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Abstract

Gene expression studies in aquaculture have slowly evolved from the traditional reduc‐
tionist approach of single gene sequencing to high throughput sequencing (HTS) tech‐
niques able to sequence entire genomes of living organisms. The upcoming of HTS 
techniques has led to emergence of metagenomics, nutrigenomics, epigenetics and other 
omics technologies in aquaculture in the last decade. Metagenomics analyses have accel‐
erated the speed at which emerging pathogens are being discovered, thereby contribut‐
ing to the design of timely disease control strategies in aquaculture. Using metagenomics, 
it is easy to identify and monitor microbial communities found in different ecosystems. 
In vaccine production, genomic studies are being used to identify cross neutralizing anti‐
gens against variant strains of the same pathogens. In genetics and epigenetics, genomics 
traits have been identified that are beginning to gain commercial applications in aquacul‐
ture. Nutrigenomics have not only enhanced our understanding of the biological mark‐
ers for nutrition‐related diseases, but they have also enhanced our ability to formulate 
diets able to maintain a stable immune homeostasis in the gut. Overall, herein, we have 
shown that functional genomics provide multifaceted applications ranging from moni‐
toring microbial communities in aquatic environments to optimizing production systems 
in aquaculture.

Keywords: genomics, aquaculture, metagenomics, nutrigenomics, epigenetics

1. Introduction

The ability to decipher the molecular composition of nucleic acids of living organisms is of 

prime importance in biological sciences. Although the traditional approaches of single gene 

expression analyses using polymerase chain reaction (PCR) tests [1, 2], quantitative real 
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time PCRs (qRT‐PCRs) [3, 4], competitive PCRs [5] or nested PCRs [6] have been and are 

still widely used in biological sciences, they inherently lack the ability to provide a global 

overview of genomic transcripts found in living organisms. However, the recent advent of 

omics technologies such as metagenomics, nutrigenomics and epigenetics based on high 

throughput sequencing (HTS) is rapidly enhancing our ability to understand complex sys‐

tems underlying different biological functions. These omics technologies have not only accel‐
erated whole genome sequencing projects of different aquatic organisms [7, 8], but they also 

have the capacity to unravel the sequences of entire genomes without prior knowledge of 

the genes to be sequenced thereby enhancing the discovery and annotation of novel genes 

in non‐model species. And as shown from recent studies, their applications in aquaculture 

have accelerated our ability to identify emerging pathogens [9], monitor the microbiomes of 

different aquatic environments [10], develop nutritional diets with less side effects [11, 12] 

and understand the cellular networks that regulate different biological processes in aquatic 
organisms [13–15]. It is evident from studies carried out this far that an integrated use of dif‐

ferent omics technologies is bound to improve our production systems in aquaculture [10, 12, 

16–18]. Hence, this chapter provides an overview of different omics technologies currently 
used in aquaculture mainly focusing on their overall contribution to transforming genomics 

studies into functional applications.

2. Application of metagenomics analyses

Studies carried out this far show that metagenomics can be used to identify novel pathogens 

as well as microbiota found on mucosal surfaces of cultured aquatic organisms.

2.1. Application of metagenomics in diagnostics and discovery of novel pathogens

The rapid expansion of aquaculture to become a leading source of proteins for human con‐

sumption in the world has brought with it a rapid increase in the number pathogens infecting 

farmed aquatic organisms [19]. To expedite the process of identifying emerging pathogens, 

there has been a shift in recent years from the use of traditional diagnostic tools based on 

isolation, culture and pathogen characterization to include metagenomics analyses in the 

identification of novel pathogens in aquaculture [10]. Metagenomics is a culture independent 

diagnostic tool that does not require prior knowledge of nucleic acids to be sequenced unlike 

conventional PCR that require prior knowledge of the nucleic acid to be sequenced for the 

design of primers [20]. Metagenomics analyses have the capacity to sequence all nucleic acids 

present in a sample at once thereby generating a vast array of data that requires computational 

analyses for interpretation [20, 21]. As pointed out in our previous studies [9, 10], it has the 

advantage of identifying co‐infections and in the case of viral pathogens, it has the capacity 

to generate all variable proteins that form complete virions thereby permitting comparative 
phylogenetic analyses with other viruses present in public databases. Moreover, it is a pro‐

active diagnostic tool able to identify novel pathogens before they cause outbreaks unlike 

the reactive traditional diagnostic tools in which etiological agents are only identified after 
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causing disease outbreaks reaching epidemic proportions [21]. Using metagenomics, several 

novel pathogens have been identified at a much faster rate than traditional approaches in 
which the duration from first observation of clinical signs to identification of the pathogens 
is long [10]. For example, infectious pancreatic necrosis (IPN) was first reported as an acute 
infectious enteritis [22] in salmonids in the 1940s while the etiological was later characterized 

as IPN virus after 20 years in 1960 [23]. Similarly, viral haemorrhagic septicaemia (VHS) was 

first reported in the early 1950s in salmonids while the causative agent was characterized later 
after 10 years in 1962 [24]. This trend was observed for several other diseases such as infec‐

tious hematopoietic necrosis virus (IHNV), nervous necrosis virus (NNV), heart and skeletal 

muscle inflammation (HSMI) and cardiac myopathy syndrome (CMS) in which identification 
of the etiological agents took long after clinical signs were first reported [25–33]. However, the 

upcoming of metagenomics has accelerated our discovery of novel pathogens in which the 

duration from observation of first clinical signs to identification of the etiological agent has 
been reduced. In fish, viruses discovered using metagenomics include circoviruses from com‐

mon bream [34] and European eel [35], posavirus [36] and seadornavirus [37] from freshwater 

carp and totivirus from golden shiner. As shown in our recent study [9], more than 20 novel 

fish pathogenic viruses have been identified using metagenomics in the last 4 years, which is 
more than the number identified using traditional diagnostic tools in the last 5 decades, clearly 
showing the rapid rate at which metagenomics has accelerated our ability to identify novel 

pathogens compared with traditional diagnostic methods.

In crustaceans, mortalities due to white spot syndrome virus (WSSV) in shrimps were first 
reported in 1992 while the causative agent was identified in 2001 [38–40]. Mortalities due to 

taura syndrome virus (TSV) in shrimps were first reported in Ecuador in 1991 [41] and the virus 

was characterized in 1994 [42]. A similar trend was observed for Yellow heard disease virus 

(YTV) [43, 44], infectious hypodermal and hematopoietic necrosis virus (IHHNV) [45–47],  

shrimp infectious myonecrosis virus (SIMV) [48] and Penaues vannamei nodavirus (PvNV) 

[49, 50] in which the duration between the first report of the disease and identification of the 
etiological agent was long. Shrimps viruses discovered using metagenomics analyses include 

Frafantepenaeus duorarum nodavirus (FdNV) and shrimp hepatopancreas‐associated circular 

nodavirus (ShrimpCDV) [51].

2.2. Monitoring of environmental microbiomes

A good understanding of microbial communities found in freshwater and marine environ‐

ment used for aquaculture is a prerequisite to designing effective disease control strategies 
tailored for each ecosystem. Metagenomics analyses provide a unique opportunity to study 

infectious agents in water samples outside their susceptible hosts [10]. Its ability to sequence 

all nucleic acids present in a sample at once enables it to profile microbial communities found 
in different ecosystems. For example, Angly et al. [52] showed that microbial composition 

varies with latitude gradient with highest diversity being in warm climates around the equa‐

tor and less diversity in the poles. After analysis of viromes from 32 different marine sites, 
Dinsdale et al. [53] noted that viral richness decreased from deep sea to surface waters and 

with distance from shore in surface waters and increased from winter to summer. Given that 
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over 40% of the global human population live within 100 km of coastlines, anthropogenic 

activities have been shown to influence the composition of microbial communities in coastal 
areas where aquaculture activities are mostly carried out [54]. These anthropogenic activities 

include host species composition changes introduced by aquaculture [55, 56], waste disposal 

[57], agriculture [58], recreation [59] and industrial activities [59]. As a result, metagenomics 

is currently being used to monitor the impact of anthropogenic activities on coastal micro‐

bial composition. Port et al. [60] found an increase in antibiotic resistance genes caused by 

coastal effluent discharges, while Morán et al. [61] showed significant changes in bacterial 
community structures caused by coastal copper disposal in La Lancha and Chañaral bay in 

the Pacific Ocean. Overall, these studies show that metagenomics is not only used to identify 
novel pathogens, but it is also used to monitor the impact of human activities on microbial 

composition in different aquatic environments.

2.3. Application of metagenomics in recirculation systems

In contrast to outdoor aquaculture systems that are dependent on natural water basins such 

as rivers and oceans, the recirculation aquaculture system (RAS) uses water that is filtered 
before it is recycled back into culture tanks in closed systems. Water used in RAS is subjected 

to several treatment processes such as biofiltration to reduce ammonium, removal of solids, 
oxygenation, pH control and pathogen denaturation using ozone and UV‐light. Although a 

well‐designed state‐of‐the‐art RAS has the potential to reduce the presence of waterborne 

microorganisms, some pathogens are able to resist RAS disinfection. Bacteria phyla detected 

from RAS biofilters include Actinobacteria [62], Firmicutes, Bacteroides [63–65], Protobacteria 

[63, 65], Verrucomicrobia [65] and Sphingobacteria [62, 65]. Hence, some microorganisms are 

being used as biosafety indicators whose dominance points to increase in the proliferation of 

pathogenic microorganisms [66]. As a result, metagenomics analyses are being used to moni‐

tor the increase in proliferation of pathogens in RAS [67].

2.4. Metagenomics analyses of mucosa microbiota

Given that mucosal surfaces are the major portals of microbial invasion, there has been a 

growing interest to study mucosal microbiota of cultured aquatic organisms. Metagenomics 

studies show that different environmental factors influence the composition of mucosal 
microbiota on different fish species.

2.4.1. Skin mucosa microbiota

Larsen et al. [68] compared the skin microbiota of six different fish species (Mugil cephalus, 

Lutjanus campechanus, Cynoscion nebulosus, Cynoscion arenarius, Micropogonias undulatus and 

Lagodon rhomboides) from the Gulf of Mexico and showed that Proteobacteria was the pre‐

dominant phylum followed by Firmicutes and Actinobacteria across all species. Although 

Aeribacillus was found in 19% of all fish species examined, genera such as Neorickettsia and 
Microbacterium were fish species‐specific pointing to existence of phyla and genera associated 
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with particular fish species. Lokesh and Kiron [69] showed that the bacterial operational tax‐

onomy unit (OTU) composition on the skin of Atlantic salmon (Salmo salar L.) changed signifi‐

cantly as a result of transfer from fresh to seawater. Proteobacteria was the dominant phylum 

both in fresh and seawater while Bacteroidetes, Actinobacteria, Firmicutes, Cyanobacteria 

and Verrucomicrobia were the most abundant in freshwater. The genus Oleispira was the 

most abundant in seawater. Similarly, Wilson et al. [70] showed that bacterial communi‐

ties from the epidermal mucus of Atlantic cod (Gadus morhua) from the Baltic, Iceland and 

North seas collected over three seasons mainly comprised of Psychrobacter, Bacteroides and 

Photobacterium OTUs in all seasons although there were significant inter‐site and seasonal 
variations in community composition.

Boutin et al. [71] combined 16S RNA metagenomics and QTL analyses to show that host 

genotype can regulate the microbiota composition on the skin surface of brook charr 

(Salvelinus fontinalis). They found a strong negative correlation between Flavobacterium and 

Methylobacterium, pointing to a mutually competitive relationship between pathogenic and 

non‐pathogenic bacteria on the skin mucosa of brook charr. Flavobacterium is known to be 

pathogenic among different fish species, while Methylobacteria provide protection against 
pathogenic bacterial infections on skin surfaces suggesting that a shift from Methylobacteria 

to Flavobacterium dominance on the skin mucosal could point to increase in susceptibility to 

bacterial infection. Hence, by monitoring changes on mucosal bacteria composition, metage‐

nomics can be used to determine the susceptibility of fish to microbial infections.

2.4.2. Gut mucosal microbiota

As pointed out by Lyons et al. [72] that to better understand the gut microbiome and its impact 
on the health status of aquatic organisms, it is vital to determine its structure, diversity and 

potential functional capacity. Gajardo et al. [12] analysed the microbiota profile of the digesta 
and gut mucosal of Atlantic salmon (S. salar L.) fed commercial diets and showed that micro‐

biota richness and diversity differed significantly between the digesta and gut. The digesta 
had a higher and diverse richness than the gut mucosa. Proteobacteria was the dominant 

phyla in the mucosa whereas Proteobacteria and Firmicules were dominant in the digesta. In 

addition, there were significant differences in microbiota composition in different segments 
of the gut. Actinobacteria was dominant in the posterior intestinal (PI) than the mid‐intestinal 

(MI) mucosa. Moreover, the PI showed presence of Spirochaetes that were not found in the 

MI showing that metagenomics can be used to identify microbial communities that inhabit 

different segments of the gut. In another study, Gajardo et al. [11] identified bacterial groups 
associated with diet‐induced gut dysfunction that could serve as biological markers of the gut 

health status in Atlantic salmon. Mouchet et al. [73] compared the gut microbiota of 15 fish 
species from the Atlantic Ocean near Brazil and showed that the microbiota genetic diversity 

was highly influenced by the fish species, geographical location and diet. Put together, these 
studies show that metagenomics can be used to profile bacteria species on mucosal surfaces 
of different fish species and that different factors such as host species, geographical areas and 
diet influence mucosal microbiota in fish.
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2.5. Metagenomics technologies and their limitations

Of the most widely used NGS technologies, both 454 pyrosequencing Roche and Illumina 

sequencers have been widely used in the metagenomics analyses of different aquatic 
organisms. For example, 454 pyrosequencing Roche has been used to study microbial 

communities of different fish species including rainbow trout (Oncorhynchus mykiss) [74], 

Atlantic cod (G. morhua) [75], Atlantic salmon [76], brook trout (S. fontinalis) [77], brown 

trout (Salmo trutta) [78], zebrafish (Dario rerio) [79], Gizzard shad (Dorosoma cepedianum) 

[80], silver carp (Hypophthalmichthys molitrix) [81], common carp (Cyprinus carpio) [82], grass 

carp (Ctenopharyngodon idellus) [83], orange spotted grouper (Epinephelus coioides) [84] and 

Senegalese sole (Solea senegalensis) [85]. On the other hand, Illumina sequencers have been 

used for the analyses of microbiota found in seabass (Lates calcarifer) [86], blunt snout bream 

(Megalobrama amblycephala) [87], grass carp (GC) [87], mandarin fish (Siniperca chuatsi) [87], 

topmouth culter (Culter alburnus), common carp [87] and Crucian carp (Carassius auratus) 

[87], silver carp [87] and bighead carp (Hypophthalmichthys nobilis) [87]. In terms of assembly, 

both whole genome shotgun and marker gene guided sequencing have been used on differ‐

ent aquatic organisms. The commonly used marker gene in metagenomics analyses is the 

16S ribosomal RNA (16S rRNA), which has been widely used to characterize the microbiota 

of different aquatic organisms including rainbow trout [88, 89], Atlantic salmon [11, 12], tur‐

bot (Scophthalmus maximus) [90], lamprey (Lampetra morii) [91] and Baleen whale [92]. Whole 

genome shotgun sequencing has also been widely used in the study of environmental micro‐

bial communities and pathogens infecting different aquatic organisms. The major advantage 
with this approach is that it can be used to sequence whole genomes of known or unknown 

organisms using de novo assemblies unlike guided marker assemblies that are dependent on 

a reference gene [93–96].

Despite its positive contribution to the discovery of novel pathogens and environmental mon‐

itoring of microbial communities, metagenomics has significant limitations that require the 
support of other tools [95]. The immense metagenome data generated using NGS technolo‐

gies require the support of other tools for clustering, classification and annotation of individ‐

ual sequences [95]. For de novo assembled sequences, the most reliable annotation approach 

is by homology search using reference sequences available in public databases. However, the 

number of existing public databases for aquatic organisms is limited, which makes it difficult 
to identify novel pathogens [97]. In general, functional annotation lags behind the rate at 

which metagenome data is generated. Alternative methods used to identify novel pathogens 

include motif or pattern‐based identification [98, 99], phylogenetic profiling [100] and neigh‐

bourhood tree alignments [101, 102].

3. Nutrigenomics in aquaculture

Nutrigenomics is the study of the role of nutrition on gene expression. Galduch‐Giner et al. 

[103] showed that there was specialization in the functional properties of different compo‐

nents of the intestinal tract of the European seabass (Dicentarchus labrax). They observed that 
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molecular markers linked to nutrient digestion and absorption were high in the anterior (AI) 

and middle intestine (MI) while the posterior intestine (PI) predominantly expressed genes 

linked to immune defence mechanisms. These observations are in line with other scientists 

who showed that the AI and MI are mainly responsible for nutrient digestion and absorption 

[104, 105] while the PI is responsible for induction of innate immune responses linked to acti‐

vation of adaptive immunity in teleosts fish [106–109].

Different scientists have studied the genomic changes induced by various nutrients in the 
guts of different fish species. Krol et al. [110] compared the differential response of the Atlantic 
salmon gut to soybean meal (SBM) and fish meal (FM) as positive and negative controls for 
enteritis, respectively. They noted that SBM altered the gut histology and induced extensive 

transcriptomic changes linked to underlying mechanisms of SBM‐induced enteropathy. They 

found 18 enriched pathways linked to inflammation and immune responses induced by SBM 
enteropathy. Among these were the NF‐kB and IL‐8 signalling pathways known to induce the 

synthesis of various pro‐inflammatory cytokines. Phagocytic pathways such as the Fcγ recep‐

tor mediated phagocytosis and monocyte pathways were highly enriched. In another study, 

Torrecillas et al. [111] showed downregulation of TCRβ, COX‐2, TNFα, IL‐8, IL‐6, IL‐10, TGFβ 
and IgM when MHC‐II was upregulated in European seabass fed to Soya‐bean oil (SBO). 

Expression of these genes corresponded with reduced lengths of intestinal folds and mucus 

density in the gut. Conversely, mannan oligosaccharides (MOS) diets increased the length 

of intestinal folds and mucus density and upregulated MHC‐CD4, COX‐2, TNFα and IgM 
expression. Combined MOS and SBO diets reduced the harmful effects of SBO diets by mod‐

erating the downregulation of GALT‐related genes. Therefore, these observations show the 

importance of optimizing feed formulation in order to produce balanced diets able to pre‐

serve the GALT‐immune homeostasis.

Apart from soyabean, nutrigenomics have also been used to evaluate the impact of other 

nutrients in fish diets. Azeredo et al. [112] showed that the immune status of the European 

seabass was impaired by arginine dietary supplements. They observed that different cell‐
mediated immune markers were downregulated in fish fed 1–2% arginine diets. Leukocytes 
obtained from fish fed arginine diets showed low respiratory burst compared to control 
fish. After challenge with Vibrio aguillarum, fish fed arginine diet supplements showed 
higher mortality than control fish. Interestingly, reducing arginine levels to 0.5% in the diet 
supplements significantly increased respiratory burst to levels comparable with control 
fish. In another study, Estensoro et al. [113] showed that butyrate (BP‐70 ®NOREL) helped 

to restore the intestinal status of marine gilthead sea bream (Sparus aurata) fed extremely 

low diets of fish meal (FM) and fish oil (FO). They observed that extremely low FO and FM 
diet levels significantly altered the transcriptomic profiles linked to nutrient absorption 
in the AI and increased expression of inflammatory, antioxidant, permeability and mucus 
production genes that coincided with increased granulocyte and lymphocyte presence in 

the PI submucosa. Interestingly, expression of these genes was restored to control values by 

adding butyrate (BP‐70) to the feed. As pointed out by Krol et al. [110], gut transcriptomic 

profiling is a useful tool for testing the adverse impacts of different feeds and that under‐

standing gut‐diet interactions is a prerequisite to designing diets able to prevent induction 

of diet‐related diseases in the gut.
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Omics technologies commonly used for nutrigenomics analyses in aquaculture mainly comprise 

of microarray and RNA‐seq. RNA‐seq has been widely used to study the impact of different 
diets in various fish species including Atlantic salmon [114], rainbow trout [115], channel catfish 
(Iactalurus punctatus) [116], blue catfish (Ictalurus furcatus) [117] and zebrafish [118]. On the other 

hand, microarray has also been widely used to study nutrigenomics in different fish species that 
include Atlantic salmon, rainbow trout, Atlantic cod (G. morhua) and Gilthead sea bream (S. aurata). 

However, the use of RNA‐seq and microarray leads to several challenges that include the need for 

large data processing softwares as well as the need of bioinformatics tools required for differential 
gene expression, network pathway, alternative splicing and gene duplication analyses. To cope 

with these challenges, different bioinformatics tools have been developed and new innovations 
are being invented to cover different aspects of quality assessment of mapped genes, mapping for 
de novo assembled genes, expression quantification, differential expression analyses, alternative 
splicing and network pathway analyses [119–122]. Different reviews have been published provid‐

ing in‐depth comparative analyses of existing tools highlighting their strengths and weakness that 

could serve as a guide for end users to select the most appropriate tool suitable for nutrigenomics 

studies in different aquatic organisms [119, 123, 124].

4. Functional genomics in vaccine development

Given that most pathogens exist as multiple strains having different antigenic proteins, the 
challenge in vaccine design has been to find cross protective antigens against variant strains 
of the same pathogen. In the case of viruses, different approaches have been used aiming 
at finding the most neutralizing epitopes using methods such as epitope mapping, peptide‐
scan and reverse genetics [125–128]. However, the upcoming of next generation sequencing 

(NGS) supported with current advances of bioinformatics tools is expected to expedite our 

ability to identify the most immunogenic proteins for vaccine production against viral dis‐

eases. For example, Ou‐yang et al. [129] used bioinformatics to identify the antigenic proteins 

for Singapore grouper iridovirus. They used the 162 open reading frames (ORFs) of SGIV 

for sequence similarity searches to identify motifs, cellular locations and other prediction 

domains to identify the most immunogenic epitopes required for vaccine production. They 

identified 13 genes that were cloned to produce DNA vaccines of which three vaccines pro‐

duced relative percent survival (RPS) ranging from 58.3 to 66.7% in vaccinated grouper.

In the case of bacterial vaccines, identification of protective antigens can be a challenge given 
that they contain several antigenic proteins such as capsular antigens, fimbriae, pili and outer 
membrane proteins [130–132]. Some of these proteins lead to serotype, biovar or strain differ‐

ences leading to antigenic diversity within bacterial species. Hence, the challenge is to identify 

broad neutralizing antigens able to confer cross protection against variant bacterial strains can 

be a difficult task. To overcome this problem, Handfield et al. [133] developed an in vivo induced 

antigen technology (IVIAT) that uses antibodies generated from individuals infected by the 

bacterial strain homologous to the vaccine strain to probe for immunogenic proteins using an in 

vitro expression system. To do this, a genomic library is generated using DNA fragments from 

the bacteria strain to be used for vaccine production. The DNA fragments are digested using 
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restriction enzymes and cloned into plasmid vectors. Induced colonies of the expression library 

are probed using pooled sera from bacterial infected individuals as shown in Figure 1. Reactive 

clones are purified and used as vaccine candidates [133]. This technology has been widely used 

to identify antigenic proteins for different bacteria species such as Streptococcus iniae [134], Vibrio 

anguillarum [135], Aeromonas salmonicida [136, 137], Edwardsiella tarda [138] and Streptococcus 

parauberis [139]. Jia et al. [138] used the IVIAT to identify a 510 aa peptidase protein, which they 

used to produce a subunit vaccine against E. tarda in Japanese flounder. Sun et al. [134] used the 

IVIAT technique to identify a secretory antigen, which they designated as Sia10, and cloned it 

to produce a DNA vaccine against S. iniae. In vaccinated turbot, the Sia10 protein was detected 

in the muscle, liver, kidney and spleen by 7 days post‐vaccination (dpv) lasting until 49 dpv. 

Post‐challenge RPS showed 73.9 and 92.3% in fish challenged with high‐ and low‐challenge 
dose, respectively. In addition, the Sia10 protein produced protective antibodies in passively 

vaccinated fish. In another study, Sun et al. [140] used the IVIAT method to identify a surface 

Figure 1. Schematic layout of the IVIAT technique for the identification of bacterial antigenic proteins essential for the 
production of fish vaccines: A: bacteria culture. B: bacteria infection in fish and the sera from infected fish is pooled. C: 
library construction using chromosomal DNA fragments of the bacteria cultured in (A). D: bacteria eliminate absorbed 
antibodies from sera while IVIAT unbound antibodies are used to probe the library constructed in (C). E: clones from 
fragments of bacterial chromosomal DNA are probed with IVIAT pooled sera. F: after probing with pooled sera from 
infected fish, clones depicting binding capacity to IVIAT sera are sub‐cultured. G: the identified clones are purified, 
sequenced and used for subunit or DNA vaccine production followed by vaccination and challenge trials.
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antigen designated as Esa1, which they used to produce a DNA vaccine against E. tarda in 

Japanese flounder. They showed that the pCEsa1 vaccine enhanced respiratory burst, acid 
phosphatase activity and bactericidal activity of headkidney macrophages. In addition, it 

produced RPS = 57% in passively vaccinated fish. Overall, these studies show that genomics 
approaches can be used to identify the most immunogenic proteins for different bacterial 
strains in order to produce the most protective vaccines for use in aquaculture.

5. Marker‐assisted selection of growth and disease resistance traits

5.1. Growth traits

Genetic selection in which individuals with the best growth traits are selected as parent stock 

for the next generation is one of the major strategies used for improving production in aqua‐

culture. And as such, several breeding programmes have been going on using natural selec‐

tion approaches [141–143]. The major drawback with this approach is that it takes several 

generation cycles to identify individuals having positive growth traits. To expedite the pro‐

cess of identifying genetic traits for optimal growth performance, marker‐assisted selection 

(MAS) processes such as single nucleotides polymorphism (SNP), microsatellite, amplified 
fragment length polymorphism (AFLP), random amplified polymorphism DNA (RAPD), 
restriction fragment length polymorphism (RFLP) and quantitative trait loci (QTL) are being 

used to scan chromosomal DNA of different farmed aquatic organisms. Among these, the 
most widely used is QTL analysis, which has been applied across most of the commercial fish 
and crustacean species used in aquaculture [144–147]. As defined by Geldermann [148], QTLs 

are chromosomal regions made of single genes or gene clusters determining a quantitative 

character of a given trait. Given their high heritability, mapped QTLs have proved to be a 

useful tool in selective breeding, which has played an important role in accelerating genetic 

improvement in aquaculture.

As shown in Tables 1 and 2, the most important genetic traits sought for in aquaculture are 

growth rate, body weight and length. These traits influence the commercial value of farmed 
aquatic organisms. Traits for body weight and length have been identified in several fish spe‐

cies such as Atlantic salmon [149], rainbow trout [150], Big heard carp (H. nobilis) [151], common 

carp [152, 153] and tilapia (Oreochromis niloticus) [154], nine spined stickleback (Pungitius pun‐

gitius) [155] and Arctic char (Salvelinus alpinus) [156]. In shrimps and prawns, body weight and 

length traits have been identified in kruma shrimp [157, 158], Chinese shrimp [159], Giant fresh 

water prawn [160], Ridge white prawn [161] and Oriental river prawns [162]. Another impor‐

tant trait, which has contributed to improved production in aquaculture is sexual maturation. 

It has been shown that in some some species, sex is closely related to growth. For example, 

Sun and Liang [163] showed that in common carp, females grow bigger than males at the same 

age, while in tilapia, the males grow faster than females [164]. Hence, the selection of males 

for aquaculture increases production in tilapia while the females increase production in carp. 

Important traits related to improving meat quality include muscle quality [154], muscle fibre 
[165], texture [165], colour [166, 167], fat percentage [166] and dressed weight percentage [166]. 
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Fish species Trait Method References

Blue bream (Ballerus ballerus) 

(Cyprinidae

Thyroid hormones Transcriptome [241]

Blunt snout bream (Megalobrama 

amblycephala)

Growth trait Transcriptome [242]

Turbot (Scophthalmus maximus) Growth trait Transcriptome [243]

Grouper hybrids (Epinephelus 

fuscogutatus)

Superiority in growth Transcriptome [244]

Mandarin fish (Siniperca chuatsi) Growth traits Microsatellite [245]

Atlantic salmon (Salmo salar L.) Growth traits SNP/GWAS [149]

Rainbow trout (Oncorhynchus mykiss) Robustness Transcriptome [173]

Nile tilapia (Oreochromis niloticus) Growth traits Transcriptome [154]

Nile tilapia (Oreochromis niloticus) Skeletal muscle quality Transcriptome [154]

gilthead sea bream (Sparus aurata) Skeletal muscle quality Transcriptome [246]

Rainbow trout (Oncorhynchus mykiss) Growth traits SNP [150]

Rainbow trout (Oncorhynchus mykiss) Stress factor traits Transcriptome [247]

Atlantic cod (Gadus morhua) Growth/reproduction Transcriptome [248]

Lake whitefish pairs (Coregonus spp. 

Salmonidae)

Reproduction Transcriptome [249]

Lake whitefish pairs (Coregonus spp. 

Salmonidae)

Adaptation QTL [250]

Atlantic salmon (Salmo salar L.) Smoltification Transcriptome [177]

Common carp (Cyprinus carpio) Cold tolerance QTL [163]

Arctic char (Salnelinus alpinus) Temperature tolerance QTL [176]

Arctic char (Salnelinus alpinus) Growth rate SNP [251]

Tilapia (Oreochromis niloticus) Cold tolerance QTL [175]

Tilapia (Oreochromis niloticus) Fish size QTL [175]

Coho salmon (Oncorhynchus kisutch) Flesh colour QTL [167]

Rainbow trout (Oncorhynchus mykiss) Spawning time QTL [178]

Rainbow trout (Oncorhynchus mykiss) Albinism QTL [170]

Rainbow trout (Oncorhynchus mykiss) High temperature 

tolerance

QTL [252]

Table 1. Growth and performance traits for different fish species.
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Body appearance traits identified include the red body colour excluding normal black pigmen‐

tation in tilapia [168], silvery skin with few spots in rainbow trout [169], albinism in rainbow 

trout [170] and melanization in threespine sticklebacks (Gasterosteus aculeatus) [171]. Genetic 

traits essential for improving production in fish farming include traits for feed conversion ratio 
[172], robustness [173], maturation timing [174], cold tolerance [163, 175], high temperature 

tolerance [176] and salinity tolerance. In anadromous species such as Atlantic salmon, genetic 

traits for smoltification [177], migration and spawning timing [178] have been determined.

5.2. Disease resistance and susceptibility traits

The rapid expansion of aquaculture to become one of the leading sources of protein in the world 

has brought with it an increase in infectious diseases in aquaculture. To reduce the disease  

Crustacean species Trait Method References

Pandad shrimp (Pandalus latirostris) Microsatellite [253]

Giant freshwater prawn 

(Macrobrachium rosenbergii)

Growth traits SNP [160]

Ridgetail white prawn (Exopalaemon 

carinicauda)

Growth traits Transcriptome [161]

Kuruma shrimp (Marsupenaeus 

japonicas)

Growth traits QTL [157]

Kuruma shrimp (Marsupenaeus 

japonicas)

High temperature tolerance QTL [157]

Kuruma shrimp (Marsupenaeus 

japonicas)

Growth traits AFLP [158]

Pacific white shrimp (Litopenaeus 

vannamei)

Growth traits QTL [147]

Kuruma shrimp (Marsupenaeus 

japonicas)

Total and carapace length ALFP [254]

Indian black tiger shrimp (Penaeus 

monodon)

Sex determining loci QTL [255]

Pacific white shrimp (Litopenaeus 

vannamei)

Sex determining loci Microsatellite [256]

Chinese shrimp (Fenneropenaeus 

chinensis)

Body length QTL [159]

Pacific white shrimp (Litopenaeus 

vannamei)

Body weight and length QTL [257]

oriental river prawn (Macrobrachium 

nipponense)

Body length QTL [162]

Kuruma shrimp (Marsupenaeus 

japonicas)

Body length QTL [158]

Table 2. Growth and performance traits for different crustacean species.
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burden and prevent the use of antibiotics, which have been shown to have adverse environ‐

mental effects, there has been a tremendous increase in genomics studies aimed at identify‐

ing disease resistance traits in different cultured organisms. And as such, different approaches 
such as SNP, MTLS, AFLP, RAPD, RFLP and QTL analyses have been used for the iden‐

tification of disease resistance and susceptibility traits in different aquatic organisms. In 
the case of fish viral diseases, QTL resistance traits have been generated for grass cap reo‐

virus (GCRV) infection in grass carp [179], nervous necrosis virus (NNV) in seabass [180],  

viral hemorrhagic septicemia (VHS) in turbot [181] and rainbow trout [182], infectious salmon 

anaemia (ISAV) virus in Atlantic salmon, lymphocytic disease virus in Japanese flounder [183] and 

infectious pancreatic necrosis virus (IPNV) in Atlantic salmon [184, 185]. Among these, the QTL 

for resistance against IPNV has contributed to significantly reducing the IPNV incidence by >80% 
from 2008 when IPNV resistance fish were introduced in the Norwegian Atlantic salmon indus‐

try to 2015 [186]. Bacteria disease for which QTL resistance traits have been identified include 
coldwater disease in rainbow trout [187], Aeromonas hydrophila in rohu (Labeo rohita) [188], Vibrio 

anguillarum in Japanese flounder [189], Flavobacterium psychrophilum in rainbow trout [190] and 

pastuerellosis in Gilhead seabream [191]. As for parasitic diseases, QTL resistance traits have been 

identified for Gyrodactylus salaris in Atlantic salmon [192] and Monohenean parasite (Benedenia 

seriolae) in Yellow tail (Seriola quinqueradiata) [193].

In shrimps, resistance traits have been identified for white spot syndrome virus (WSSV) in 
Indian black tiger shrimp (Penaeus monodon) [194, 195], Fenneropenaeus (Penaeus chinensis), 

infectious hypodermal and hematopoietic necrosis virus (IHHNV) resistance in shrimp 

(Litopenaeus stylirostris) [196] and taura syndrome resistance in Pacific white shrimp (P. van‐

namei) [197]. Among these, the QTL for resistance against TSV has contributed to significant 
reduction of the disease prevalence in shrimps by generating pathogen‐specific free disease 
shrimps for us in breeding programmes in aquaculture.

6. Application of epigenetics in aquaculture

The term ‘epigenetics’ was first coined by Waddington in 1942 and was defined as changes in the 
phenotype without inducing changes in the genotype [198, 199]. Studies on chemical modifica‐

tion of DNA bases date as far back as 1948 [200] and by the 1970s, the role of DNA methylation in 

gene regulation was identified [201]. In subsequent years, the link between DNA methylation and 

gene expression was established [202] paving way to the discovery of therapeutic drugs such as 

5‐azacytidine used to block DNA methylation [203]. In principle, epigenetic changes are regulated 

by (i) chemical modifications on DNA cytosine residues resulting in DNA methylation and, (ii) 
histone protein modifications on DNA [204, 205]. Current advances in HTS have refined genomic 
analyses to base‐pair resolution making it easier to map entire epigenomes of living organ‐

isms enabling us to identify biological markers predictive of the outcome of disease infections, 

reproduction, growth and adaptation to new environments [206]. As a result of these advances, 

epigenetics studies in aquaculture have tremendously increased in the last decades with the 

view to identifying biological markers relevant for improving the production of farmed aquatic 

organisms. Technologies used for epigenetics analyses in aquaculture include (i) RNA‐seq in  
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Medaka [207] and Nile tilapia [208]; (ii) genome‐wide methylated DNA immunoprecipitation 

sequencing (MeDIP‐seq) in Nile tilapia [209] and Medaka [207]; (iii) bisulfite sequencing (BS‐seq) 
in smooth tongue sole (Cynoglossus semilaevis) [210, 211], rainbow trout [212] and Nile tilapia 

[208]; (iv) genetic linkage map analysis using simple sequence length polymorphisms (SSLPs) 

in medaka [213, 214]; (v) methylation sensitivity amplified polymorphism (MSAP) in Atlantic 
salmon [18], grass carp [215], brown trout [17], sea urchin (Glyptocidaris crenularis) [216] and sea 

cucumber (Apostichopus japonicas) [217]; (vi) 5‐methylcytosine immunolocation in sea lamprey 

(Petromyzon marinus) [218]; (vii) restriction endonuclease hydrolysis of DNA using methylation 

enzymes in Zebrafish [219] and (viii) bisulfite sequencing PCR in Pacific Oyster (Crassostrea gigas) 

[220] and grass carp [221]. As shown in Table 3, epigenetics studies carried out this far include 

studies on reproduction, growth and adaptation traits. In the case of Atlantic salmon, which is one 

of the most widely studied species, epigenetic studies have been carried out at different stages of 
the production cycle as shown in Figure 2.

6.1. Embryogenesis and reproduction traits

Embryogenesis and reproduction traits determined by epigenetic analyses in aquatic organ‐

isms include sexual dimorphism, embryo development, control of gonadal aromatase and 

male meiosis [208, 222, 223]. Mhanni and McGowan [219] examined the methylation patterns 
of the zebrafish genome during early embryogenesis and showed that parental genetic contri‐
butions to the zygote were differently methylated with the sperm being more hypermethyl‐
ated than the oocyte genome. However, immediately after fertilization there was a significant 
decrease in the embryonic genome methylation, but increased rapidly as the embryo devel‐

oped to normal levels by the gastrulation stage. These observations are consistent with those 

seen in mouse [224] suggesting that embryo demethylation/re‐methylation is conserved across 

the vertebrate taxa as of part embryogenesis. As for reproduction traits, Wan et al. [208] found 

several differentially methylated regions (DMRs) on tilapia chromosomal DNA linked to sex‐

ual dimorphism in which the males had high methylation levels after prolonged exposure to 

high temperature conditions. Similarly, Navarro‐Martín et al. [222, 223] showed that European 

seabass juvenile males had double DNA methylation levels than females in the promoter 

region of gonadal aromatase, the enzyme that converts androgens to estrogens suggesting 

that methylation levels on gonadal aromatase were predictive of sex determination. Other fish 
species for which DNA methylation of aromatase has been linked to sex determination include 

medaka [225] and Japanese flounder (Paralichthys olivaceus) [226]. In crustacean, Gómez et al. 

[227] analysed the post‐translational histone modifications in the testis of Daphnia magna and 

identified cytological markers linked to meiosis progression and the silencing of unsynapsed 
chromatin. Put together, these studies show that DNA methylation and histone modification 
can induce reproduction and embryogenesis changes in different aquatic organisms.

6.2. Growth and productivity traits

Epigenetic factors associated with growth and productivity identified in aquatic organisms 
include early maturation, regulation of muscle growth and disease resistance. Early matu‐

ration in Atlantic salmon has emerged to be an interesting topic because prior to migration, 
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parr can reach sexual maturity and successfully fertilize adult females. Up to 60% of total 

paternity in wild populations has been attributed to these precocious male parr or ‘sneakers’. 
To determine the underlying causes of early sexual maturation in parr, Morán and Pérez‐
Figueroa [18] compared genetic and epigenetic differences of two populations of parr and 
mature fish originating from two different rivers and found no genetic difference between 

Aquatic organism Epigenetic trait References

Zebrafish (Danio rerio) Carcinogenesis [258]

Zebrafish (Danio rerio) Embryo development [219]

Zebrafish (Danio rerio) Embryonic cardiogenesis [259]

Medaka (Oryzias latipes) Excision of ToL2 transposal [260]

Medaka (Oryzias latipes) Control of cardiomyocyte production 

in response to stress

[214]

Medaka (Oryzias latipes) Hypoxia and transgenerational 

reproduction impairment

[207]

Nile tilapia (Oreochromis niloticus) High temperature induced 

masculinization of skeletal muscles

[209]

Nile tilapia (Oreochromis niloticus) Sexual dimorphism [208]

Atlantic salmon (Salmo salar L.) Early maturation [18]

European seabass (Dicentrarchus labrax) Temperature dependent sex ratio 

shift

[222, 223]

Tongue sole (Cynoglossidae) Sex reversal [210, 211]

Senegalese sole (Solea senegalensis) Thermal epigenetic regulation of 

muscle growth

[261]

European eel (Anguillarum 

anguillarum)

Low cadmium exposure [232]

European eel (Anguillarum 

anguillarum)

Abnormal ovarian DNA 

methylation‐gonadal

[262]

Red eared slider turtle (Trachemys 

scripta elegans)

Control of gonadal aromatase [263]

Daphnia magna Male meiosis [227]

Pacific oyster (Crassostrea gigas) Growth [220]

Rainbow trout (Oncorhynchus mykiss) Glucose intolerance [230]

Rainbow trout (Oncorhynchus mykiss) Migration‐related phenotypic 

divergence

[212]

Atlantic Cod (Gadus morhua L.) Photoperiod influence [228, 229]

Grass carp (Ctenopharyngodon idella) Individual variations [215]

Grass carp (Ctenopharyngodon idella) Resistance against grass reovirus [221]

Table 3. Epigenetics application in aquatic organisms.
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parr and mature fish. However, epigenetic analysis showed significant single‐locus varia‐

tions in the gonads followed by the brain and liver between parr and mature fish suggesting 
that early maturation in Atlantic salmon parr was mediated by epigenetic processes and 

not genetic differences. As for disease resistance, Shang et al. [221] showed that CpA/CpG 

methylation of grass carp Ctenopharyngodon idella melanoma differentiation associated gene 
5 (MDA5) (CiMDA5) was tightly associated with resistance against GCRV. In their findings, 
they found CpA/CpG methylation sites in the CiMDA5 genome that consisted of putative 

densely methylated elements (DMEs) that were significantly higher in GCRV susceptible 
fish than in the resistant fish. In terms of muscle growth, Giannetto et al. [228] found a 

correlation between DNA (cytosine‐5)‐methyltransferases (DNMTs) increase in fast muscle 

with prolonged exposure to light indicating that photoperiod influence may be involved in 
the DNMTs regulation of muscle growth in Atlantic cod. Similarly, Nagasawa et al. [229] 

found high histone methyltransferases levels of the mixed‐lineage leukaemia (MLL) gene in 

fast muscle of Atlantic cod subjected to prolonged light exposure, which corresponded with 

Figure 2. The cycle shows the use of different aspects of functional genomics to improve the production of Atlantic 
salmon at different stages of the production‐cycle. Note that genetics and epigenetics studies are focused on identifying 
important traits in fish while metagenomics studies are mostly focused on environmental identification of infectious 
pathogens. Fish from different growth stages are also evaluated for the mucosal microbiota investigations using 
metagenomics analyses. Nutrigenomics is mostly applied at the outgrower stage. Growth stages are depicted from 

spawning (A), embryogenesis (B), hatching (C), fingerlings and fry stage (D), Parr stage (E), post‐smolts (F), outgrower 
stage (G) and broodstock (H). Nutrigenomics are after through the feeding stages while the timing of most vaccinations 

is the parr (D) stage in order to enable fish develop protective antibodies by the post‐smolt (E) stage and outgrower stage 
when they are most vulnerable to stress‐related infectious diseases. (X): Depicts the migration of adult fish from seawater 
into freshwater for spawning. (Z): depicts migration from freshwater to seawater at the parr stage.
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increase in mRNA expression of myogenic regulatory factors (Myog and Myf‐5) and Pax7 in 

fast muscle. Overall, these studies show that DNA methylation and histone modification of 
chromosomal DNA play an important role in regulating muscle growth, disease resistance 

and sex maturation in fish.

6.3. Adaption epigenetic traits

Epigenetic factors shown to induce adaptation changes in cultured aquatic organisms 

include nutrition, migration, salinity and photoperiod exposure. Several nutritional studies 

have shown that rainbow trout displays persistent hyperglycaemia when fed high carbo‐

hydrate (HighCHO) diets. To underpin the underlying causes, Marandel et al. [230] exam‐

ined the liver of rainbow trout fed HighCHO diets and found global DNA hypomethylation 

and hypoacetylation of histone H3K9 resembling hyperglycaemic and diabetes conditions in 
zebrafish and mammals. They also showed that g6pcb2 ohnologs that encode the glucose‐6‐

phosphatase (G6pc) enzyme involved in gluconeogenesis catalysis were hypomethylated 

at specific CpG sites indicating that the hepatic epigenetic landscape of rainbow trout can 
be affected by dietary carbohydrates. As for migration traits, Baerwald et al. [212] identi‐

fied several DMRs between migratory smolts and resident rainbow trout juveniles in which 
most DMRs encoded proteins associated with migration showing that epigenetic variations 

were linked to migration traits in anadromous fish. Their findings were in concordance with 
Morán et al. [17] who found genome‐wide methylation differences between hatchery reared 
and seawater brown trout. In addition, Morán et al. [17] showed that salt diets used during 

the seawater phase triggered genome‐wide methylation changes when administered in fresh‐

water reared trout indicating that DNA methylation could play a vital role in enabling anad‐

romous fish acclimatize to seawater after transfer from freshwater. DNA methylation and 
histone modification have also been associated with adaptation changes induced by adverse 
environmental conditions as shown in Nile tilapia exposed to industrial pollutions [231], eels 

to cadmium exposure [232], sea urchin (G. crenularis) exposure to perfluoroctane sulfonate 
(PFOS) [216] and the three‐spine stickleback (G. aculeatus) hexabromocyclododecane (HBCD) 

exposed to 17‐β oestradiol (E
2
) and 5‐aza 2′ deoxycytidine (5AdC) pollutants [233]. In sum‐

mary, these studies demonstrate that DNA methylation and histone modification contribute 
to nutritional, environmental and photoperiod adaptation in different aquatic organisms and 
that these factors could have an influence on improving production in aquaculture.

7. Whole genome sequencing of aquatic organisms

Although teleost fish are the largest known vertebrate group with more than 27,000 species 
[8], they account for a small proportion of vertebrate species whose whole genomes have 

been fully sequenced and characterized. The pufferfish genome is one of the earliest fish 
genome to be sequenced and characterized by 2002 [234], which raised interests to sequence 

the genomes of other fish species. The zebrafish (Danio rerio) whole genome sequencing proj‐

ect was started by Welcome Trust Sanger Institute in 2001 [235] while the Medaka genome 

was sequenced in 2007 [236]. Thus, Zebrafish and medaka are not only among the earliest 
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fish species to have their genomes sequenced and characterized, but they have attracted the 
highest research in genomic studies among teleost species. Their genomes have been widely 

used for comparative analyses as model species [235, 237–239]. Sequence analyses of the 

Atlantic cod genome in 2011 using the whole genome shotgun 454 pyrosequencing technol‐

ogy showed that this fish species lacks the major histocompatibility (MHC) II genes, which 
are compensated with expansion of the MHC‐I and specific adaption of toll‐like receptor 
genes demonstrating that whole genome sequencing can be used to elucidate evolutionary 

differences in the vertebrate taxa [240]. As shown in Table 4, there has been a spontane‐

ous increase in the number of fish species whose genomes have characterized since the dis‐

covery of HTS technologies in recent years. Sequencing of other aquatic organism genomes 

is going on and it is anticipated that as HTS becomes cheaper, more sequences of aquatic 

organisms will become readily available for more advanced functional genomics research 

in aquaculture.

8. Conclusions

In this chapter, we have shown that HTS has contributed to the rapid discovery of novel patho‐

gens in aquaculture using metagenomics, which has significantly contributed in enhancing our 
ability to develop rationale disease control strategies unlike in the past when it took long from 

the first report of a clinical disease to identification of a novel pathogen. Moreover, metagenom‐

ics enable us to identify and monitor microbial communities found in different ecosystems 

Common name Scientific name Year Published Reference

Atlantic salmon Salmon salar L. 2016 [264]

Atlantic cod Gadus morhua 2011 [240]

Asian arowana Scleropages formosus 2015 [8]

Medaka Oryzias latipes 2007 [236]

Nile tilapia Oreochromis niloticus 2015 [7]

Platyfish Xiphophorus maculatus 2013 [265, 266]

Puffer fish Takifugu rubripes 2002 [234]

Puffer fish Tetraodon nigroviridis 2004 [267]

Three‐spined stickleback Gasterosteus aculeatus 2012 [268]

Rainbow trout Oncorhynchus mykiss 2014/2016 [269, 270]

Killifish Nothobranchius furzeri 2015 [271, 272]

Pearl oyster Pinctada fucata 2012 [273]

Table 4. Whole genome sequencing of aquatic organisms.
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used in aquaculture. It has also proved to be an important tool able to map mucosal micro‐

biota of different aquatic organisms. In vaccine production, genomics studies are being used to 
identify cross‐neutralizing antigens able to confer protection across variant strains of the same 

pathogens. In genetics and epigenetics, several genomics traits have been identified that cur‐

rently contributing to the improvement of production in aquaculture. Nutrigenomics have not 

only enhanced our understanding of the genetic markers for enteropathy and other nutritional 

diseases, but they have also highlighted our ability to formulate diets able to maintain stable 

GALT homeostasis in the gut. And as shown from the example of the Atlantic salmon produc‐

tion cycle in Figure 2, it is evident that functional genomics are used at different production 
stages of aquatic organisms to improve the overall production in aquaculture. Hence, genomics 

studies are not only useful at elucidating host‐pathogen interactions [13‐15], but they also serve 

as optimization tools for improving the quality and quantity of aquaculture products.

9. Future perspective

As HTS technologies become cheaper, it is anticipated that more genomes for different aquatic 
organisms will characterized and that this shall pave to a better understanding of the genome 
duplication seen in some fish species. The use of HTS technologies in pathogen discovery and 
microbiota inhabiting mucosal surfaces of different aquatic organisms is expected to pave 
way into timely design of rational disease control strategies. Hence, in future generations, we 

shall not only sequence whole genomes of all aquatic organisms, but we expect to provide a 

better understanding of the evolutionary aspects of the vertebrate taxa as well as providing 
new insight into host‐pathogen interaction mechanisms at protein‐protein level. It is our per‐

ception that current HTS studies are building a strong foundation for more advanced func‐

tional genomics developments in the future.
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