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Abstract

The increasing demand for new biomaterials and fabrication methods provides an
opportunity for silicon to solve current challenges in the field. Laser processing is
becoming more common as the public begins to understand its simplicity and value.
When an abundant material is paired with a reliable and economic fabrication method,
biomedical devices can be created and improved. In this chapter, different laser param-
eters of the Nd:YAG laser are investigated and the topographic and physical trends are
analyzed. The biocompatibility is assessed for scanning speed, line spacing, overlap
number, pulse frequency, and laser power with the use of simulated body fluid (SBF)
and fibroblast culturing (NIH 3T3). Not only can nanosecond pulses increase the bio-
compatibility of silicon by generating silicon oxide nanofibers, but the substrate
becomes bioactive with the manipulation of cell interactions.

Keywords: silicon, nanofibers, Nd:YAG laser, fibroblasts

1. Introduction

Science fiction has motivated intelligent minds to enhance the quality of living for the last

century. A well-known example in fantasy is bionic limbs controlled by the mind. Individuals

who have lost or permanently damaged limbs can benefit from procuring an aesthetically

pleasing and fully functioning bionic replacement to restore or improve their quality of life. The

field of biomaterials engineering has been making monumental advances by producing devices

such as biosensors, bioMEMS, and artificial hearts [1–3]. There is a continuous growth in popu-

lation today, demanding the attention from biomedical fields to improve lifestyles and create

better body functionality. Although current devices’ interfaces with the human body have come

a long way, there is still a long way to go in the fabrication methods of the required scaffolds.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



This chapter outlines one single pathway of research done to broaden the opportunities in the

biomaterials industry. The bioactivity of laser-treated silicon is investigated through the use of

in vitro testing. This research investigates of the trends of different laser parameters, including

power, frequency, scanning speed, line spacing, and overlap number.

1.1. Challenges in the biomaterials industry

The current challenges in the biomedical field include finding biocompatible and bioactive

organic or inorganic materials and simplifying manufacturing processes. Devices that are

implanted inside the body require materials that are biocompatible; the behavior of this

material when interacting with the human body must not have any toxic effects and must

perform a specific task. For a material to be bioactive, it requires to be biocompatible and have

a biological effect and provoke a positive and controlled biological response. Current biocom-

patible materials that are commonly used are gold, titanium, polymers, bioceramics, and

composites [4–8].

Silicon was chosen as the material for this research due to its abundance and semiconductor

abilities. Microfabricated silicon is widely used today in the microelectronics and photovoltaics

industry [9, 10]. Silicon in its pure form is not biocompatible [11, 12]. However, silicon can be

packaged in a biocompatible material such as titanium [13, 14]. It has been found that porous

silicon is biocompatible [11]. The current method used for creating a porous layer is etching

with hydrochloric acid. Acid etching is a long process that requires the use of dangerous

chemicals and is consequently environmentally friendly. The challenge that silicon faces in the

biomaterials industry is to find a superior surface alteration method.

1.2. Laser processing

Technology that easily controls and creates an accurate pattern on a microscale is required in

the microelectronics industry. A good solution to this criterion is a laser, which has been

commonly used for surface texturing of steel [15, 16]. It was found that this method of surface

treatment allowed the generation of micropores with different characteristics. Unlike acid

etching, a laser is great for the modification of silicon since it is very clean, high resolution,

and controllability of intensity and depth of penetration. The Nd:YAG pulsed laser is a partic-

ularly good solution since it is cost-effective, stable, and has the required high power range.

Another advantage to this method is that there are no chemicals involved, which eliminates

the complex processes of preparation and environmental concerns. Above all, using a laser is a

single-step process. The economic and simplistic benefits that are associated with this

approach are valuable to the biomedical industry.

High-end picosecond and femtosecond pulsed laser systems have also been used for genera-

tion of porous silicon particles [17, 18]. In this research, it is found that a Nd:YAG nanosecond

pulse laser can achieve the desired biocompatible silicon. The nanosecond laser is much more

economical and commercially available than the faster pulse lasers. The nanosecond laser is

also currently used in the medical industry for procedures such as eye and dental surger-

ies [19, 20].
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2. Laser processing and surface characterization

Microfabrication with lasers is becoming increasingly popular in many industries including

biomaterials [21]. Laser irradiation introduces surface irregularities and chemical changes to

the silicon surface. The laser irradiates a simple line pattern onto pure silicon with <100>

orientation. There are a number of methods used to analyze the condition of the laser-

processed substrat. Images of the samples are taken with field emission scanning electron

microscopy (FESEM) and 3D optical microscopy.

2.1. Laser system

The laser used in this research is a SOL-20 1064 nm Nd:YAG nanosecond laser by Bright

Solutions Inc. The JD2204 Sino Galvo two-axis Galvo scanner has an input of 10 mm and a beam

displacement of 13.4 mm. The theoretically determined spot size diameter is 19 μm. The laser

pulses can range from lengths of 6 to 35 ns, frequencies of 10 to 100 kHz, powers up to 20W, and

scanning speeds up to 3000 mm/s. For this research, scanning speeds of 100–1000 mm/s, powers

of 7, 10, and 15 W, and frequencies of 25, 70, and 100 kHz are used. Line spacing varies from

0.025, 0.05, and 0.10 mm. Overlap number, or number of times the laser repeats the same pattern,

varies from 1, 2, and 3. The manipulation of these parameters is easily executed through the

laser-operating software.

2.2. Biocompatibility evaluation

The biocompatibility of a material is influenced by surface roughness, reflectivity, and chemi-

cal content of the substrate. The chemical content is assessed using micro-Raman and energy-

dispersive X-ray (EDX) analysis. The surface roughness is determined with the use of 3D

optical microscopy, and the reflectivity is determined with light spectroscopy. The biocompat-

ibility is also determined with the use of simulated body fluid, which is a form of in vitro

assessment—testing done outside of the body. Simulated body fluid is a solution that mimics

the ion concentration of human blood plasma. When a biocompatible material is submerged in

the liquid, hydroxyapatite forms on the surface [22, 23]. The submerged samples in the SBF are

kept in an incubator at 36.5�C for up to 6 weeks.

Cell interactions with the laser-processed silicon substrate are also evaluated with cultured

mouse embryonic fibroblasts (NIH 3T3). Cells are seeded at 2400 cells/cm2 in triplicate

and incubated for 72 h at 37�C. The samples are incubated under 5% CO2 in Dulbecco’s

modified Eagle medium (DMEM) supplemented with 10% heat-inactivated calf serum.

Phosphate-buffered saline (PBS) was then used to rinse the nonadherent cells from the samples

overnight at 4�C. Staining was then done to the samples with phalloidin (1:2000 dilution) and

draq5 (1:10,000 dilution) overnight for fluorescence imaging.

2.3. Temperature evaluation

Different frequencies, powers, and pulse widths change the behavior of the laser pulses.

Determining the temperature will help investigate the pulse energy and how it affects the
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surface topographic properties and chemical structure. The surface temperature is modeled

using the two-dimensional heat equation in cylindrical coordinates. The heat equation in

cylindrical coordinates is found in Eq. (1).
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where κ is the heat conduction coefficient, ρ is the material density (kg/m3), cp is the specific

heat (J/kgK), and _q is the rate at which energy is generated per unit volume of the medium

(W/m3) [24]. Since it is assumed that κ, ρ, and cp are constant, and there is no energy generation

within the silicon ( _q ¼ 0), Eq. (1) can be simplified into Eq. (2).
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where a = κ/ρcp, which is the thermal diffusivity (m2/s). The boundary conditions for this

equation include the initial temperature being room temperature, the pulse intensity is at its

maximum during the pulse at z = 0, the intensity is zero between pulses, and the temperature

change is zero at r = ∞, and z = ∞. With these conditions, the single-pulse temperature change of

a high absorption material, ΔT, for a square pulse, can be obtained (Eq. (3)) [25].
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where Imax (Eq. (4)) is the peak intensity which is the peak power divided by the spot area,

Pmeasured is the experimental measured power, f is the pulse frequency, τ is the pulse duration, γ

is equal to the Fresnel energy reflectivity (R) subtracted from 1 (1–R) with a R value of 0.325

and a γ value of 0.675, κ is Silicon’s diffusivity with a value of 9.07�10�3 m2/s, K is Silicon’s

conductivity with a value of 155 W/mK, τ is the laser pulse duration, W is the beam’s filed

radius (1/e) with a value of 1.94�10�5 m, z is the ablation pit depth, and r is the ablation pit

radius. Using this equation with the assumption that the pulse is square-shaped, the tempera-

ture can be determined at the center of ablation (r = 0) and at the surface (z = 0). From Eq. (3),

an analytical expression can be made to determine the depth of the ablated groove at the center

of the ablation with respect to radius by using the mean value theorem.
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where β is an experimentally determined correction factor of 0.5 and ΔTB is silicon’s boiling

temperature of 2972 K. A more accurate representation of the experimental results found in
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Eqs. (6) and (7) will determine the ablation depth after a train of pulses. Each consecutive pulse

adds to the penetration of the preceding pulse, S, resulting in a deeper groove.

hscanðrÞ ¼ hðrÞ þ hðS� rÞ (6)

S ¼
v_scan

f
(7)

where S is the spatial separation between each consecutive pulse, v_scan is the scanning speed

in m/s, and f is the pulse frequency.

3. Effect of scanning parameters

The three scanning parameters discussed in this section are overlap number, line spacing, and

scanning speed. Each of these is easily set through the laser-operating software. These param-

eters have a direct effect of the surface topography and oxidation levels of the silicon sub-

strates.

3.1. Topography analysis

The field emission scanning electron microscope images are an effective way of investigating

the physical results from the laser ablation on the silicon samples. Figure 1 shows the effect of

different overlap numbers. At 1 overlap (OL), the line pattern is distinct and relatively clean.

When the OL number is increased to 2, the line pattern is less definite and contains more

irregularities. Finally, increasing the overlap number once again to 3, the line pattern is almost

unrecognizable with a substantial amount of imperfections.

The effect of different line spacing was then investigated with FESEM. The overlap number

was kept constant at 1. At the largest line spacing of 0.10 mm, the line pattern is discrete. At the

smallest line spacing of 0.025 mm, the amount of imperfections is high with no distinctive line

separation. The effect of line spacing can be seen in Figure 2.

Knowing that a higher overlap number and a smaller line spacing made for the highest level of

laser-ablated substrate, a sample with 0.025 mm line spacing and three overlaps was created to

observe the surface characteristics. The high magnification FESEM image in Figure 3 of this

sample shows a nanofibrous substrate. These nanofibers are the result of a high-energy reac-

tive plume that forms on the surface during laser ablation [26]. The plume generates a heat-

affected zone that causes the silicon ions to react with the oxygen ions, creating these nanoscale

SiO2 fibers [27–29].

The effect of scanning speed was then investigated with 3D optical microscopy. The data of the

results from scanning speeds of 100, 200, 500, 800, and 1000 mm/s are mapped and compared

in Figure 4. It is expected that the lower scanning speeds have larger depths due to a higher

number of pulses ablating the surface area. However, with a closer look at Figure 4, the lower

scanning speeds have shallow depths and a relatively high wall of built-up material along the
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Figure 1. FESEM images of pattern overlaps of 1, 2, and 3 with a line spacing of 0.10 mm, a laser power of 10.5 W, a

frequency of 100 kHz, and a scanning speed of 400 mm/s.

Figure 2. FESEM images of line spacing of 0.025, 0.05, and 0.10 mm with an overlap number of 1, a laser power of 13.3 W,

a frequency of 100 kHz, and a scanning speed of 400 mm/s.

Figure 3. Presence of nanofibers detected on FESEM image of sample with three overlaps and 0.025 mm line spacing with

power of 13.3 W, frequency of 100 kHz, and a scanning speed of 400 mm/s.
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sides of the groove. At higher scanning speeds, when the pulses are farther apart, there is less

penetration on the surface, leading to a shallower groove. At lower scanning speeds, the high-

temperature ablated material from the walls caves back into the deep groove and solidifies into

a much shallower groove than initially dredged. Scanning speeds of 200 and 800 mm/s show a

deep groove with a smaller amount of material built up than the 100 mm/s sample.

Eqs. (6) and (7) are then used to find the theoretical ablation depths at various scanning speeds.

Observing the trend in Figure 5, it is clear that the ablation depth decreases with increasing

scanning speed. Both the experimental data and theoretical results are in close agreement.

3.2. Bioactivity assessment

Each sample was submerged in simulated body fluid (SBF) for 6 weeks and kept at a constant

temperature of 36.5�C. The samples were then emerged from the fluid and assessed with

energy-dispersive X-ray (EDX). The SBF-soaked samples were found to contain a traces of

phosphorous and calcium, which is indicative of the presence of a bone-like apatite. Hydroxy-

apatite is formed by the nucleation of calcium phosphate ions [5, 27]. The silicon oxide layer

created by the laser plume has a negative charge, which attracts the positively charged calcium

phosphate. The resulting substrate contains this bone-like apatite, which was seen on the laser-

treated silicon samples. The EDX results from the sample with three overlap and 0.025 mm line

spacing can be seen in Figure 6.

Figure 4. Profile data from the 3D optical microscope for scanning speeds of 100, 200, 500, 800, and 1000 mm/s at an

overlap number of 1, a power of 15 W, and a frequency of 100 kHz.

Figure 5. Ablation depth after a train of pulses at difference scanning speeds at a power of 15 Wand a frequency of 100 kHz.
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This presence of bone-like apatite confirms that the biocompatibility of pure silicon was

enhanced with nanosecond laser pulses. A smaller line spacing and higher overlap number

generates more SiO2 nanofibers, which provides a favorable site for the nucleation of apatite.

4. Effect of frequency

The range of frequencies used in this section is 25, 70, and 100 kHz. For these experiments, the

scanning speed was kept constant at 100 mm/s, the power at 15W, and the overlap number at 1.

4.1. Topography analysis

Figures 7 and 8 show the topography changes in the frequency samples. A lower frequency

produces a wider and shallower groove, while the higher frequencies yield a thinner yet

deeper ablated groove. The theoretical results in for a single pulse in Figure 9 show that the

groove increases in depth and decreases in width as frequency increases, which is in close

agreement with the experimental results.

4.2. Temperature analysis

The temperature is determined for each frequency with Eq. (3) and can be found in Figure 10.

The higher temperatures are associated with the lower frequencies on both z-axis and r-axis.

By increasing the frequency, the pulse energy decreases which results in lower temperatures

and a smaller heat-affected zone [30]. Due to reduced size of the heat-affected zone, the shape

of the groove consequently changes size as well. This results in the thinner grooves at higher

Figure 6. EDX results of sample with three overlaps, 0.025 mm line spacing, 400 mm/s, a power of 13.3 W, and a

frequency of 400 mm/s.
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frequencies. Each recurring pulse adds to the penetration of preceding pulse. Higher frequen-

cies have more pulses, resulting in a deeper penetration of the surface, which develops a trench

with a larger depth.

4.3. Bioactivity assessment

Mouse embryonic fibroblast cell interactions were examined for each frequency. The cell count

in Figure 11 establishes that there are a higher number of cells in the higher frequency grooves.

Figure 7. 3D optical microscopy images of samples with frequencies of 25, 70, and 100 kHz at a power of 15 W, a scanning

speed of 100 mm/s, and 1 overlap.

Figure 8. Experimental profile data from the 3D optical microscope for frequencies of 25, 70, and 100 kHz at an overlap

number of 1, a power of 15 W, and a scanning speed of 100 mm/s.

Figure 9. Theoretical profile data for a single pulse for frequencies of 25, 70, and 100 kHz at an overlap number of 1, a

power of 15 W, and a scanning speed of 100 mm/s.
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The cells show a strong preference for the treated areas and show avoidance in the untreated

areas. There is also a presence of fibronectin within the cells, which is an ECM protein secreted

during embryonic development and wound healing, potentially leading to collagen deposition

and tissue morphogenesis [30, 31]. These results confirm that the biocompatibility is enhanced

with higher frequencies.

Figure 11. The number of cells within the laser-treated groove for each frequency as well as the amount of cells outside

the groove within 100 μm from the edge of the groove [30].

Figure 10. The single-pulse temperature on the surface of the silicon with respect to radius.
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5. Effect of power

Laser power immensely influences the surface properties when treatment is done to a material.

The power for this section varies from 7, 10 to 15 W. For these experiments, the frequency was

kept constant at 100 kHz, the scanning speed was set to 400 mm/s, and the overlap number

was 1.

5.1. Topography analysis

The FESEM images of each power sample are shown in Figure 12. The experimental 3D optical

microscopy profile data is shown in Figure 13. These results show that at higher powers, the

groove will increase in both width and depth. Unlike the frequency trends, the size of the heat-

affected zone increases with power. The theoretical single-pulse depths found with Eq. (5) are

shown in Figure 14. These results also show that the groove width and depth increase with

power and are in close agreement with the experimental results.

Figure 12. FESEM images of samples with powers of 7, 10, and 15 W at a frequency of 100 kHz, a scanning speed of 400

mm/s, and 1 overlap.

Figure 13. Experimental profile data from the 3D optical microscope for powers of 7, 10, and 15 W at an overlap number

of 1, a frequency of 100 kHz, and a scanning speed of 400 mm/s.
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5.2. Temperature analysis

The temperature is determined for each power with Eq. (3) and can be found in Figure 15. As

expected, the higher temperatures are found with higher powers. At lower powers, the heat-

affected zone is smaller, allowing for both a thinner and shallower groove. When the pulse

power is increased, the temperatures in the high-density plume are increased, causing more

generation of the SiO2 nanofibers [26].

5.3. Bioactivity assessment

Samples were once again assessed with fibroblast culturing for each power. When viewing the

cell interactions under the microscope, cells were accumulated inside the laser-treated area as

expected. Interestingly, the cell count was low directly beside the grooves and began to become

more concentrated farther away from the edge of the groove. The fibroblasts avoided the zones

immediately beside the grooves on each side. This can be seen in Figure 16.

This phenomenon is a result from the shockwave that is generated from the high-energy

plume during laser ablation [26]. The shockwave transfers energy to the surface with results

in high intensity thermal stress. The thermal shock causes a small zone directly beside the

Figure 14. Theoretical profile data for a single pulse for powers of 7, 10, and 15 W with an overlap number of 1, a

frequency of 100 kHz, and a scanning speed of 400 mm/s.

Figure 15. The single-pulse temperature on the surface of the silicon with respect to radius. Tb is the boiling temperature

of silicon at 3538 K.
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ablated areas, which contains residual stress. When the power is increased, there is a larger

transfer energy, resulting in a larger stress zone. These residual stress zones contain mismatched

crystal orientations due to tensile stresses causing crystal distortion.

Knowing that the power level of the laser pulse can control the residual stress zone size and cell

behavior, this research can provide opportunities in cell manipulation and cell programming.

6. Summary

This chapter aims to introduce nanosecond laser processing for the enhancement of biocompat-

ibility of pure silicon for various biomedical technologies. These results can contribute to the

design of manufacturing processes of innovative biomedical devices to enhance the quality of

living for a number of individuals. This research investigates the trends of various laser param-

eters including three scanning parameters (line spacing, overlap number, and scanning speed),

pulse frequency, and laser power. Biocompatible in vitro assessment was conducted through the

use of simulated body fluid (SBF) and cell culturing with NIH 3T3 fibroblasts. Samples with

smaller line spacing and higher overlap numbers showed more generation of SiO2 nanofibers,

which were shown to be biocompatible under SBF assessment. Biocompatibility increased with

frequency due to the SiO2 being more prominent on high frequency samples and containing

more fibroblast cell proliferation. Fibroblasts also showed preference to higher powers. How-

ever, the heat-affected zone immediately outside the ablated areas showed a mismatch of

crystal orientations causing residual stress. These stress zones were avoided by cells, which led

to promising results for the potential in cell programming and manipulation.

Author details

Candace Colpitts and Amirkianoosh Kiani*

*Address all correspondence to: a.kiani@unb.ca

Silicon Hall: Laser Micro/Nanofabrication Facility, Department of Mechanical Engineering,

University of New Brunswick, NB, Canada

Figure 16. Fibroblast cells avoiding the zones beside the grooves for powers of 7, 10, and 15 W.
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