
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6

Cross Talk between Nitric Oxide and Phytohormones

Regulate Plant Development during Abiotic Stresses

Fahim Nawaz, Rana Nauman Shabbir,

Muhammad Shahbaz, Sadia Majeed,

Muhammad Raheel, Waseem Hassan and

Muhammad Amir Sohail

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69812

Abstract

Plants, being sessile, are concurrently exposed to various biotic and abiotic stresses. The 
perception of stress signals in plants involves a wide spectrum of signal transduction 
pathways that interact to induce tolerance against adverse environmental conditions. This 
functional overlapping among various stress signaling cascades also leads to the expres-
sion of genes that regulate biosynthesis or action of other hormones. Phytohormonal 
signals, activated by both developmental and environmental responses, play a crucial 
role to develop stress tolerance in plants. Nitric oxide (NO) is one of the major players in 
plant signaling networks. Emerging evidence supports that NO interplays with signaling 
pathways of auxins, gibberellins, abscisic acid, ethylene, jasmonic acid, brassinosteroids, 
and other plant hormones to control metabolism, growth, and development in plants. 
This chapter focuses on the current state of knowledge of cross talk between signaling 
pathways of NO and phytohormones in plants exposed to various abiotic stresses.

Keywords: nitric oxide, phytohormones, abiotic stresses, signaling cascades, plant growth

1. Introduction

Exposure to a wide array of environmental stresses is one of the most crucial factors that neg-

atively influence plant growth and productivity worldwide. Plants respond to such adverse 
conditions through perception of endogenous and exogenous stress factors via hormone 
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signaling networks along with the coordination of several downstream signal transduction 

mechanisms involving cyclic nucleotides, calcium ions, and reactive oxygen (such as hydrogen  

peroxide) or nitrogen (e.g., nitric oxide) species. Acclimation to abiotic stresses is achieved 

through turgor maintenance [1], accumulation of osmolytes [2], regulation of photosynthetic 

and transpiration rate, and activation of antioxidant machinery [3]. Moreover, stress-induced 

alterations in gene expression and metabolism stimulate several anti-stress compounds, 

which help to modify physiology, phenology, growth, and reproduction of plants exposed to 

adverse environmental conditions [4].

Nitric oxide (NO) is an important metabolite and stress signaling molecule that influences 
multitude of physiological and developmental functions in plants. It serves as a key compo-

nent of the signaling cascades involved in plant growth, metabolism, and adaptive responses 

to various biotic and abiotic stresses. It is well established that NO regulates a plethora of 

physiological processes ranging from seed germination to plant senescence. Emerging evi-

dence suggests this potential plant growth regulator interplays with various phytohormones 

(PHs) to control metabolism, growth, and development in plants.

During the last few years, extensive research has been carried out to explore the multiple and 

diversified mechanisms underlying PHs interactions with NO. There is virtually no doubt 
that NO acts either upstream or downstream of PHs [5, 6]. It seems that NO modulates the 

biosynthesis, distribution, degradation, and conjugation of elements involved in PHs trans-

port and signaling [7–11]. However, further studies are required to explain how NO concomi-

tantly interacts with hormone-related proteins at post-transcriptional or even translational 

level. Similarly, the understanding of mechanisms underlying intersection of NO signaling 

with signaling cascades of auxins (AUXs), gibberellins (GBs), cytokinins (CKs), ethylene (ETs), 

absicic acid (ABA), salicylic acid (SA), jasmonic acid (JA), polyamines (PAs), brassinosteroids 

(BRs), and strigolactones (SLs) under abiotic stress conditions remains elusive. Considering 

the common function played by these plant growth regulations in enhancing plant tolerance 

to biotic and abiotic stresses, it can be speculated that PHs-mediated stress responses are 

linked with NO synthesis. Therefore, this chapter would focus on the current state of knowl-

edge of cross talk between signaling pathways of NO and PHs in plants exposed to various 

abiotic stresses (Table 1).

Type of  

stress

Phytohormone Plant species Response Relation  

with NO

References

Drought 

stress

ABA Zea mays Increased expression of  

ABA biosynthetic gene vp14

+ Zhang et al. 

[26]

AUX Tagetes erecta Development of 

adventitious roots

+ Liao et al. 

[33]

SA Triticum 

aestivum

Increased tolerance against 

osmotic stress

+ Alavi et al. 

[41]

CK Zea mays Regulation of photosynthetic 

machinery

+ Shao et al. 

[42]
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Type of  

stress

Phytohormone Plant species Response Relation  

with NO

References

Cd 

toxicity

ET Pisum sativum Promoted the Cd-induced 

senescence processes

− Rodríguez-

serrano et al. 

[64]

PAs Triticum 

aestivum

Inhibition of root growth + Groppa et al. 

[66]

AUX Arabidopsis 

thaliana

Stabilization of AUX 

repressor protein IAA17 

through suppression of AUX 

carriers PIN1/3/7

− Yuan and 

Huang [67]

Medicago 

truncatula

Improved antioxidative 

capacity and reduced 

degradation of AUX in roots

+ Xu et al. [68]

SA Lolium perenne Increased activities of 

antioxidative enzymes

+ Wang et al. 

[72]

Arachis 

hypogaea

Restricted Cd distribution to 

organelles

+ Xu et al. [78]

Ni toxicity SA Brassica napus Enhanced chlorophyll contents 

and reduced lipid peroxidation 

and proline accumulation

+ Kazemi et al. [77]

Cu toxicity BR Raphanus sativus Increased ABA synthesis  

resulted in improved tolerance

+ Choudhary et al. 

[80]

Al toxicity GA Triticum aestivum Promoted apical root growth + He et al. [50]

Salinity stress ABA Gossypium hirsutum Decreased salt-induced leaf 

senescence by regulating the 

expression of ABA biosynthesis 

genes (NCED2 and NCED9)

− Kong et al. [88]

ET Lycopersicon 

esculentum

Reduced ROS levels and blocked 

ET synthesis resulting in lower 

dead cell ratio in cell suspension 

cultures

− Poór and Tari [85]

AUX Arabidopsis thaliana Repressed AUX signaling 

through stabilization of AUXIN 

RESISTANT3 (AXR3)/INDOLE-3-

ACETIC ACID17 (IAA17)

− Liu et al. [94]

SA Fagus sylvatica Reduced H
2
O

2
 accumulation, 

limited Na2+ uptake and 

increased influx of H+-ATPase to 

plasma membrane

+ Dong et al.[97]

PAs Cucumis sativus Reduced free putrescine, 

spermidine and polyamine 

oxidase (PAO) activity

− Fan et al. [103]
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2. NO-phytohormone cross talk under drought stress

Drought stress is one of the major limiting factors affecting multiple aspects of plant growth 
and productivity [2]. The typical mechanism of plants response to water stress, frequently 

caused by drought, is closure of stomata to conserve water. NO and ABA are the two most 

important stress-related molecules that intensively cross talk during environmental chal-

lenges like drought to induce plant adaptive responses such as stomatal closure and activa-

tion of antioxidant machinery [5, 11]. Evidence suggests that NO acts downstream of ABA as 

decreased NO synthesis reduces ABA-induced responses in plant tissues exposed to stress 

conditions [12, 13]. However, NO is also reported to counteract ABA during events not linked 

to stress adaptation such as breaking of seed dormancy [14, 15]. It indicates a certain level of 

specificity in NO-ABA cross talk mechanisms, which seems to depend on the type of plant 
cell, tissue or organ studied, or nature of physiological event under analysis.

Generation of ROS (H
2
O

2
) under adverse environmental conditions triggers NO-mediated 

ABA responses such induction of stomatal closure [16], activation of antioxidant enzymes 

[17], and up-regulation of transcription factors [18]. In addition, cGMP and type 2C protein 

Type of  

stress

Phytohormone Plant species Response Relation  

with NO

References

Temperature 

stress

ABA Phragmites 

australis

Improved the thermotolerance 

of plant calluses

+ Song et al. [109]

Medicago sativa Enhanced MfSAMS1 expression 

to increase acclimation against 

cold stress

+ Guo et al. [123]

PAs Lycopersicon 

esculentum

Increased putrescine and 

spermidine levels and 

stimulated the expression 

of genes encoding Spd 

synthase (LeSPDS), arginine 

decarboxylase (LeADC. 

LeADC1) and ornithine 

decarboxylase (LeODC) 

to improve chilling stress 

tolerance

+ Diao et al. [121]

Zingiber officinale Conversion of putrescine 

into spermidine or spermine 

conferred cold tolerance

+ Li et al. [124]

SA Spinacia oleracea Increased NR activity reduced 

chilling injury

+ Aydin and 

Nalbantoğlu 
[128]

JA Cucumis sativus Increased CAT activity to 

scavenge H
2
O

2
, leading to 

reduced chilling injury

+ Liu et al. [129]

Table 1. Summary of representative reports on the interaction of nitric oxide with phytohormones during various abiotic 

stresses.
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phosphatases (PP2Cs) have also been identified to participate in downstream of NO-mediated 
ABA signal transduction and upstream of cytosolic Ca2+ during the regulation of stomatal 

apparatus [19–21]. Moreover, the calcium/calmodulin system and mitogen-activated protein 

kinases (MAPKs) have also been demonstrated as key downstream elements involved in 

ABA or H
2
O

2
-induced NO signaling during plant antioxidant defense mechanisms [22, 23]. 

Cross talk between NO and ABA in the ABA-dependant signaling network up-regulated 

the cytosolic Ca2+ to regulate Crassulacean acid metabolism (CAM) expression in bromeli-

ads that significantly improved plant tolerance in a water-limited environment [21, 24]. It 

seems that ABA-induced NO production is associated with increased nitrate reductase (NR) 

activity that controls stomatal movements in Arabidopsis [19] and CAM expression in bro-

meliads [24]. The expression of CYP707A2 gene, induced by NO biosynthesis, during seed 

germination initiated ABA catabolism and increased ABA levels to enhance plant resistance 

against drought stress [11, 25]. BR treatment of water-stressed Zea mays leaves induced NO 

generation in mesophyll cells and up-regulated the expression of ABA biosynthetic gene vp14 

to enhance water stress tolerance in Zea mays [26].

Interestingly, NO serves as a second messenger in the signaling cascades of various plant 

hormones such as GA, JA, ET, CK, and AUX involved in the regulation of stomata under 

environmental stress conditions [27, 28]. Interactions between NO and AUX signaling path-

ways are complex and need to be explored in plants exposed to water-limited environment. 

It is well established that both NO and AUX interplay during growth and development of 

plant roots [29, 30]. Association of AUX with ET to regulate root morphology and develop-

ment is considered a key aspect of drought tolerance in plants [31]. Development of adven-

titious roots in cucumber hypocotyl cuttings involves the cross talk between AUX and NO 
signaling networks activated by Ca2+ dependent protein kinase activity [32]. Since NO is 

intensively involved in lateral root formation during drought stress [33], it may be specu-

lated that AUX and NO signaling cascades interact and influence the architecture and devel-
opment of root hair and root meristem size [34, 35] for the extraction of more water under 

drought stress conditions.

Drought stress influences the signaling of various JA-associated genes [36]. JA stimulates 

CDPK production by increasing Ca2+ influx and the resultant signal cascade results in ABA-
regulated stomatal closure. A rapid loss in turgor and subsequent reduction in stomatal aper-

ture were noted in excised Arabidopsis leaves treated with either ABA or methyl JA (MeJA) 

[37]. Suppression of MeJA-induced Ca2+ oscillations in guard cells of ABA-deficient mutants 
[38] implies that MeJA cross talk with ABA involves Ca2+ signal transduction pathways. 

Moreover, treatment with ABA or MeJA induces the formation of NO and ROS in guard cells 

[37]. Studies involving Arabidopsis revealed that ABA mediated Ca2+ influx into cytoplasm 
involves CPK6, which acts downstream of NO and ROS signaling and therefore may be a tar-

get of NO-stimulated Ca2+ influx into the cytoplasm [39]. In 2008, Palmieri et al. demonstrated 

that NO treatment up-regulated several genes involved in the JA biosynthetic pathway, indi-

cating a potential regulation of JA signaling through the ROS/NO pathway [40]. NO also acts 

downstream of SA signaling to scavenge ROS in water-stressed plants. Coordinated action 

of NO and SA was found to alleviate the damaging effects of polyethylene (PEG)-induced 
osmotic stress in Triticum aestivum seedlings [41].
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A positive interaction between NO and CK under water-limited environment was reported 

by Shao et al. [42]. Treatment of plants with CK plus NO scavenger (Hemoglobin) revealed 

that CK promoted NO signaling, probably mainly through a NR source in plants exposed to 

water stress conditions. CK interaction with NO signaling cascades regulated photosynthetic 

machinery and increased the adaptability to drought stress in Zea mays [42]. Contrasting 

reports indicate antagonistic interaction between NO and CK, for example, CK-induced 

reduction in NO levels promoted stomatal opening in dark grown Vicia fabia seedlings [43]. 

Presumably, CKs activate plasma membrane H1-ATPase through decreasing NO levels in 

guard cells, and then stimulate stomatal opening in darkness. Wilhelmova et al. [44] reported 

similar results in transgenic tobacco plants. Negative interaction between NO and CKs was 

evident during leaf development as increased NO production reduced CKs level in aging 

leaves. Evidence suggests that reaction of zeatin with peroxynitrite, a NO derivative, reduces 

its availability in plants [45].

3. NO-phytohormone cross talk under heavy metals stress

Heavy metals (HMs) are phytotoxic elements that can damage plant growth and metabolism 

at very low concentrations [46]. The involvement of plant hormones such as IAA, CK, and ET 

to alleviate HMs-induced toxicity is well reported [47–49]. Some recent studies suggest that 

NO acts in concert with signaling pathways of phytohormones to induce tolerance against 

excess elements [50, 51]. However, the exact nature of NO-hormone interactions still needs to 

be explored and is largely dependent on the species, the plant organ as well as concentration 

of metal and duration of stress [52].

Cadmium is one of the most widely distributed HM in agricultural soils [53]. Cd-induced 

increase in endogenous levels of NO is associated with its role as a bioactive molecule to 

quench ROS [54]. Alterations in hormonal homeostasis are potential signals that directly 

affect plant responses to Cd stress, including interplay between hormones and the whole 
plant signaling network, such as the ROS [55], MAPK [56], and NO signaling pathways 

[57]. Exposure to short-term Cd stress revealed an interrelation of ET with NO generation, 

polyamine metabolism, and MAPK cascades in young Glycine max seedlings [58]. It is well 

documented that exposure to HMs enhances the production of ET [59] due to increased 1-ami-

nocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity in metal stressed plants [60]. 

Cross talk between ET and stress signaling molecules like NO is important to understand the 

mechanisms of plant adaptation to HM-induced oxidative stress [61–63]. More recently, Thao 

et al. [51] suggested a possible link between NO and ET through MAPKs in plants exposed to 

HM stress. Accumulation of ET reduced NO levels and promoted the Cd-induced senescence 

processes in Pisum sativum [64]. Similarly, integration of ET, NO, PA, and MAPKs pathways 

improved tolerance in young Glycine max seedlings against short-term Cd stress [52]. The 

potential involvement of ETHYLENE INSENSITIVE2 (EIN2) in improving resistance against 

lead (Pb) stress has also been demonstrated in Arabidopsis [65]. Treatment of Triticum aestivum 

seedlings with Cd and PAs (spermine and putrescine) was found to induce NO generation in 

roots leading to root growth inhibition [66].
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Experiments with Arabidopsis showed that Cd toxicity triggers NO accumulation, which in 

turn promotes the stabilization of AUX repressor protein IAA17 through suppression of 

AUX carriers PIN1/3/7 [67]. Xu et al. [68] found that exogenous NO supply improved the 

antioxidative capacity and reduced the degradation of AUX in roots of Medicago truncatula 

seedlings exposed to Cd stress. In another study, it was noted that NO acts downstream 

of AUX on modulating root architecture in Arabidopsis seedlings exposed to Cd stress [69]. 

Rodríguez-Serrano et al. [70] demonstrated that Cd toxicity strongly depressed the activity of 

NO-synthase dependent NO production in Pisum sativum seedlings; however, exogenous Ca 

supply ameliorated this effect due to enhanced JA and ET production. Interplay among NO, 
H

2
O

2
, and SA has also been reported in lupine seedlings [71] and ryegrass plants [72] under 

Cd stress. Application of putrescine (Put) and NO in combination was reported to alleviate 

Cd toxicity in Vigna radiate by triggering the activity of both enzymatic and nonenzymatic 

antioxidant machinery and a parallel increase in phytochelatin synthesis [73].

Interplay between NO and GA has been reported to influence a wide spectrum of physiologi-
cal processes, including seed germination, primary root growth, and inhibition of hypocotyl 

elongation [8, 29]. Interaction of NO with GA was observed to promote apical root growth in 

Triticum aestivum roots exposed to aluminum (Al) toxicity [50]. Contrary reports of Zhu et al. 

[74] showed that GA mediated alleviation of Cd toxicity in Arabidopsis was linked to reduction 

of Cd-induced NO accumulation and suppression of up-regulation of IRT1. Antagonistic rela-

tionship between NO and GA was also reported by Wu et al. [75] who noticed that NO accumu-

lation inhibited the stimulatory effect of GA on primary root growth under low phosphorous 
(P) conditions. They suggested that GA interacts with NO and P pathways on DELLA-SLY 

module. Studies have shown the positive interaction between NO and CK, for example, Shen 

et al. [76] found that NO deficiency inhibited the activation CK-induced gene CYCLIN-D3;1 
(CYCD3;1), which in turn promoted callus initiation from somatic plant tissues. Recent reports 

of Liu et al. [45] revealed that CK directly interact with NO to reduce endogenous NO levels in 

Arabidopsis implying the protective role of CK against nitrosative stress; however, no study has 

yet provided definitive evidence for NO and CK interaction under metal stress.

Combined NO and SA application was observed to counteract the toxic effects of Ni in 
Brassica napus through enhanced chlorophyll contents and reduced lipid peroxidation 

and proline accumulation [77]. Similarly, NO and SA increased Cd contents in cell walls 

of Cd-stressed Arachis hypogaea that reduced the distribution of Cd to organelles [78]. In 

recent years, accumulating evidence indicates the involvement of BRs induced NO produc-

tion in root architecture and development [79]. Choudhary et al. [80] found that BR induced 

increased NO production promoted ABA synthesis that alleviated the toxic effects of Cu in 
Raphanus sativus seedlings.

Cross talk between plant hormones and NO is also considered critical for Fe-deficiency sig-

naling [81]. Evidence obtained in Arabidopsis suggests interplay between ET and NO for up-

regulation of genes (AtFIT, AtbHLH39, AtFRO2, AtNAS1, AtNAS2, AtFRD3, AtMYB72) related 

to Fe-deficiency [82]. Although, it is well reported that enhanced NO generation helps to 

maintain root growth under Cd stress [83]; however, the exact role of NO under excess Fe 

conditions is rudimentary and demands further investigation.
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4. NO-phytohormone cross talk under salinity stress

Salinity stress is considered one of the most harmful stresses due to its high magnitude and 

worldwide distribution [84]. Phytohormones play a key role in enhancing the tolerance and 

adaptability of plants against salinity stress. Some recent studies suggest that NO acts in con-

cert with signaling pathways of phytohormones to induce tolerance against salt stress [85, 

86]. Presumably, plant hormones such as ABA, ET, and AUX are transported from salt-treated 

roots to leaves to trigger NO synthesis or transport throughout the plant [87]. NO-induced 

alleviation of oxidative damage in salt-stressed plants is associated with increased antioxi-

dant activities and decreased thiobarbituric acid reactive substances content [69]. ABA stimu-

lates H
2
O

2
 accumulation that results in increased NO generation, leading to the activation 

of MAPK and up-regulation of genes associated with antioxidant enzymes [17, 18] in plants 

exposed to abiotic stresses like salinity. However, NO does not always positively interplay 

with ABA. In cotton, exogenous NO supply (using SNP as NO donor) reduced salt-induced 
leaf senescence by decreasing ABA content and down regulating the expression of ABA bio-

synthesis genes (NCED2 and NCED9) [88].

In general, it is believed that ET biosynthesis corresponds to increased damage in plants. 

However, recent studies indicate ET as a stress-signaling hormone that interacts with signaling 

cascades of other phytohormones to enhance tolerance against various biotic/abiotic stresses 

[70, 86]. Studies involving tobacco seedlings showed that transcriptional activation of ethylene 

response factor (ERF) in ethylene-signaling process improved salt stress tolerance by decreas-

ing ROS accumulation [89]. Treatment of Arabidopsis callus with 100 mM NaCl triggered the 

accumulation of NO that promoted ET emission, resulting in increased expression of the 

plasma membrane H+-ATPase genes [90]. Hence, both NO and ET participate in up-regulation 

of plasma membrane H+-ATPase that modulates ion homeostasis for improved salt tolerance. 

NO and ET also cooperate to stimulate the alternative respiratory pathway under salt stress 

conditions [91, 92]. Contrary reports of Poór and Tari [85] showed antagonistic relationship 

between NO and ET in tomato cell suspension cultures treated with NaCl (100 and 250 mM). 

Increased ET synthesis promoted ROS generation leading to high dead cell ratio in salt-stressed 

cell culture. However, NO generation decreased ROS levels and blocked ET synthesis resulting 

in lower dead cell ratio. In another study, absence of ET and NO in apical root segments and 

cell suspension culture, respectively, caused ionic imbalance (Na+/K+) that resulted in increased 

susceptibility to salinity stress [93]. AUX and NO involvement in inhibition of root meristem 

growth in salt-stressed Arabidopsis was revealed by Liu et al. [94]. They reported that salin-

ity stress repressed root meristem growth by inhibiting the expression of PINFORMED (PIN) 

genes, thereby reducing AUX levels. Moreover, stabilization of AUXIN RESISTANT3 (AXR3)/

INDOLE-3-ACETIC ACID17 (IAA17) repressed AUX signaling via NO accumulation.

Participation of both NO and ROS in SA-induced stomatal closure is also reported in litera-

ture [95]. Activation of a peroxidase (sensitive to the inhibitor salicylhydroxamic acid) by SA 

promotes ROS accumulation and NO generation in guard cells, leading to stomatal closure. 

Experiment with soybean seedlings showed that combined application of SNP (as NO donor) 

and SA alleviated the toxicity of NaCl-induced salt stress by increased proline accumulation 
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and activation of CAT, APX, and GPX. Similar results were reported by Liu et al. [96] and Dong 

et al. [97] in Gossypium hirsutum and Fagus sylvatica, respectively. SA interaction with signaling 

cascades of NO modulated photosynthetic machinery and reduced H
2
O

2
 accumulation that 

promoted the influx of H+-ATPase to plasma membrane. Moreover, synergistic effect of SA and 
NO improved Ca2+/Mg2+ absorption and reduced Na2+ uptake under salt stress conditions [97].

Sulfur (S) is a major component of metabolites such as reduced glutathione (GSH), coenzyme 

A, methionine, cysteine (Cys), sulfo-lipids, iron-sulfur (Fe-S) clusters, and thioredoxin system 

involved in regulation of physiological processes under salt stress conditions [98]. Evidence 

suggests that NO promotes S-assimilation, which is linked to ET production through Cys syn-

thesis [86]. Hence, it may be speculated that NO and S interact to modulate ABA and ET levels in 

guard cells that may influence the stomatal and photosynthetic response under salt stress condi-
tions. NO combines with GSH to generate S-nitrosoglutathione (GSNO), leading to enhanced S 

requirement of plants for improved tolerance under environmental stress conditions [99, 100]. 

Coordinated effect of NO and S regulated the utilization of S and GSH resulting in improved 
growth and photosynthetic activity in salt-stressed mustard plants [86]. NO is a key regulatory 

signal that activates several biochemical processes and interacts with sulfhydryl groups and 
nitro groups in the process of nitration to enhance tolerance against salt stress [101]. NO also 

cooperates with other signaling molecules such as H
2
S to enhance tolerance against salinity 

stress in plants. NO and H
2
S cross talk helped to maintain low Na+ levels with up-regulation 

of HvHA1 and HvSOS1 and increased plasma membrane H+-ATPase levels in cytoplast of salt 

stressed barley seedlings [102]. Moreover, transcriptional activation of vacuolar Na+/H+ anti-

porter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) up-regulated the expression of vacuo-

lar Na+/H+ antiporter (NHE1) that helped to modulate Na+ compartmentation into the vacuoles.

Recently, it has been proposed that NO negatively regulates CK signaling by limiting phos-

phorelay activity via S-nitrosylation [103]. Contrasting reports of Kong et al. [88] showed that 

foliar applied SNP (as NO donor) delayed salt-induced leaf senescence in cotton seedlings 
by up-regulating the expression of CK biosynthesis gene, isopentenyl transferase (IPT). NO 

induced reduction in total free PAs, free Put, spermidine (Spd), and polyamine oxidase (PAO) 

activity that was reported by Fan et al. [103] in cucumber seedlings exposed to NaCl stress. 

These reports provide a strong evidence for NO cross talk with plant hormones to induce salt 

stress tolerance in plants; however, further in depth studies to understand interplay among 

these plant growth regulators in terms of transcriptional regulation, signal transduction, and 

ion detoxification are needed.

5. NO-phytohormone cross talk under temperature stress

Temperature stress negatively influences the vegetative and reproductive growth phases of plants. 
Coordinated action between NO and plant hormones (ABA, JA, GA, CK) induce thermotolerance  

in plants by activating the antioxidant machinery and up-regulating the expression of genes 

encoding heat shock proteins [104–106]. Studies involving Arabidopsis mutants impaired in 

ABA biosynthesis (aba1-1) and signaling (abi 1-1) showed that drought and heat stress induced 
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stomatal closure involved JA and H
2
O

2
 signaling that triggered NO levels [106] and Ca2+ and 

SLAC1 function [107, 108]. However, SA antagonized JA function to induce stomatal opening 

in abi1-1 [106]. In Phragmites communis, ABA treatment triggered NOS activity and increased 

NO levels that improved the thermotolerance of plant calluses [109]. Treatment of Stylosanthes 

guianensis seedlings with ABA stimulated the activities of CAT, SOD, and APX suggesting that 

ABA-induced NO generation leads to the production of antioxidant enzymes [110]. Evidence 

supports the antagonist relationship between SA and ET in improving heat tolerance in plants 

by increasing proline contents and enhancing photosynthetic-NUE [111]. SA cross talk with 

AUX, ET, JA, and BR has been demonstrated in specific bioassays [112]. SA triggered increase 

in GST activity was noted to induce heat stress tolerance in Zea mays [113]. Presumably, SA 

reduced H
2
O

2
 accumulation through NO generation; however, direct evidences of NO interac-

tion with plant hormones (SA, GA, AUX, BR, and JA) in improving plant heat stress tolerance 

are lacking. BRs are also thought to interact with ABA, SA, and ET to induce heat stress signal-

ing through complex networks [114, 115]. BR treatment of Brassica napus seedlings subjected to 

short-term heat shocks was noted to enhance endogenous ABA concentration [116]. BR induced 

increase in ABA level has also been reported in cellular culture of Chlorella vulgaris [117].

Low temperature severely restricts plant growth and causes both structural and metabolic 

damages in plants [118]. Exposure to low temperature induces oxidative and nitrosative stress 

thereby promoting NO synthesis [119], which serves as a potential link between PA and ABA 

to induce stress responses in plants [120]. Literature indicated extensive cross talk among 

NO, ABA, PAs, and H
2
O

2
 to modulate various physiological and stress responses under low 

temperature conditions [110, 121]. Interplay among NO, SA, and ABA was noted to enhance 

the antioxidative activities (CAT, SOD, POX) that contributed to improved chilling injury in 

Zea mays seedlings [122]. Guo et al. [123] found that coordinated action between NO and ABA 

up-regulated cold-induced MfSAMS1 expression, resulting in enhanced acclimation against 

cold stress in Medicago sativa subsp. falcata. Moreover, expression of MfSAMS1 altered the lev-

els of Spm, Put, and Spd and activities of PAO and copper-containing amine oxidase, which 

regulate anti-oxidant machinery during cold acclimation. Exogenous NO supply increased 

Put and Spd levels and stimulated the expression of genes encoding Spd synthase (LeSPDS), 

arginine decarboxylase (LeADC. LeADC1), and ornithine decarboxylase (LeODC) to improve 

chilling stress tolerance in Lycopersicon esculentum leaves. However, the expression of genes 

encoding Spm synthase (LeSPMS) and S-adenosylmethionine decarboxylase (LeSAMDC) was 

not influenced by NO treatment [121]. Reports of Li et al. [124] showed that NO treatment con-

verts Put into Spd or Spm to confer cold tolerance in Zingiber officinale seedlings. Pretreatment 

of Orzya sativa seedlings with various ammonium concentrations decreased the effects of cold 
stress by increasing Put and Spd contents [125], suggesting the possible involvement of NO 

in stress tolerance. In a recent article, Wang et al. [126] reported the coordinated action of 

NO and PAs to induce chilling tolerance in cold-stored banana. NO treatment increased the 

activities of PAO, diamine oxidase (DAO) and glutamate decarboxylase (GAD), leading to 

γ-aminobutyric acid (GABA) accumulation to prevent chilling injury in fruits.

NR and NOS pathway are the most widely known NO sources in plants [19, 127]. Evidence 

obtained by Aydin and Nalbantoğlu [128] showed that SA pretreatment of Spinacia oleracea 
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leaves influenced NR activity to induce chilling stress tolerance. A recent study indicated the 
involvement of JA in NO synthesis that increased CAT activity to scavenge H

2
O

2
, leading to 

reduced chilling injury in Cucumis sativus [129]. Therefore, it is concluded that NO cross talk 

with other hormones safeguards the quality of stored fruits and vegetables. Another study on 

NO revealed that it increases the expression of MaCAT, MaPOD, MaSOD, and MaAPX genes 

to alleviate damages caused by low temperature in banana (Wu et al. [75]). In Elymus nutans, 

interaction between NO and 5-aminolevulinic acid (ALA) stimulated antioxidant defense to 

reduce chilling injury [130]. Further investigations involving influence of NO on BR, CK, JA, 
and ET pathways are suggested which would provide important information about signaling 

cascades of these regulatory substances in cold stressed plants.

6. NO-phytohormone cross talk under other abiotic stresses

Ever increasing human population and industrial productivity has resulted in alarming rise in 

air pollutants, causing extensive damages to natural habitats of plant [131]. Ozone is character-

ized as one of the most phytotoxic air pollutants severely restricting plant growth and devel-

opment [132]. Plants use many transportable chemical signals such as NO to turn the sensing 

of ozone from guard cells to adjacent epidermal and mesophyll cells [133]. Presumably, NO 

generation in relation to ozone stress induces ET and ABA synthesis and interferes with sto-

matal ABA response, potentially by inhibiting K+ efflux at the guard cells [134]. The involve-

ment of alternative oxidase (AOX) in the inhibition of ozone-induced toxicity has also been 

demonstrated to require both NO- and ET-dependent pathways [135]. Interestingly, Rao and 

Davies [136] observed that NO treatment caused leaf injury due to increased levels of ozone-

induced ET production. Both SNP and ozone treatment up-regulated the expression of the ET 

biosynthesis related genes (ACS6 and ACC oxidase), which correlates with ET formation [137]. 

In Arabidopsis, exogenous NO supply in combination with ozone stress was noted to attenuate 
the induction of SA biosynthesis and other defense-related genes [132].

Destruction of ozone layer in upper atmosphere, as a result of increased concentrations of 

air pollutants, has exposed living organisms to UV-radiation particularly UV-B that induces 

oxidative stress in plants [138, 139]. Although it is well known that NO interacts with ABA, 

ET, MeJA to control guard cell signaling in response to various environmental stresses [140, 

141], only few reports are available with regard to NO, ET, and ABA cross talk in stomatal 

regulation under UV-B stress [142]. Studies involving Lactuca sativa seedlings showed that 

exogenous NO supply (using SNP as a NO donor) prevented UV-B induced inhibition of 

GA and IAA synthesis [143]. NO stimulated decrease in SA and ABA levels was found to be 

associated with reduced H
2
O

2
 and malondialdehyde contents. In contrast, coordinated action 

of NO and SA was observed to reduce UV-B stress in Triticum aestivum seedlings [144].

A transient NO burst is among the earliest responses to wounding [145]. NO production in 

wounded parts involves several pathways including cross talk with signaling cascades of hor-

mones and endogenous signals [146, 147]. It was shown that NO and AUX actively take part 

in wound-healing response in plants [145, 148]. Imanishi et al. [149] presented evidence for the 
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involvement MeJA and mechanical wounding in expression of the Ipomoelin gene (IPO) in sweet 

potato. Later, Jih et al. [150] demonstrated that SNP-derived NO delayed wounding-induced IPO 

expression, providing evidence for antagonistic association between NO and JA. In Arabidopsis, 

NO treatments led to elevated expression of key enzymes of the octadecanoid pathway, like 

LOX2, AOS, or OPR3, in wounded leaf epidermis [151]. However, this induction did not influ-

ence JA responsible genes, like PDF1.2, hence supporting the earlier evidences about NO and 

JA association. NO-induced wound-responses could act as a modulator of cell death initiation 

together with H
2
O

2
 accumulation, and delay of IPO-expression [152]. Contrasting reports in 

Lycopersicon esculentum demonstrated neither wound-induced NO burst, nor NO-induced ele-

vation of endogenous SA levels [153]. Moreover, SNP-derived NO inhibited the expression of 

the proteinase inhibitors Inh1, Inh2, cathepsin D inhibitor (CDI), and metallocarboxypeptidase 

inhibitor (CPI) and increased AOS or LOX activity. Nevertheless, these studies demonstrate 

clearly that induction of a wound-response in plants involve cross talk among various stress 

signaling molecules.

Initiation of senescence in plants is controlled by various factors such as nutrient supply, light 

conditions, leaf age, and environmental stress [154]. Plant hormones such as ET and CK influ-

ence senescence by either promoting or delaying the process, respectively [155, 156]. Evidence 

supports the interaction of NO with other plant hormones to floral senescence and fruit 
maturation [157]. Recently, Ji et al. [158] demonstrated that SA treatment at low concentra-

tions induced NOA1-dependent NO signaling and activated antioxidant defense to counter-

act MeJA-induced leaf senescence. NO plays a conceivable role to counteract the ABA- and 

jasmonate-induced senescence in rice by inhibiting H
2
O

2
 accumulation and lipid peroxida-

tion [159]. Mishina et al. [160] found that delayed leaf senescence in Arabidopsis involves 

NO-induced reduction in SA levels. During fruit ripening, NO cross talk with SA and 

ET involves the regulation of levels of secondary metabolites such as anthocyanins [161]. 

NO-induced suppression of cell wall softening related enzymes such as polygalacturonase 

(PG), pectin methylesterase (PME), and pectate lyase (PL) was found to delay softening and 

ripening of stored Carica papaya by reducing ABA, IAA and zeatin ribose (ZR) levels [123].

7. Conclusion and future perspectives

Although our understanding of NO interactions with plant hormones has increased dramati-

cally in past few years, many pieces of the puzzle are still missing. It is well established that 

NO coordinates with plant hormones to regulate gene expression and activities of anti-oxi-

dative enzymes under adverse environmental conditions. However, our current knowledge 

about NO-phytohormone interactions is derived chiefly from NO-induced posttranslational 
modifications of transcription factors and biosynthetic enzymes. Future work is needed to 
explore the interplay among NO, plant hormones, ROS, protein kinases, and cytoskeletal pro-

teins in order to understand the complicated network of NO signaling under abiotic stress 

conditions. Interestingly, most of the studies related to NO-phytohormonal interactions 

involve experiments in controlled laboratory environments, very little is known about the 
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cross talk between these signaling molecules during flower initiation or grain development. 
Moreover, plants growing under natural conditions face multiple stresses; hence, future stud-

ies will need to address how NO interacts with the signaling cascades of phytohormones in 

plants exposed to two or more abiotic stresses.
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