analysis framework will be introduced

for the representative rectangular cavity and its coupled panel structure. The fully coupling

system is described in the framework of energy. The Fourier series with supplementary terms

is constructed as the admissible functions, which are smoothed in the whole solving domain

including the elastic structural and/or impedance acoustic boundary and coupling interface.

All the unknown coefficients are solved in conjunction with Rayleigh-Ritz procedure. Since the
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field functions are sufficiently smooth, the corresponding high-order variables can be calcu-

lated straightforwardly.

2. Theoretical formulations

2.1. Acoustic cavity with impedance boundary condition

A rectangular acoustical cavity of dimensions Lx � Ly � Lz and the associated coordinate

system are sketched in Figure 1. In this study, it is assumed that an arbitrary impedance

boundary condition is specified on each of the cavity surfaces, that is,

∂p

∂n
¼ �j

ρc

Zi
kp (1)

where j ¼
ffiffiffiffiffiffiffi

�1
p

, p is the sound pressure, n denotes the outgoing normal of the surface, ρ and c

are respectively the mass density and the sound speed in the acoustic medium, k (= ω/c) is the

wavenumber with ω being angular frequency, and Zi represents the acoustic impedance on the

ith surface.

2.2. Improved Fourier series representation of admissible function

It is well known that the modal functions for rigid-walled rectangular cavity are simply the

products of cosine functions in three dimensions. Based on the modal superposition principle,

the corresponding sound pressure field inside the cavity can be generally expressed as a 3-D

Fourier cosine series. However, such a Fourier series representation will become problematic

when an impedance boundary condition is specified on one or more of the interior walls. This

assertion is evident from Eq. (1) because the left side of the equation is identically equal to zero

regardless of the actual value of the right side. This problem is mathematically related to the

inability to converge of the traditional Fourier series on the boundaries of a domain under

general boundary conditions. To overcome this difficulty, in this study, a 3-D version of an

Figure 1. A rectangular cavity with general impedance boundary conditions.
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improved Fourier series representation previously developed for the in-plane vibrations of

elastically restrained plates will be used to expand the sound pressure inside the cavity [9].

pðx, y, zÞ ¼
X∞

mx¼0

X∞

my¼0

X∞

mz¼0
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cosλmx

x cosλmy
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þ
X∞
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where λms = msπ/Ls, (s = x, y or z), and the supplemental functions are defined as

ξ1LsðsÞ ¼ Lsζsðζs � 1Þ2, ξ2LsðsÞ ¼ Lsζ
2
s ðζs � 1Þ, ðζs ¼ s=LsÞ (3)

It is easy to verify that

ξ1Lsð0Þ ¼ ξ1LsðLsÞ ¼ ξ
0

1Ls
ðLsÞ ¼ 0, ξ

0

1Ls
ð0Þ ¼ 1 (4)

ξ2Lsð0Þ ¼ ξ2LsðLsÞ ¼ ξ
0

2Ls
ð0Þ ¼ 0, ξ

0

2Ls
ðLsÞ ¼ 1 (5)

In light of Eqs. (3)–(5), one can understand that the 2-D Fourier series expansions in Eq. (2)

mathematically represent the possible non-zero (normal) derivatives of the acoustic pressure

on each of the cavity walls, and the 3-D Fourier series a residual pressure field as if the

impedance boundary conditions on the cavity walls were modified to being infinite rigid.

Mathematically, it can be proved that the modified series solution converges faster and uni-

formly over the entire solution domain including the boundary walls [10, 11].

Since the pressure solution is constructed sufficiently smooth in the current formulation, the

unknown expansion coefficients can be solved in a strong form by letting the series solution

simultaneously satisfy both the governing differential equation (Helmholtz equation) inside

the cavity and the boundary conditions, on the cavity walls on a point-wise basis. In such a

case, because of the boundary conditions, the expansion coefficients for the 2-D series are not

fully independent of those for the 3-D series. While such a procedure may be preferred in the

context of ‘exact’ solution, an alternative procedure for obtaining a weak form of solution will

be employed here because of its potential benefits in modelling complex acoustic systems

consisting of many cavities. The corresponding Lagrangian for the rectangular cavity with

arbitrary impedance boundary conditions can be written as
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L ¼ V � T �W ext (6)

where V denotes the total acoustic potential energy stored in the enclosed volume, T represents

the total kinetic energy and Wext represents all the work done by the applied sources which

include the energy dissipation on the wall surfaces in the current case. These terms can be

explicitly expressed as [12].

The total potential energy V is

V ¼
1

2ρ0c
2
0

ð

V

p2dV ¼
1

2ρ0c
2
0

ðLx

0

ðLy

0

ðLz

0

p2ðx, y, zÞdxdydz (7)

where c0 is the speed of sound, and ρ0 is the mass density of the medium in the cavity.

The total kinetic energy T is given as

T ¼
1

2ρ0ω
2

ð

V

ðgrad pÞ2dV

¼
1

2ρ0ω
2

ð

V

∂p

∂x

� �2

þ
∂p

∂y

� �2

þ
∂p
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� �2
" #

dV

¼
1

2ρ0ω
2

ðLx

0
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0
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0
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þ
∂p
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� �2

þ
∂p

∂z

� �2
" #

dxdydz

(8)

where grad p means the gradient of sound pressure.

By using the relationship between the sound pressure and the particle velocity on impedance

surface, the dissipated acoustic energy can be calculated from

Wwall ¼ �
1

2

ð

S

p2

jω

1

Z
dS ¼ �

1

2

ð

S

p2

jω
YdS (9)

where Z is the complex acoustic impedance of the wall surface, and Y is the complex acoustic

admittance which is defined as the inverse of impedance, namely, Y = 1/Z. For the non-uniform

distributed on a wall surface to account for practical complications, for example, the acoustic

admittance on wall z = 0 can be generally described as Yz0(x, y) = YA � hz0(x, y) where YA is the

complex amplitude and hz0(x, y) is a strength distribution function. In this study, to unify the

formulations and simplify the subsequent calculations, any specified admittance distribution,

such as Yz0(x, y), will be expanded into double Fourier series as

Yx0ðy, zÞ ¼
X

∞

ny¼0

X

∞

nz¼0

~Y
nynz
x0 cosλnyy cosλnzz (10)

where λns = nsπ/Ls, (s = y or z). In actual numerical calculations, all such Fourier series

expansions will be truncated to ny = Ny and ny = Nz. The non-uniform impedance distributions

on other wall surfaces can be treated in the same way.
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The work done by a sound source inside cavity can be represented as

WS ¼ �
1

2

ð

V

pQ

jω
dv (11)

where Q is the distribution function of a sound source. For a point source located at (xe, ye, ze)

inside the cavity, we have

Q ¼ Q0δðx� xeÞδðy� yeÞδðz� zeÞ (12)

where Q0 is the volume velocity amplitude of the sound source, and δ is Dirac delta function.

Substituting Eqs. (7)–(12) into the acoustic Lagrangian, Eq. (6), and applying the Rayleigh-Ritz

procedure against each of the unknown Fourier series coefficient, a system of linear algebra

equations can be derived as

ðKþ ωZþ ω
2MÞE ¼ Q (13)

whereK andM are the stiffness and mass matrixes of the acoustic system, respectively; Z is the

damping matrix due to the dissipative effect of the impedance boundary conditions over the

cavity walls and Q is the external load vector.

In order to determine the modal characteristics of the acoustic cavity, one needs to solve the

characteristic equation by setting the external load vector Q (on the right side of Eq. (14)) to

zero. Since the resulting equation will involve the first-order and second-order terms of oscil-

lation frequency, it is usually rewritten in state space form [13]

ðR� ωSÞG ¼ 0 (14)

where R ¼ �
½0� K
K Z

� �

, S ¼
�K ½0�
½0� M

� �

, G ¼
E
F

� 	

and F = ωE.

2.3. Vibro-acoustic coupling of panel-cavity system

The above formulation is mainly about the modelling of pure acoustic cavity, in many situa-

tions, the cavity is bounded by the flexible structure, such as the combustion chamber. For such

structural-acoustic coupling system, the vibration of flexible boundary structure and the

acoustic filed will couple together. As a classical example, the rectangular panel-cavity is often

used as the analysis example for the structural-acoustic coupling study.

As shown in Figure 2, an elastically restrained plate is one of the surfaces enclosing a rectan-

gular acoustical cavity (other five surfaces are assumed to be perfectly rigid for simplicity).

Suppose that the plate is excited by a normal concentrated force F. The vibration of the plate

will cause sound waves radiated into the cavity, and the cavity will in turn affect the panel

vibration by applying sound pressure to the fluid-structure interface. While the phenomenon

is described as causal event, it actually defines a coupled structure-acoustical system in which

the two different physical processes affect each other and have to be determined simulta-

neously by considering the coupling conditions at the interface.
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Although such structural-acoustic coupling system can be analysed by solving the governing

equation and boundary conditions, simultaneously. Similar to the above acoustic analysis of

enclosed sound space, the energy principle can also give the sufficiently accurate prediction of

vibro-acoustic behaviour, when the admissible functions are constructed smooth enough. For

the transverse vibration of a rectangular plate with general elastic boundary supports, its

displacement function will be invariantly expanded into an improved Fourier series as [14].

wðx, yÞ ¼
X

∞

m¼0

X

∞

n¼0

Ap
mn cosλLxmx cosλLynyþ

X

4

l¼1




ζlLy ðyÞ
X

∞

m¼0

clm cosλLxmxþ ζlLxðxÞ
X

∞

n¼0

dln cosλLyny
�

(15)

where λLxm = mπ/Lx, λLyn = nπ/Ly and the superscript pwith Amn means the Fourier coefficients

for the panel displacement. The supplementary functions ζlLx(x) and ζlLy(y) are introduced to

account for all the possible discontinuities with the first and third partial derivatives (with

respect to x or y) of the displacement function along each edge of the plate.

For the panel cavity considered here, the main attention will be paid to the structural-acoustic

continuity, with the other walls kept as rigid. The acoustic pressure filed function is constructed

as [15]

pðx, y, zÞ ¼
X

∞

mx¼0

X

∞

my¼0

X

∞

mz¼0

Aa
mxmymz

cosλmx
x cosλmy

y cosλmz
z

þ ξ2LzðzÞ
X

∞

mx¼0

X

∞

my¼0

bamxmy
cosλmx

x cosλmy
y

(16)

where mx, my and mz are all integers, describing the spatial characteristic of a particular mode,

Amxmymz is the complex modal amplitude corresponding to the (mx, my, mz) mode, and λms

= msπ/Ls (s = x, y or z).

Figure 2. A rectangular acoustic cavity bounded by a flexible panel with general boundary conditions.
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The Lagrangian for the plate structure can be expressed as

Lpanel ¼ Upanel � Tpanel �Wpanel þWa&p (17)

where Upanel is the total potential energy associated with the transverse deformation of the panel

and the potential energy stored in the restraining springs; Tpanel denotes the total kinetic energy of

the plate;Wpanel is the work done by the external force F; andWa&p represents the work done by

the sound pressure acting on the structural-acoustic interface which is calculated from

Wa&p ¼

ð

S

wpdS ¼

ðLx

0

ðLy

0

wpdxdy (18)

The total potential and kinetic energy for the elastic plate can be explicitly expressed as
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D
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(19)

and

Tpanel ¼
1

2

ðLx

0

ðLy

0

ρh
∂w

∂t

� �2

dxdy ¼
1

2
ρhω2

ðLx

0

ðLy

0

w2dxdy (20)

where ρ and h are the mass density and thickness of the plate structure, respectively.

The Lagrangian for the acoustic cavity is

Lcavity ¼ Ucavity � Tcavity �Wp&a (21)

whereUcavity is the total potential energy for the acoustic cavity, Tcavity is the total kinetic energy

of the particle vibrations inside the cavity and Wp&a denotes the work due to the panel

vibration. The (pressure and velocity) continuity conditions the solid-fluid interface implies a

reciprocity relationship, that is, Wp&a = Wa&p.

Substituting Eqs. (15) and (16) into Eqs. (17) and (21) and minimizing them against the

unknown Fourier coefficients, one is able to obtain the final system in matrix form as

Kp Ca&p

0 Ka

" #

� ω2
Mp 0

�CΤ
a&p Ma

" #( )

W

P

� �

¼
Fp

0

� 	

(22)
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Once the Fourier coefficient vectors W and P are solved from Eq. (22), the structural displace-

ment on the plate and the sound pressure in the cavity can be readily determined by using

Eqs. (15) and (18). If one is only interested in the modal parameters of the coupled structural-

acoustic system, they can be simply obtained from solving a standard matrix characteristic

equation by setting to zero the loading vector on right hand side of Eq. (22), instead of

searching the singularities (the poles) of the modal coefficients or extracting the resonant peaks

from the frequency response functions of the coupled system. It should be noted that although

only one of cavity surfaces is considered movable in the above discussion, the present method

can be readily extended to an acoustic cavity bounded by multiple plate structures.

3. Numerical examples and discussion

In this section, numerical examples will be presented to demonstrate the effectiveness and

reliability of the proposed method, then based on model established, the vibro-acoustic behav-

iour of the cavity as well as its coupling system with the flexible panel will be studied. The first

example involves a rectangular cavity with each of its walls being perfectly rigid. The related

parameters are as follows: the dimensions are Lx � Ly � Lz = 0.7 � 0.6 � 0.5 m3, the air density

is ρair = 1.21 kg/m3 and the speed of sound is c0.= 340 m/s. For a non-dissipative wall, its

acoustic impedance is described only by an imaginary part.

Table 1 shows a comparison of the first six natural frequencies using the familiar analytic

solution and from the current method. It should be mentioned that the current results were

calculated by truncating the series expansions in Eq. (2) to Mx = My = Mz = 3. The ‘perfect’

match between the current results and the exact solution partially indicates the excellent

mathematical characteristic of the proposed series solution in terms of its convergence and

accuracy. Although only the first six modes were compared in Table 1, a nice agreement for

other higher order modes is also evident from the acoustic response curves presented in

Figure 3. In the subsequent calculations, all the Fourier series expansions will be truncated to

M = 3 in each direction unless otherwise specified.

Now, place a point source of strengthQ0 = 2� 10�5m3/s into the acoustic cavity at position (Lx/10,

Ly/10 and Lz/10). To account for the air absorption, a modal damping ratio η = 0.01 is assumed

for each acoustic mode. For a relatively small acoustic damping ratio, the dissipative effect can

be accounted for simply through introducing a complex wavenumber k’ = k(1 � jξ) [16]. In this

Natural frequency (Hz)

1 2 3 4 5 6

Current 0.00 242.86 283.33 340.00 373.17 417.83

Analytical 0.00 242.86 283.33 340.00 373.17 417.83

Table 1. The six lowest natural frequencies for a cavity with perfectly rigid walls.

Acoustic Analysis of Enclosed Sound Space as well as Its Coupling with Flexible Boundary Structure
http://dx.doi.org/10.5772/intechopen.69967

35



method, a complex sound speed ~c ¼ cð1� jηÞ is used instead. Since k0 ¼ ω=~c (or, ω/[c(1 � jη)]

= k(1 � jξ)), it is easy to see that η = �ξ/(1 � jξ). The sound pressure levels at two observation

points, (3Lx/10, 4Ly/10, 5Lz/10) and (9Lx/10, 9Ly/10, 9Lz/10), are plotted in Figure 3 in the

frequency range of 0–500 Hz. For comparison, the results obtained based on the superposi-

tion of 245 analytical modes are also presented. An excellent comparison between the two

predictions is seen over the entire frequency range [16].

Another extreme case of the non-dissipative boundary conditions is the so-called pressure

release (or zero-pressure), which is described by infinitely small pure imaginary impedance

on surface (j10�5 in the actual calculations). Suppose that a cavity of 2.12� 6.06� 2.12 m3 has a

pressure-release condition at surface y = Ly (= 6.06 m), and the rest walls are perfectly rigid. A

point source with strength as Q0 = 2 � 10�5 m3/s is placed at (1.86, 0.26 and 0.26 m). To account

for the larger dimension in the y direction, more expansion terms are retained accordingly, that

is, My = 7 as compared with M x= Mz = 3.

The sound pressure at (0.1, 5.96 and 2.02 m) is plotted in Figure 4 as a function of frequency.

This problem was previously solved by using an equivalent source technique, and the result

was also shown in Figure 4 as a reference. It is seen that the two predictions are in a good

agreement. However, slight separation between them can be noticed as frequency increases.

This is probably caused by the possible loss of the accuracy of the equivalent source technique

due to the use of an insufficient number of equivalent sources at higher frequencies. Plotted in

Figure 5 are sound pressure fields inside the cavity at 14 and 42 Hz, respectively. Since two

frequencies are very close to the first two resonance frequencies (refer to Figure 4), the distri-

butions essentially resemble the first and second acoustic mode shapes. It is observed from

Figure 5 that the sound pressure decreases rapidly in approaching to (and eventually vanishes

on) the wall of y = Ly. The pressure fields are basically uniform on the cross-section perpendic-

ular to y-axis. These two pressure patterns may be considered to evolve the familiar (1, 0, 0)

and (2, 0, 0) modes for the cavity with each wall being perfectly rigid. The existence of the zero-

pressure wall at y = Ly causes the nodal surfaces to shift towards it.

(a) (b)

Figure 3. Sound pressure responses inside the cavity at: (a) (3Lx/10, 4Ly/10, 5Lz/10) and (b) (9Lx/10, 9Ly/10, 9Lz/10).
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To better understand the effect of impedance boundary conditions on the acoustical character-

istic of an enclosed space, the frequency responses at the observing point (0.1, 5.96 and 2.02 m)

are plotted in Figure 6 for a wide range of impedance values from j10�5 to j105 specified on

surface y = Ly (= 6.06 m), while the other walls are kept acoustically rigid. For small imped-

ances, Zi ≤ j104, both the resonance frequencies and response amplitudes show a strong

Figure 4. Soundpressure at (0.1, 5.96 and 2.02m) inside the cavitywith pressure release boundary specified on thewall y = Ly.

Figure 5. Sound pressure fields with a pressure release described by an infinitely small impedance on the surface (j10�5 in

the actual calculations) on surface y = Ly (=6.06m) at: (a) 14 Hz and (b) 42 Hz.
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dependence on the specified impedance value. However, when the wall becomes sufficiently

rigid, Zi > j104, a further increase of the impedance will have little effect on the pressure field.

In the aforementioned examples, the results are mainly on the acoustic cavity analysis, as

demonstrated in the above formulations, the current modelling framework can be used for

the treatment of vibro-acoustics analysis of panel-cavity system by simply including the

vibrational energy in the whole description. The model will be first valeted, and then, the main

emphasis will be put on the model validation and the influence of structural boundary condi-

tion on the coupling characteristics of such panel-cavity system.

For the model verification on the modal parameter prediction, consider a problem previously

studied in Ref. [17] where an acoustic cavity (Lx� Ly � Lz = 0.2032 m � 0.4064 m � 0.6096 m) is

coupled to a simply supported rectangular plate (Lx � Ly = 0.2032 m � 0.4064 m) of thickness

1.524 mm. The other five walls of the cavity are considered as acoustically rigid. The material

properties of the plate are specified as: Poisson’s ratio μ = 0.3, Young’s modulus E = 71 � 109 Pa

and mass density ρpanel = 2700 kg/m3. The density of and sound speed in the air cavity are ρair

= 1.21 kg/m3 and c0 = 344 m/s, respectively. In the current solution method, the simply

supported boundary condition can be easily realized by respectively setting the stiffnesses of

the rotational and translational springs to zero and infinity which is actually represented by a

very large number, 5 � 109, in the numerical calculations.

Table 2 shows the first 20 natural frequencies of the coupled panel-cavity system. The data

from Ref. [17] were also listed there for comparison. A nice agreement can be observed

between these two sets of results with the largest difference being less than 0.35%. In this

example, the Fourier series is truncated to Mp = Np = 12 for plate displacement and to Mxa =

Mya = Mza = 3 for the cavity pressure.

Figure 6. Effect of varying impedance boundary condition on the sound pressure response at observing position (0.1, 5.96

and 2.02 m), in which the impedance variation is specified on surface y = Ly (=6.06 m) while the other walls are kept

acoustically rigid.
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Next, we will examine the effect of cavity depth on the modal parameters. As in Ref. [18], the

cavity dimensions are chosen as: Lx � Ly� Lz = 0.2 m � 0.2 m �Hdepth. The cavity is enclosed at

z = Lz by a simply supported copper panel, and its remaining five walls are assumed to be

perfectly rigid. The panel thickness is 0.9144 mm, and its material properties are mass density

ρs = 8440 kg/m3, Poisson’s ratio μ = 0.35 and Young’s modulus E = 105 � 109 Pa. The acoustic

medium is air having the same properties as in the first example. Table 2 gives the first six

modal frequencies of the coupled system with a good comparison with the results previously

presented in Ref. [18].

From the standpoint of structural vibration, the acoustic cavity may be approximately viewed

as Winkler springs with a probably non-uniform stiffness distribution over the area of the

panel, depending upon frequency. To understand its significance, the effects of varying edge

restraining stiffnesses on the fundamental frequency of the coupled system are studied for a

range of cavity depths. In this analysis, the copper panel is assumed to be uniformly supported

along all four edges. Shown in Figure 7(a) are the results for a configuration in which, by

keeping the rotational stiffness to zero, the stiffness for the translational spring is increased

from zero (completely free) to infinity (simply supported). It is evident that reducing the cavity

Mode order Ref. [17] (Hz) Current (Hz) Difference (%)

1 113.91 114.06 0.13

2 177.48 178.04 0.32

3 280.71 281.02 0.11

4 295.97 296.62 0.22

5 379.77 379.71 0.02

6 423.05 423.11 0.01

7 447.32 447.96 0.14

8 448.06 449.21 0.26

9 511.5 511.52 0.00

10 559.9 561.49 0.28

11 565.89 565.9 0.00

12 650.43 652.6 0.33

13 706.59 706.6 0.00

14 717.41 719.91 0.35

15 829.09 826.97 0.26

16 846.99 847 0.00

17 847.03 847.04 0.00

18 850.95 850.59 0.04

19 892.84 892.92 0.01

20 893.4 893.39 0.00

Table 2. The first 20 modal frequencies for the coupled panel-cavity system.
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depth is equivalent to increasing the stiffness of the Winker springs. For small restraining

stiffness, k ≤ 103, the first mode is manifested in a piston-like motion, and the fundamental

frequency is primarily determined by the edge restraints. However, as the edge springs

become sufficiently strong, k ≥ 107, the air cavity starts to take over as a dominating factor in

affecting the value of the fundamental frequency. For intermediate values, 104 ≤ k ≤ 106, the

fundamental frequency tends to show a strong dependence on the stiffness of the edge

restraints.

By letting the translational springs be infinitely rigid, we now add rotational restraints to the

edges. The fundamental frequency curves are plotted in Figure 7(b) for various combinations

of cavity depths and spring stiffnesses. Again, it is seen that the decreasing the cavity depth is

equivalent to increasing the stiffness of the Winkler springs and hence the fundamental fre-

quency of the panel wall. The above results also indicate that there tends to exist stronger

structural acoustic coupling for a thinner air gap. This statement may have a meaningful

implication to the design of double-walled sound isolation.

We will now direct our attention to the vibro-acoustic responses of the coupled system. For

validation, the cavity dimensions will be modified to: Lx � Ly � Lz = 1.5 m� 0.3 m� 0.4 m. The

top surface of the cavity is a simply supported plate of thickness h = 5 mm. Other relevant

material properties are given as: ρAl = 2770 kg/m3, Young’s modulus E = 71 � 109 Pa, Poisson’s

ratio μ = 0.33, air density ρair = 1.21 kg/m
3 and speed of sound v = 340 m/s. The damping ratio ξ =

0.01 is used for both the plate and air cavities. A unit force is applied to the plate at point

(13Lx/30, Ly/2). This model was studied before by Kim and Brennan [19] using an impedance

and mobility approach which is essentially the same as the modal coupling theory. Figure 8

shows the velocity responses at two separate locations, (13Lx/30, Ly/2) and (16Lx/30, Ly/3).

Plotted in Figure 9 are the sound pressures inside the cavity at (4Lx/10, Ly/2, Lz/2) and (Lx/2,

Ly/2, Lz/2). The reference values in the dB scales are 10�9 m/s for velocity and 2 � 10�5 Pa for

sound pressure. It is seen that both the resonant peaks (namely, natural frequencies of the

coupled system) and magnitude of the calculated vibrational and acoustic responses match

very well with the analytical predictions from the impedance and mobility approach [19],

Figure 7. Effect of the boundary restraining stiffness on the first modal frequency of the coupled system: (a) varying the

stiffness of the translational springs; (b) varying the rotational stiffness.
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which are plotted as the dotted curves in Figures 8 and 9. In this analysis, the Fourier series is

truncated toMp = Np = 12 for the plate displacement and toMxa = 5,Mya =Mza = 3 for the cavity

pressure.

As mentioned earlier, the conventional modal coupling theory suffers a velocity discontinuity

problem at the fluid-structure interface, that is, the particle velocity on/near the interface

cannot correctly calculated from the pressure gradient. However, this velocity continuity

requirement is faithfully enforced in the current method. To illustrate this point, Figure 10(a)

shows the velocity response at (3Lx/10, Ly/4, Lz) on the panel. Because of the relatively large

length-to-width ratio (Lx/Ly = 1.5/0.3 = 5), it is reasonable to include more x-related terms in the

Fourier series for the cavity pressure to better capture the faster variation of pressure gradient

in the x-direction. It is seen that setting the truncation number to Mx = 10 has effectively

ensured the velocity continuity on the interface. The direct and indirect velocities are also

compared in Figure 10(b) at a different point, (Lx/4, Ly/4, Lz), on the interface. Plotted in

Figure 11 are the comparisons of the velocity responses at (3Lx/10, 4Ly/5, z) predicted by the

Figure 8. Velocity responses of the plate at: (a) (13Lx/30, Ly/2) and (b) (16Lx/30, Ly/3).

Figure 9. Sound pressure responses at: (a) (4Lx/10, Ly/2, Lz/2) and (b) (Lx/2, Ly/2, Lz/2).
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Figure 10. Velocity responses on the interface at: (a) (3Lx/10, Ly/4) and (b) (Lx/4, Ly/4).

Figure 11. Comparison of the current method and modal coupling theory on predicting the particle velocity response at

(3Lx/10, 4Ly/5, z) with different spatial coordinates along z-axis: (a) z = 0.85Lz; (b) z = 0.90Lz; (c) z = 0.95Lz; and (d) z = 0.99Lz.
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current method and modal coupling theory for different z-values: z = 0.85Lz, 0.90Lz, 0.95Lz and

0.99Lz. It is observed that the particle velocity can be better estimated by using the current

method, particularly for the cases very close to the panel-cavity interface. Once the reliable

prediction has been made for the particle velocity, other variables of interest such as sound

intensity can be calculated. Figure 12 presents the calculated sound intensity near the interface

at (3Lx/10, 4Ly/5, 0.99Lz). Since sound intensity is a vector, the negative value indicates that its

direction is opposite to the z-axis. It can be found that the acoustic energy is not always

transmitted from the vibrating panel into acoustical cavity in the whole frequency range at

this observing point. The calculated results using modal coupling theory are also shown there;

obviously, such an approach cannot be correctly used to predict sound intensity due to its poor

accuracy with predicting particle velocity from pressure gradient in the vicinity of the vibrat-

ing boundary structure.

4. Conclusions

An improved Fourier series method is presented for the acoustic/vibro-acoustic modelling of

acoustic cavity as well as its coupling with flexible boundary structure. The coupled system is

described in a unified pattern by using the energy description. With the aim to construct the

structural-acoustic admissible functions smooth sufficiently in the whole solving domain,

boundary-smoothed auxiliary functions are introduced to the standard multi-dimensional Fou-

rier series on the system boundary as well as the coupling interface. In conjunction with

Figure 12. Sound intensity at (3Lx/10, 4Ly/5, 0.99Lz) predicted by current method and modal coupling theory.
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Rayleigh-Ritz procedure, all the unknown coefficients can be easily derived, and the relevant

higher order acoustic variables, such as energy power flow, can be determined straightforwardly.

The theoretical formulation is implemented in the Matlab environment. Numerical results are

presented to illustrate the effectiveness and efficiency of the proposed model. The correctness

and reliability is then verified by comparing with those from other method or numerical

solution. Based on the model established, influence of boundary condition on the acoustic or

structural-acoustic coupling characteristics is addressed and investigated in details. This work

can present an efficient analysis tool for the acoustic or structural-acoustic analysis of the

enclosed sound space and flexible structure. This work shows that the desired modal charac-

teristics of coupling system can be obtained by adjusting boundary conditions properly.
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