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Abstract

Thermography‐based breast cancer screening has several advantages as it is non‐contact, 
non‐invasive and safe. Many clinical trials have shown its effectiveness to detect cancer ear‐
lier than any other modality. Historically, thermography has only been used as an adjunct 
modality due to the high expertise required for manual interpretation of the thermal 
images and high false‐positive rates otherwise found in general use. Recent developments 
in thermal sensors, image capture protocols and computer‐aided software diagnostics are 
showing great promise in making this modality a mainstream cancer screening method. 
This chapter describes some of these advances in breast thermography and computer‐
aided diagnostics that are poised to improve the quality of cancer care.

Keywords: breast cancer, thermography, analytics, machine learning, artificial intelligence, 
medical imaging, breast thermography, computer‐aided diagnostics

1. Introduction

Breast cancer is the leading cause of cancer deaths in women today. According to WHO, 1 

in every 12 women have the risk of a breast abnormality in her lifetime. It is well established 

that early diagnosis is very critical to increase survival rates. For example, a study sponsored 

by Australian Government found that the breast cancer survival is strongly associated with 

tumor size at detection. In Australia in 1997, five‐year relative survival was 98, 95, 93, 88 and 
73% for women with tumors of size 0–10, 11–15, 16–19, 20–29 and 30 mm or greater, respec‐

tively [1]. Unfortunately, 70% of the breast cancer cases are detected when the tumor size is 
over 30 mm [2]. Therefore, there is a critical need for a method that can detect early‐stage 

breast cancer.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Thermography is a method of cancer screening that has been known to detect early‐stage 

cancer [3]. However, there is a lot of variation in the results of clinical studies based on ther‐

mography and many show low specificity. A medical scientist and deep expert in thermogra‐

phy, Dr. Gautherie, observed that the lack of technical skill and expertise to interpret thermal 

images leads to this low diagnostic accuracy [3]. Recent developments on high‐resolution 

thermal cameras and computer algorithms for thermal analysis are making the interpretation 

process more factual. With increased computation power, automated diagnostics is also able 

to decrease the false‐positive rates. Hence, thermal imaging along with computer‐aided diag‐

nostics is showing a promise of upgrading breast thermography to main stream usage. In this 

chapter, we study these recent trends in advanced thermal imaging as well as the advances 

in imaging algorithms.

2. Introduction to thermography

Infrared thermography is the recording of temperature distribution of a body using the infra‐

red radiation emitted by the surface of that body at wavelengths between 7 and 14 μm. With 
this information, it is possible to create a visual map or thermogram of the distribution of 

temperatures on the surface of the object imaged. The sensitivity of modern infrared cameras 

is such that temperature differences to 0.025°C can be detected.

Thermography can be used for breast cancer screening based on the fact that the tempera‐

ture of the tumor is about 2°C higher than the neighboring tissues and blood vessel activ‐

ity surrounding a developing cancer is almost always higher than in normal breast tissue. 

Since breast tissue is part of the skin, vascular alterations due to cancer result in tempera‐

ture changes on the surface of the breast which can be captured with infrared thermography. 

Thermal abnormalities identified with thermal imaging are among the earliest signs of a pre‐

cancerous or cancerous lesion of the breast.

Thermal imaging is a noncontact, noninvasive and extremely privacy aware. Since thermal 

cameras are small, they are very portable and can be used for screening in rural camps.

There are many certified thermographers and thermologists who continue to practice using 
thermal analysis for breast cancer diagnosis [4].

3. Comparison with mammography

Most common methods used for cancer screening today is clinical examination, mammog‐

raphy and ultrasound. Among them, mammography is considered as a gold standard for 

breast cancer screening. It uses X‐rays to screen the breast region and digitizes the density 

 difference in image format. Typically, cancerous tumor has high density compared to sur‐

rounding region and can be easily distinguished from other regions. Studies [5–7] show that it 

gives a sensitivity of 68% to 88% (or as low as 48% for extremely dense breasts) and specifici‐
ties ranging from 82% to 98%. In addition, it has the following disadvantages:
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1. Low sensitivity toward younger women: In order to clearly detect tumors using X‐rays, the 

density of the lump should be higher than the surrounding tissue density. Breast tissue 

density in younger women is high and decreases with age and exposure to hormonal 

changes [8]. This makes mammography mainly applicable for women with age greater 

than 45 years.

2. Risk of radiation: X‐rays can cause genetic change in the tissues, and these mutations in‐

crease with increased dosage of radiation and duration of exposure. A study presented at 

an annual meeting of Radiology Society of North America (RSNA) observed that high‐risk 
women exposed before age 20 or with five or more exposures were 2.5 times more likely 
to develop breast cancer than high‐risk women not exposed to low‐dose radiation [9]. This 

limits the mammography as a frequent screening modality.

3. Fear and pain: To get proper mammograms, breast region should be compressed. An ap‐

proximate of 15–20 pounds of pressure is applied on the breast region to image. Due to 
high compression involved, sometimes it might also lead to rupture of tumor. Many sur‐

veys described this as painful screening method that subjects would like to avoid [10].

4. Privacy: Apart from pain and fear of radiation, it is reported in Ref. [11] that nearly 38% 
among women from different ethnic groups and with more than 60% among South Asian 
countries like India and Pakistan do not go for screening due to embarrassment of disrobing.

Thermography overcomes the above issues and enables more people to go for screening. It 

can work on women of all age groups. It is a non‐contact, non‐invasive modality with passive 

infrared measurement, which does not involve any radiation, hence a safe screening method. 

Since the thermal images can essentially be captured from a laptop connected to the thermal 

camera, it is also extremely privacy aware.

Among other modalities, clinical breast exam can detect tumors only once they are large enough 

to be palpable and result in many false positives. Effective use of sono‐mammography (ultra‐

sound) for cancer detection requires location of the lump. Hence, ultrasound is best used as a 
correlation modality. Once a lump is detected either through mammography or thermography 

or clinical breast examination, ultrasound will be very useful to reconfirm malignancy or not.

4. Biological explanation

Cancer cells release nitric oxide [12, 13] into the blood and lead to alteration in microcircula‐

tion. This nitric oxide coupled with aggressiveness of cancer to grow increases the blood cir‐

culation by dilating the vessels and leads to creation of new blood vessels (neo‐angiogenesis) 
and dormant vessel recruiting. Experimentally, Folkman [14, 15] observed this dependency 

of tumor growth with angiogenesis by implanting tumour cells in mice. Large volume of 

blood flow in these vessels connected to tumor makes them hotter when compared to normal 
blood vessels. This large flow distorts the vessel structure, and vessels become dilated as well 
as elongated, causing the increase in the dimension of vessel caliber and length [16, 17]. This 

elongation combined with the large flow deviates the vessel structure from normal vessels by 
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making them more tortuous due to formation of bends [18–20]. In fact, it is experimentally 

evident that this high tortuosity is observed much before angiogenesis [18].

In addition, it has been empirically observed that tumor temperature is higher than the 

neighboring temperatures with the help of contact temperature measurements. In Ref. [21], 

Gautherie claimed that this high heat is due to high metabolic activity at tumor location. 

Hence, this region appears brighter and hotter in thermographic images when compared to 
surroundings. It is also observed that tumor temperature is warmer compared to the blood 

vessels feeding the tumor region [21]. Aggressiveness of cancer cells makes the boundary of 

tumor irregular as they break the boundary formed by basal laminas to invade the neighbor‐

ing tissues [19, 20]. This is not seen in case of benign tumors whose cells behave similar to 

normal cells. This makes the benign tumor boundaries regular.

The size of tumor indicates the stage of cancer and largely affects the survival rate. A survey 
conducted by Narod [2] observed drastic decrease in survival rate with increase in tumor size. 

Early detection of cancer increases the chances of survival. Thermography outperforms other 

modalities when it comes to early detection. Changes such as vasodilation, neo‐ angiogenesis 
and high tortuosity of blood vessels which are found in initial stages of cancer result in ther‐

mal impressions and hence can be detected in thermography [15–19]. These might not be 

observed in other modalities which depend upon detecting architectural distortions that 

appear only when tumor is sufficiently grown. A study by Gautherie and Gros [3] over 58,000 
patients for 12 years showed that thermography detected breast cancer five years earlier in 
around 400 patients than mammography and ultrasonography.

Abnormality in thermogram is not the sole criterion for malignancy. Increase in heat 

pattern might even be observed due to hormonal response, lactation and presence of 

benign tumors such as fibrocystic and fibroadenoma. However, these non‐malignant 

conditions have different projections in the thermographic image when compared 

to malignant tumors. Unlike in malignant breasts where there is asymmetrical heat 

map, heat response is mostly symmetrical across the two breasts with high hormonal 

response. Estrogen released during hormonal activity produces nitric oxide that causes 

increase in heat and vessel dilation [12]. Similar activity happens in the case of lactating 

mothers except that a little asymmetry in heat map is seen due to uneven lactation in 

both breasts. There is an increase in heat signature even in benign cases such as fibro‐

cystic and fibroadenoma [21, 22]. In contrast to malignant tumors, these cells are not 

aggressive and behave similar to normal cells [19, 23]. Other than these cases, abnormal 

heat pattern leading to vasodilation and angiogenesis can also occur during inflam‐

mation caused by infection or wound healing [12, 14]. Though these abnormalities are 

formed, they have distinct features compared to malignancy that can be distinguished.

Some recent explorations have shown that thermography can even help in prognosis. Since 

the increase of temperature in malignant tumors is primarily due to the release of nitric oxide, 

which is caused due to hormonal activity, the temperature distribution on the breasts also pro‐

vides signals on the hormonal receptor status of malignant tumors. Zore et al. [9] have studied 

the effect of hormone receptor status of malignant tumors on thermograph through a quanti‐
tative analysis of average or maximum temperatures of the tumor, the mirror tumor site and 
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the breasts. While no statistically significant difference was found in the overall temperature 
distribution in breasts with hormone receptors being positive or negative, they report a signif‐

icant difference in average and maximum tumor temperature measurements. Another com‐

puter‐aided study [24] reported an accuracy of more than 80% for automated estimation of 
hormonal receptor status of malignant tumors. This shows the potential of a non‐invasive way 

of predicting the hormone receptor status of malignancies through thermal imaging, before 

going through Immuno‐Histo‐Chemistry (IHC) analysis on the tumor samples after surgery.

5. Protocols for capturing thermal images

A standard imaging protocol has to be followed for any modality to make it a repeatable 

and operator agnostic procedure that can reduce subjectivity and errors in image capture. 

Likewise, a set of instructions has to be followed in thermography as well [25, 26].

Most importantly, before capturing the images, patient must be cooled for minimum period 

of 10–15 min in a room maintained at a temperature of 16‐22 °C. This helps in attaining ther‐

mal equilibrium with the surrounding environment [25]. Cooling is mandatory as it helps in 
removal of extraneous heat caused due to external reasons such as tight clothing, apparel and 

friction from a hand bag or outside temperature. Cooling also helps in enhancing the temper‐

ature pattern of tumorous regions compared to non‐tumourous regions [27–30]. It is observed 

that normal tissue reacts quickly to external cooling, whereas malignant reacts slowly, mak‐

ing it appear hotter compared to rest of the breast region. For quick cooling of images, cold 
challenge can be used where patient hands are immersed in cold water causing the regulation 

of body temperature with sympathetic stimulus [30].

When it comes to capturing the actual thermal images, imaging protocols can be categorized 

into discrete and continuous imaging protocols.

Discrete imaging protocols: These protocols are interested in specific set of static fixed views. 
The basic views which are observed in most discrete protocols include frontal view (0°), 
oblique views (±30°) and lateral views (±90°). Some variations of different protocols in the 
way of the mentioned views are captured, such as (a) seated position, (b) supine position, (c) 
standing position and (d) combinations of {a,b,c}. Subset of mentioned views/changing the 
angle of views/ adding more view angles are also being used in some studies.

A tumor has less effect with cooling compared to normal tissues whose heat signatures 
decrease drastically [28, 30]. To study the nature of cancer cells further, some protocols include 

the above combinations of different views after cooling the breasts. Some protocols consider 
only fully cooled breasts, while some capture the breast image before and after cooling and 

analyze the thermal patterns of the cooled breast and uncooled breasts [31].

Continuous imaging protocols: Continuous imaging protocols capture videos of the breast as 
they are cooled, instead of static images. These protocols are not as popular as discrete due 

to the large processing time needed to analyze. However, much larger information can be 

captured in a video. For example, tumorous regions do not cool as fast as rest of the tissues.
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6. Advances in thermal cameras

Medical thermography is also benefiting from the rapid advancement in the quality of ther‐

mal imaging too. Temperature capture has evolved from a complicated probe‐based method 

to a camera‐based registration.

Over the years, improvements in silicon technology have made a huge impact on the tech‐

nology used in IR detectors. Many use cases of thermal imaging are evolving in biomedi‐

cal, transport, energy and environmental applications, and they have been the key business 

driver for this growth, as well. Figure 1 depicts the history of development of infrared sen‐

sors, which is very well described in Ref. [32]. The real breakthroughs were focal plane arrays 

and bi‐dimensional arrays improving spatial resolution and thermal sensitivity.

Broadly, infrared cameras can be divided into cooled and uncooled detectors. Cooled ther‐

mal cameras have infrared detectors integrated with cryocoolers and enable measurement of 

very low temperatures as well as very high resolution and improved sensitivity as thermally‐

induced noise is reduced. However, cooled cameras are expensive and may be needed only 

for applications that require very high resolution and high sensitivity.

Microbolometer focal plane arrays (FPAs) have tremendously modified the way of image capture 
by allowing an array of sensors at the focal plane of lens to detect the LWIR wavelengths [32, 33]. 

This integration has led to the development of uncooled infrared detectors that are typically small, 

handheld and also restricted the need for expensive cooling techniques. The current uncooled 

cameras work on the principle of change in resistance or voltage or current due to the emitted 
infrared radiation. The resolution is direct function of number of pixels in the microbolometer 

array per unit area. With the advances in silicon technology, these digital infrared uncooled cam‐

eras have massively transformed from a low resolution to high resolution of 640 × 480 pixels to 
1024 × 768 pixels or more. The current cameras also have improved the sensors to obtain a thermal 

sensitivity and accuracy error of at most 20 mK and 1°C respectively. To detect the infrared radia‐

tion, vanadium oxide (VOx) and amorphous silicon are common materials in microbolometer [32].

The lens is costly compared to lens found in normal video‐shoot cameras, since normal glass 

cannot be used to make the lens due to its property of blocking LWIR radiation and reflecting 
the LWIR incident on the lens. Hence, Germanium (Ge), Chalcogenide glass, Zinc Selenide 
(ZnSe) and Zinc Sulfide (ZnS) that are LWIR‐transmissive are used for the lens preparation.

Figure 1. Advances in thermal sensor technology (reproduced from Ref. [32]).
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These uncooled cameras have also reduced the cost and heavy maintenance that would be 

needed for the cooled detectors. Some popular camera models used for medical purposes are 

shown in Figure 2. Today, FLIR, Fluke and Meditherm are thermal camera vendors preferred 

by thermographers for medical thermography as many of these camera models are already 

FDA‐certified for tele‐thermology.

6.1. Visual interpretation of thermal images

There are different protocols followed by thermographers for analyzing and interpreting 
thermal images, especially for breast cancer screening. Most of this work in creating the pro‐

tocols have taken place in the 1970s and 1980s, such as the Marseille protocol [13–15], Hobbins 

protocol [30], Gautherie protocol [21], Hoekstra protocol [34] and, more recently, with newer 

thermal cameras, the Villa Marie protocol [12]. An attempt to obtain an agreement of different 
experienced thermographers was also made in 1975 to provide a consistent set of observations 
to be noted [17].

All of these protocols give different thermographic category ratings of four to five lev‐

els, starting from normal to highly suspicious of malignancy. Multiple criteria are noted, 

using both vascular and non‐vascular observations. These criteria are generally qualita‐

tive rather than quantitative. The visual interpretation necessitates heuristic rules to com‐

bine these observations to determine a thermographic category. Some protocols assign 

numbers to each observation and combine them using a mathematical function for catego‐

rization. This also shows the need for experience and proper training for thermographic 

interpretation.

Regardless of the variations across protocols, these criteria can be broadly classified into vas‐

cular and non‐vascular criteria, with some generality in these criteria, as follows:

Figure 2. Two thermal camera models from different vendors (a) FLIR T650SC (b) Meditherm IRIS 2000.
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Non-vascular criteria:

1. Focal increase in temperature by a fixed interval, e.g., 1, 2, 3°C

2. Global increase in temperature compared to the contralateral breast by, say, 1.5°C

3. Regional increase in temperature, including specific quadrants

4. Differences in temperature between contralateral regions or between different quadrants/
regions in the same side

5. Abnormal location of focal increase including areolar regions or along edges/bulges

6. Abnormal physical observations: bulging/size variation, retraction

Vascular criteria:

1. Vascular asymmetry

2. Vascular anarchy, including tortuous or serpentine or loops or clusters or bifurcations

3. Increased vascular density

4. Abnormal directions of clusters of vessels, such as vertical, horizontal

5. Number of vessels

6. Caliber of vessels

7. Abnormal location of vascularity and avascularity

The general interpretation from these protocols is that with few and mild abnormal find‐

ings, the categorization is toward normal and likely benign. With increased abnormality, the 

observations tend toward increased suspicion of malignancy. Another important point to 

note is that benign diseases also exhibit some abnormal thermal vascular/non‐vascular cri‐

teria [30]. The diagnosis for benign conditions is made by follow‐up of thermography over 

a few months, by which time the abnormal thermal findings change or reduce or disappear.

Due to these multiple diverse metrics used by practitioners and no standardized way of inter‐

pretation across different expert thermographers, the thermological interpretation becomes 
very subjective and many times results in high false positives. Many efforts are therefore 
underway to remove subjectivity using computer‐aided diagnostic methods—some of which 

are described later in this chapter.

7. Clinical validations

Thermography is not a new technique for breast cancer screening. Its presence has been there 

since 1960 [26]. There have been many longitudinal and clinical trials performed to show 

its efficacy. In 1982, FDA approved thermography as an adjunct modality for breast cancer 
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screening. Table 1 lists out the studies that has been done to show the potential of thermog‐

raphy. This technique is undervalued due to the difficulty in interpreting the thermograms 
with naked eye. The interpretation varies from observer to observer and needs high expertise 

to correctly validate the diagnosis result, limiting to few thermographers. With advent of 

technology, in both hardware and software, automated analysis of thermograms is emerging 

to obtain high sensitivity and specificity.

8. Advances in software technology

As seen in the clinical validation, the sensitivity observed with visual analysis is acceptable, 

but specificity is lower than desired with visual interpretation. Further, visual observations 
and heuristic categorization are subject to human error and variation through subjective inter‐

pretation. To solve these problems, there are automated and semiautomated approaches for 

diagnostics [35]. We review some of the software tools available from companies who are 

intending to provide a replicable method of interpreting thermal images.

Studies Subjects Follow-up Results Comments

Gershon–Cohen [41], 

1967

1924 No follow‐up Sensitivity—91.6%

Specificity—92.4%

Stark and Way [42], 

1974

4621 No follow‐up Sensitivity—98.3% –

Specificity—93.5%

Spitalier [43, 44], 1982 61,000 10‐Year period Sensitivity—89% They reported that thermography 

was the first alarm in 60% cancer 
cases and stated that abnormal 

thermogram represents

Specificity—89%

Haberman [45], 1980 39,802 3‐Year period Sensitivity—85% 30% of cancers showed their initial 
signs in thermography compared 

with traditional screeningSpecificity—70%

Gros and Gautherie 

[3, 21, 46, 47], 1980
85,000 5‐Year period for 

58,000 patients
Sensitivity—90% Out of 1245 women that showed −

ve signs with traditional screening 

in their first visit, more than 33% 
have got cancer in this 5‐year 
period

Specificity—88%

Jones [48], 1983 70,000 No follow‐up Sensitivity—87%

Specificity—85%

Parisky [37], 2003 769 No follow‐up Sensitivity—97%

Rassiwala [49], 2014 1008 No follow‐up Sensitivity—97.6%

Specificity—99.2%

Table 1. List of large‐scale studies.
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We review the technology used in three such software tools from Niramai health, Total vision 

and Mammo vision. All these approaches use static images obtained after cooling the subject 

with discrete imaging protocols.

8.1. Visualization tools for thermal interpretation

Given that a thermologist has to look at five colored images, where the temperature differ‐

ences between neighboring regions need to be identified by minute color variations, inter‐

pretation of thermal breast images is a huge cognitive overload and very error prone. So, 

software tools that aid in visualization and capturing of the observations about thermal pat‐

terns are becoming available.

Total vision software from Med‐hot.com gives an excellent visualization of the thermal images 

and additional support for a thermographer to systematically look for specific abnormal ther‐

mal pattern alongside a rule‐based decision‐making support to simplify the interpretation 
process. However, it does not have any automation of the diagnosis.

Mammo vision [31] is a semi‐automated tool that tries to identify the non‐vascular abnormal 

thermal patterns during dynamic thermography with cold challenge. It considers 10 images 
in total, 5 images before cooling and 5 images after cooling, for the analysis. An elliptical 
grid is used to approximate breast region, and it automatically extracts the lateral symmetry, 

isothermia in each quadrant, areolar temperature, nipple temperature, temperature decrease 

with cooling and hotspot parameter. Additionally, the clinician can manually identify the 

vascularity in the breast by looking at grayscale thermal image, which is then used by the tool 

to categorize the subjects into five groups. The tool defines assessment criteria called Breast 
Infrared Assessment System (BIRAS) with which they categorize the images into five groups 
with BIRAS 1 being low risk and BIRAS 5 being high risk.

8.2. Use of sophisticated computer-aided diagnostics

Use of sophisticated artificial intelligence algorithms for enabling automatic diagnosis or 
clinical interpretation guidance is most needed to reduce subjectivity in interpretation [37]. 

Niramai Thermalytix software is one such advanced software tool with a technology that 

enables end‐to‐end fully automated approach for the diagnosis [38–40]. The Niramai tool uses 

complex computer algorithms for the following five key aspects of automated diagnostics.

1. Autotagging

Since one single view may not be sufficient to capture tumor region in different parts of the 
breast region, multiple views are taken. Typically, there are five thermal images in mul‐

tiple views that are captured; one of the common mistakes done by clinicians is to name the 

image wrongly. It is observed that many a times humans are confused with classification 
of right and left sides of breast in the image correctly and resulting in improper tagging of 

lateral and oblique views. Hence, Niramai software provides an automated tagging support. 

This reduces the error in naming or false tagging, which in turn would have resulted in other 

errors such as segmentation error and misclassification of subjects. Their software automati‐
cally tags the views based on the body border curvature and body area.
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2. Detecting the region of interest

The thermal image is captured with the patient sitting about three feet from the camera. This 
captures the thermal signature of the top part of body of the subject starting from neck region. 

A tool like Niramai that does automatic analysis of breast cancer has to accurately crop 

the region of interest (ROI), namely the breast tissue region. For this, Niramai tool removes 
inframammary fold, axilla, sternum and thyroid regions that are usually warm regions and 

might unnecessarily cause false positives. Additional heuristic based on the shape of body 

gives accurate segmentation of the ROI as shown in Figure 3. There is considerable research 

in the detection of ROI for single view [35], and tools that provide manual support through 

freehand segmentation and adjustable and draggable ellipse that the clinician can use mark 

the region of interest. Niramai software automatically detects the breast region using a poly‐

gon approximation of region that makes it easier for a clinician to edit, if needed.

3. Tumor localization

Once the region of interest for analysis is determined, next technical challenge is to accurately 

identify the exact location of an abnormality or a lesion. This usually means detecting regions 

having warm and hot temperature pixels in the image and analyzing the heat pattern around 
the same. The heat patterns found in the thermal images are then analyzed for specific tumor 
properties. Tumor‐specific patterns include multiple important thermal patterns or features 
that typically help in discriminating malignancy versus benign conditions [38].

Symmetry plays a significant role in detecting whether a hot patch is abnormal. So, a subset 
of the ROI showing a significant increase in temperature as compared to the neighboring 
areas and contralateral sides is identified. In NIRAMAI, two varieties of abnormal regions 

Figure 3. Results of automated segmentation in different views. (a)  Frontal (b) Left Oblique (c) Right Oblique (d) Left 
Lateral (e) Right Lateral.
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are extracted, hot‐spots and warm‐spots, based on the degree of their thermal response. This  

categorization helps to increase sensitivity with low thermal response tumors without 

increasing the false positives. Hot‐spots correspond to high‐temperature regions segmented 

using a combination of temperature‐based thresholds. Warm‐spots correspond to slightly 

lower temperature regions as compared to hot‐spots with a change in parameters. One way 

of categorizing the same is using the modes and maximum temperature values, as shown in 

Eqs. (1) and (2).

   T  
a
   =  T  

overallmax
   − Τ  (1)

   T  
b
   = Γ + Ρ( T  

overallmax
   − Γ )  (2)

In above equations,  Γ  refers to the mean of the modes of the ROI temperature histograms in all 

views, and   T  
overallmax

    represents the overall maximum temperature in all views.    (  Ρ, Τ )     are param‐

eters chosen depending on the dataset.

Niramai tool detects hot‐spots and warm‐spots in each view of the subject. The best views of 

hot‐spots and warm‐spots are defined as the view in which the normalized size of the detected 
abnormal regions with respect to the ROI is maximum. Figure 4 shows some sample subject 

images with their corresponding hotspots identified by NIRAMAI tool. From the detected 
hot‐spots in multiple views, the hot‐spots and warm spots corresponding to the best view are 

usually used to extract core features. Since symmetry places an important role, features are 

also extracted using the best view and its contralateral side view.

Figure 4. Sample subject images for (a) hormone‐sensitive tissues showing warm‐spots, (b) lactating case showing 
warm‐spots, (c) malignant case showing hot‐spots, (d) benign case showing warm‐spots and (e) normal case.
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4. Feature extraction

Once the hot‐ and warm‐spots showing potential lesion is detected, three high‐level proper‐

ties of the lesion are extracted. These are boundary features, thermal symmetry and tempera‐

ture distribution.

Malignant tumor cells are aggressive in nature, which makes them to invade surrounding 

tissues by rupturing through the boundary formed by basal laminas [19]. This makes the 

boundary irregular for malignant cases compared to non‐malignant and benign cases which 

behave similar to normal cells.

In the case of malignant tumors, benign tumors, inflammation or wound‐healing cases, an 
increase in temperature in the abnormal regions is observed. This leads to a difference in ther‐

mal heat patterns compared to the contralateral breasts. However, similarity in thermal heat 
patterns is seen for normal, hormonal, lactating conditions [12, 22, 36] due to the presence of 

similar hormone‐sensitive tissues in both the breasts. This property is captured by including 

symmetrical features.

Finally, the mean temperature difference between the detected abnormal region and the 
remaining region of interest is calculated to get the relative increase in temperature compared 

to the neighboring region. In addition, many other temperature parameters of the abnormal 

region can be used for analysis.

5. Automated classification

Computer algorithms based on artificial intelligence and machine learning are making huge 
inroads in automated diagnostics [38]. Many methods of supervised classification are being 
developed where a small group of patient data is used to train a probabilistic model that 

represents the decision criteria based on the extracted features. A simple such classifier is a 
random forest that is able to identify the significant discriminatory features and learns a com‐

bination of the features and feature groups that helps decide on malignancy subjects. Other 

classifiers include support vector machines, Kmeans classifiers and deep learning.

9. Conclusions

In the recent years, use of Information Technology in healthcare diagnostics is proving to 

be very effective in improving efficiency and quality of care. Thermography is highly suited 
for breast cancer screening owing to its ability to detect cancer much earlier than any other 

modality, patient safety and privacy. The complexity and subjectivity in interpretation of 

thermal imaging has been a major deterrent in wide acceptance of the usage of thermogra‐

phy. Use of computer‐aided diagnostics for automated thermography interpretation is just 

round the corner. With software support, thermal analysis and interpretation can be more 

efficient, effective and non‐subjective. This chapter described some of the recent develop‐

ments in both the hardware and the software of a thermographic solution that shows great 

promise that breast thermography will be a mainstream cancer screening modality very 

soon.
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