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Abstract

Glaciers have been considered too hostile to harbor life for a long time. However, they are 
now recognized as unique biomes dominated by microbial communities which maintain 
active biochemical routes. Microbial communities inhabiting glaciers are diverse depend-
ing on the type of glacier and the area studied. Some glaciers have a marine margin 
and finish in a calving front, with partly or completely temperate tidewater tongues, this 
establishes important differences with respect to glaciers with a land margin. Depending 
on the glacier area studied, microorganisms are also characteristic as they establish a 
vertical food chain, from the surface photosynthesizers in upper illuminated layers to 
heterotrophs confined in the inner part. Glaciers are retreating in many areas of the world 
due to global warming. Microorganisms are their most abundant and unknown occu-
pants. They play a main role, carrying out key processes in the development of soil and 
facilitating plant colonization when glaciers have ultimately retired. These microorgan-
isms are perfectly adapted to their harsh environment and are very susceptible to envi-
ronmental changes. This chapter summarizes the role of microbial ecology as indicator of 
the conservation status of glaciers.

Keywords: global warming, ecosystem, microorganism, extremophile, psychrophile

1. Introduction

Earth’s cold environments have been considered uninhabited for a long time. Icy des-

erts seemed too hostile to harbor life (Figure 1). However, glaciers and ice sheets are 

unique biomes dominated by microbial communities which maintain active biochemical  

routes [1].

Glaciers are dominated by very specific environmental characteristics such as the low tem-

peratures associated with precipitation in the form of snow, the exposure to the intense wind, 

and the extreme solar radiation. In summer, there are processes of melting and sublimation 
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that are contrasted with the accumulation of ice in winter, producing an imperceptible but 

constant dynamism. This is the basis of the life of many of the organisms that inhabit them [2].

Microbial communities in glaciers are different depending on the type of glacier and the area 
studied. Thanks to DNA sequencing methods, a lot of information about their biodiversity 
and ecology has been acquired. Firstly, glaciers are of various kinds [3, 4] (Figure 2). Some of 

them have a marine margin and finish in a calving front (Figure 2(C)), this establishes impor-

tant differences with respect to glaciers with a land margin (Figures 2(A), (B)). In glaciers end-

ing on land, there is continuous permafrost at ice front (Figure 2(A)), while calving glaciers 

present partly or completely temperate tidewater tongues [4]. Secondly, the growth areas of 

the glacier (accumulation area) are oligotrophic media for microorganisms. They establish a 

vertical food chain, from surface photosynthesizers in the upper illuminated layers to protists 

and bacteria confined in the inner part [5]. These microorganisms are greatly influenced by 
the melting of surface layers. The diversity of microorganisms in the areas of regression of gla-

ciers (ablation zone and glacial lake) can be lower than in the accumulation area [6], although 

they are usually more abundant. Predatory species are numerous in these areas, so microbial 

Figure 1. Ecosystems in cold environments. (A) Polar deserts, (B) Glaciers, (C) Icy seas and (D) Icebergs.

Figure 2. Types of glaciers. (A) Gébroulaz glacier ending on land. (B) Literola glacier at Pyrenees, ending on a lake and 
river. (C) Marine glacier at Livingston Island, South Shetland Antarctica.
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diversity decreases. At last, taking into account the horizontal stratification of glaciers, they 
can be divided into three ecosystems: supraglacial, englacial, and subglacial. Additionally, 
there has been an increasing interest in characterizing retreating ice fronts of deglaciated fore-

fields with the aim of getting to know how both the richness and the abundance of microor-

ganisms vary in a glacier due to climate change [6–8]. In forefields, mixed communities are 
observed, whose composition changes very quickly.

2. Earth is a cold planet

From a biological perspective, Earth is a cold planet. Most of the Earth's surface is covered by 

oceans where temperatures are below 5°C [9], and 80% of the terrestrial biosphere is perma-

nently frozen [10]. Some examples of these cold environments are upper atmosphere, benthic 

marine zones, polar deserts (Figure 1(A)), glaciers (Figure 1(B)), subglacial lakes, and icy seas 

(Figure 1(C), (D)) [11].

Snow and ice cover over 108 km2 of the Earth's surface. Snow in winter can cover up to 12% 

of the Earth's surface [12], and approximately 10% of the planet's land surface is covered by 

glacial ice in the form of ice caps, ice sheets, or glaciers, accumulating 75% of the world's fresh 

water [13]. Mean temperatures observed in snow and ice environments can be highly variable 

at different depths, sites, or seasons. For example, surfaces exposed to wind are influenced by 
air temperature. Temperature can range from −50 to −70°C during the winter in the Arctic and 
Antarctic, respectively, to 0°C in summer [14].

3. Glaciers as biomes

Among cold environments, glaciers are considered biomes that should be recognized as such 
in their own right [1, 2]. A great diversity of microorganisms belonging to the three main 
domains (Bacteria, Eucarya and Archaea) has been discovered inhabiting these cold envi-
ronments. Most of the microorganisms isolated from cold environments are psychotolerant 

(also called psychrotrophs) and psychrophiles. Psychotolerant organisms can grow at tem-

peratures close to 0°C but have their optimum growth temperature at about 20°C. However, 
psychrophiles have their optimal growth temperature at 15°C or less [15].

Glaciers are inhabited by microorganisms which maintain active biochemical processes.

To grow efficiently at low temperatures, microorganisms have developed complex structural 
and functional strategies for their adaptation [16]. The study of these adaptation strategies 

aims to identify the limits of life at these temperatures. Adaptations include the production 
of psychrophilic enzymes that are functional at low temperatures with a high catalytic effi-

ciency; the incorporation of unsaturated fatty acids in the cell membrane to improve its flu-

idity; the synthesis of certain proteins that allow synthesizing others at low temperatures 

[17]; and the production of compounds that allow the cell to protect itself from frostbite (e.g. 

sugars, extracellular polysaccharides, antifreeze proteins) [18, 19].
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4. Microbial ecology in glaciers

Considering the horizontal stratification of glaciers, they can be divided into three parts: the 
supraglacial ecosystem, the subglacial system, and the englacial ecosystem [2, 5] (Figure 3). 

These three ecosystems differ in terms of their solar radiation, water content, nutrient abundance, 
and redox potential [2]. These factors greatly determine the biogeochemical cycles, the type of 

metabolism, and the diversity and abundance of microbial populations inhabiting glaciers.

4.1. The supraglacial ecosystem

The main habitats in the supraglacial ecosystem are the snowpack, cryoconite holes, supra-

glacial streams, and moraines. On the glacier surface, the absorption of solar radiation by 

dark organic matter causes snow and ice melting yielding liquid water that is necessary for 
microorganisms. Meltwater dissolves nutrients from adjacent debris and even directly from 

the atmosphere [20].

The sunlit and oxygenated supraglacial surface are populated by autotrophic microorgan-

isms such as microalgae and diatoms; by chemolitotrophic bacteria, which feed on inorganic 

sand particles; and by heterotrophic bacteria and microeukaryotes.

Figure 3. A schematic of different habitats of a glacier colonized by microorganisms. Supraglacial ecosystem is 
dominated by phototrophic algae and cyanobacteria that take advantage of sunlight and by heterotrophic bacteria and 

microeukaryotes that feed on organic particles from atmospheric deposition. Microorganisms in englacial ecosystem can 

be chemoautotrophs, but they can also be heterotrophic bacteria that feed of solubilized products. Subglacial ecosystem 

is dominated by microorganisms which obtain energy from inorganic compounds and occupy basal ice/till veins and 

subglacial lakes.
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The lithotrophic microorganisms degrade the till and black carbon on the surface of the gla-

ciers. So, the concentration of dissolved ions in water increases and its melting point decreases. 

This fact develops cryoconite holes, vertical cylindrical melt holes in a glacier surface, which 

have a thin layer of sediment at the bottom and are filled with water [21]. The materials com-

prising cryoconite can be divided into two main types: organic and inorganic [22]. Organic 

matter includes living and dead microorganisms and their products of decomposition, while 
inorganic matter in cryoconites is dominated by mineral fragments, mainly silicates [22]. 

Cryoconites are an important microbial habitat in supraglacial ecosystems [1]. Cryoconite 
holes may converge and origin small streams of liquid water that run downhill [21]. Food 

webs in cryoconite are dominated by photoautotrophs, mainly cyanobacteria, which provide 

substrate for heterotrophic communities from a wide range of bacteria. All major groups of 
heterotrophic bacteria and many fungal groups are represented in cryoconite holes [5]. In 

addition, microbial eukaryotes such as ciliates are crucial for nutrient recycling through the 

metabolism of primary producers [23]. Heterotrophic activities in supraglacial habitats are 

substantial but typically occur at lower rates than the rates of photosynthetic production, 

which leads to the accumulation of organic matter over time.

Microorganisms inhabiting glacial surface produce a wide diversity of pigmented molecules, 

which allow their adaptation to cold conditions and solar radiation. They use pigments to 

obtain energy [24], develop photosynthesis [25], stress resistance [26], and for ultraviolet 

light protection [27, 28]. For instance, green snow is caused by young, trophic stages of snow 

algae, whereby more mature and carotenoid-rich resting stages result in all shades of red 

snow [29]. Dominant species on snow fields belong to the unicellular Chlamydomonaceae. 
Additionally, some examples of cold-adapted bacteria that produce pigments are the bacte-

rium Sphingobacterium antarcticus, which produces zeaxanthin, b-cryptoxanthin, and b-carotene 

[30]. Other examples include the polar bacteria Octadecabacter arcticus and Octadecabacter ant-

arcticus, producers of xanthorhodopsin [31], and Shewanella frigidimarina which produces the 

red cytochrome c3 [32, 33]. Colored melanized fungi also live on glaciers, for instance, the oli-
gotrophic genus Cladosporium [34]. These pigments absorb solar light and heat, melting snow 

on glacial surfaces. Microorganisms on glacial surfaces also bear high solar radiation, but in 

a way, this radiation is beneficial for them. In spring, light radiation melts the glacial surface 
and leads to the increase in wet areas and the dilution of solutes on snow and ice surfaces, 

which facilitates the growth of microbial mats [14].

4.2. The englacial ecosystem

The englacial ecosystem presents a minor impact upon nutrient dynamics [2]. Surface melt-

waters flood the englacial sediments by means of drainage channels. In englacial ecosystems, 
live motile bacteria that can reach more than 3000 m of depth. These bacteria live at grain 

boundaries and other interstices. Mineral substrates such as clay particles [35] provide nutri-

ents and a supply of water for microorganisms. Microorganisms can also live in narrow veins 

between ice crystals. When the water freezes, dissolved and particulate impurities (including 

microorganisms) are excluded from the ice matrix into interstitial aqueous channels at the 

ice-grain boundaries [11]. In turn, these microorganisms and impurities diminish the growth 

of ice crystals and even break them, facilitating the existence of liquid water. The liquid 
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vein habitat provides water, energy, and nutrients. In contrast with this, the metabolism of 

microbes encased in solid ice must overcome the diffusion of nutrients in a solid media [36].

Microorganisms in englacial ecosystems can be chemoautotrophs, but they can also be hetero-

trophic bacteria that feed on solubilized products from pollen grains, invertebrates, and other 

microorganisms. At great depth, anaerobic respiration can take place [35, 37], and methano-

gens could be active [2].

4.3. The subglacial ecosystem

At glacial sediments and bedrock, debris contains minerals and sedimentary organic carbon 
that, combined with subglacial water, create microniches where microorganisms can live [5]. 

A strong coupling is likely to exist between the hydraulic conditions at the glacier bed and 
the bacterial processes that take place [20]. The subglacial system is dominated by aerobic/

anaerobic bacteria and probably viruses in basal bedrock and subglacial lakes. It also contains 

diverse, metabolically active archaeal, bacterial and fungal species [38]; although eukaryotes 

have not been detected in all subglacial environments examined [5].

As there is no sunlight, chemoautotrophic or chemolithotrophic bacteria obtain energy from 
inorganic compounds. The inorganic processes associated with chemoautotrophs and chemo-

lithotrophs may make these bacteria one of the most important sources of weathering and 

erosion of rocks on Earth [39].

5. Glacier retreat

Glaciers are highly sensitive indicators of past and present climate change. Their current area 

and volume are a response to changes in both temperature and precipitation [13], as glaciers 

respond to slight but prolonged changes in climate. The study of glacier fluctuations is rel-
evant to provide an understanding of climate change over temporal scales [13].

Most glaciers are currently retreating. According to the National Snow and Ice Data Center 
(NSIDC), the total glacier loss per year since 1994 is approximate 400 billion tons [40–46]. The 

retreat of glaciers is particularly concerning, since it represents hazards for human communi-

ties living near them such as outburst floods, landslides, debris flows, and debris avalanches. 
Additionally, glaciers contribute substantially to water resources, which can be substantially 
reduced in many areas of the world [47].

6. Microorganisms in retreat glaciers

Global warming is having a great impact on glaciers, because of the change in air temperature 

and precipitation [48, 49]. Glacier retreat directly affects various atmospheric, climatic, and 
ecological phenomena. In retreat glaciers, the thickness of ice and snow decreases, and fossil 

ice emerges, forefield surface increases (Figure 4), new soil develops; and they are colonized 

by new prokaryotic and eukaryotic microbial species.
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The consequences of climate change are different according to the type of glacier. Depending 
on the location of the glaciers, these can be classified as terrestrial and marine (Figure 2). From 

the terrestrial glaciers, new lakes and rivers are shaped by runoff waters. On the contrary, 
some glaciers have a marine margin and terminate in a calving front. In glaciers ending on 

land, there is continuous permafrost at ice front, while calving glaciers present partly or com-

pletely temperate tidewater tongues [4].

One of the effects of climate change on glaciers is that the glacial ice melts and disappears, 
and microbial communities inhabiting them are being seriously affected [50]. Global warming 

is changing the basal temperature of the ice, going from cold to polythermal, which causes 

the growth of new microorganisms that are not psychrophiles but mesophiles thus leading to 

changes in the diversity and composition of microbial populations [51, 52].

The microorganisms that inhabit glaciers can also contribute to the production of heat as 

a consequence of their metabolic activity [53]. The amount of heat produced in cryoconite 

holes of glacial surface has been quantified and reaches 10% of the heat that melts the cryoco-

nite walls during the summer [54]. Although these works have been much questioned [22], a 

recent work by Hollesen et al. [55] has shown that bioheat can accelerate ice melting on glacier 

surfaces.

Figure 4. Retreat glacier. (A) In retreat glaciers, the thickness of ice and snow decreases, and it is colonized by new 
species. (B) Rock with lichens. (C) Microorganisms in the newly formed lake. (D) A rock showing the layer of endolithic 
phototrophic green algae.
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Microorganisms play a main role in glaciers, mainly carrying out key processes in the devel-

opment of soil, biogeochemical cycling and facilitating plant colonization when glaciers have 

ultimately retired.

6.1. Development of soil

Global climate change has accelerated glacial retreat. When the glacier ice melts and disappears, 

recently deglaciated soils establish a new ecosystem at the glacier forefield. Microorganisms 
are the initial colonizers of these recently exposed soils [7]. Thanks to their metabolic activity, 

new molecules are obtained that act as nutrients [7]. The microbial community of the newly 

formed soil is composed of heterotrophic microorganisms, autotrophic microorganisms, and 

nitrogen-fixing diazotrophs. Allochthonous material is derived from the glacier surface [21, 56],  

precipitation and aerial deposition [57] and biological sources such as mammal and bird 

droppings [58]. Additionally, adjacent ecosystems such as marine and subglacial environ-

ments are likely to contribute to the nutrient dynamics [58–60].

Downstream of the glacier, torrents are formed from the runoff water. These watercourses 
carry mineral salts and organic matter that allow the growth of new microorganisms. Biofilms 
grow on the banks of the streams, containing new microbial communities that although may 

remain psychrophilic, begin to have majority of psycrotrophic or mesophilic microorganisms.

Endolithic phototrophs, especially green algae and cyanobacteria, grow inside rocks, inhabit-

ing porous rocks near the glacier surface [24]. Rocks are heated by the sun, and water from 

snow melt can be absorbed, supplying moisture needed for the growth of microorganisms. In 

addition to being free-living phototrophs, green algae and cyanobacteria coexist with fungi in 

endolithic lichen communities. Metabolism and growth of these internal rock communities 

slowly weathers the rock, allowing gaps to develop where water can enter, freeze, and thaw, 

and eventually crack the rock, producing new habitats for microbial colonization. The decom-

posing rock also forms a crude soil that can support the development of plant and animal 

communities in environments where conditions (temperature, moisture, and so on) allow [24].

The ice from the glaciers draws till, forming moraines around and inside the glacier. But it also 
draws organic matter from bird droppings and from dead plants and animals. In the develop-

ment of soil, microorganisms break down this organic matter and produce carbon dioxide, 
water, and heat. Bacteria are responsible for a very little amount of the heat generation in 
ice, using a broad range of enzymes to chemically break down a variety of organic materials. 

Many bacteria are motile and can move into the ice channels of permafrost. When conditions 

become unfavorable, some bacteria survive by forming endospores, which are highly resis-

tant to the cold and the lack of water and food sources. Microbial eukaryotes such as fungi 

are important because they break down debris, enabling bacteria to continue the decomposi-

tion process. They spread and grow by producing many cells and filaments. They can attack 
organic residues that are too dry or low in nitrogen for bacterial decomposition. Molds are 

strict aerobes that grow both as unseen filaments and as black, gray, or white fuzzy colonies 
on the surface. Most fungi are saprophytes; they live on dead material and obtain energy by 

breaking down organic matter. At last, protists obtain their food from organic matter in the 
same way as bacteria do but also act as secondary consumers ingesting bacteria and fungi.
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6.2. Plant colonization

Retreating glacier fronts expose large expanses of deglaciated forefield, which become colo-

nized by microbes and plants. The space that had been occupied by a glacier which only con-

tained psychrophilic microorganisms is occupied primarily by mesophilic microorganisms 

inside and on the ice. When this ice disappears and soil begins to develop, rocks and tilt emerge 

in the moraines; this soil is colonized by lichens on rocks, by algae in streams and by higher 

plants and animals on the forefield. Most green algae inhabit freshwater, while others are found 
in moist soil [24]. Other green algae live as symbionts in lichens growing on rocks. In the newly 

formed soil, mainly consisting of permafrost, the growth of small plants begins. Their roots 

fragment the ground, forming small channels through which the water that carries ions in solu-

tion runs. In this way, the permafrost is fragmented, and it freezes less and less.

In glacier forelands, soil microorganisms are essential for plant growth as they play a key role in 

the nutrient cycling. In this phase, nitrogen, phosphorus, and other nutrients accumulate and 

facilitate succeeding plant growth [61]. Nitrogen-fixing plants are common in the primary suc-

cession of newly deglaciated soils [62]. Such plant-driven changes to soil nitrogen cycling have 

significant effects on the establishment of subsequent plant communities [63]. Rhizosphere 

microbial communities are fundamental for soil cycling, and they are mainly dominated by 

Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria [64], and Firmicutes [65].

6.3. Biogeochemical cycling

Given their coverage at a global scale, snow and ice could have a major and underestimated 

role in global biogeochemical cycling [14]. It is essential to know how climate change is shap-

ing the distribution and diversity of microbial communities, since microorganisms are very 

important components in several biogeochemical processes [66] and in food webs [67].

Nutrient matter in retreat glaciers is variable. The carbon content in forefields is very little. It 
comes from three distinct sources: autochthonous primary production by autotrophic micro-

organisms; the deposition of allochthonous material; and ancient organic pools derived from 

under the glacier [7]. Carbon dioxide is removed from the atmosphere primarily by photosyn-

thesis of snow algae and cyanobacteria, and marine microorganisms in marine glaciers; and it 

is returned to the atmosphere by chemoorganotrophic microorganisms. Glaciers also provide 

organic matter to downstream ecosystems [7].

Other important nutrients in forefield soils such as nitrogen in the forms of nitrate, nitrite, and 
ammonia are microbially fixed from atmospheric nitrogen by cyanobacteria and some other 
bacteria. There are also external sources such as snowmelt, aerial deposition, and the break-

down of complex organic material or sedimentary bedrocks [7]. Bioavailable phosphorus and 
iron are usually abundant in the topsoil or bedrock of glaciated regions from weathering of 

the mineral surface [5].

6.4. Acidification or alkalinization of runoff waters

Another important effect of glacier retreat is the modification in the chemical composition of 
the runoff water of the glaciers. When a part of the terrain that had been covered by the glacier 
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is open to the elements, rocks appear on the surface, whose minerals dissolve and change the 

physical and chemical characteristics of the runoff water. Occasionally, the waters become even 
toxic because of the presence of heavy metals [68]. Sometimes the formation of alkaline lakes 

can be observed, due to the mineral salts entrained by the water of runoff in the ground that 
had been occupied by a glacier, like the Amarga Lagoon in Chile (Figure 5(A)). These lagoons 

can be inhabited by cyanobacteria which grow forming laminar colonies whose calcareous 

skeletons fossilize generating sedimentary rocks named stromatolites (Figure 5(B)). They are 

formed when cells build up a carbonate skeleton, integrating particles present in the lake water.

Otherwise, when certain minerals such as pirite are exposed to air and water, a slow chemical 

reaction with molecular oxygen occurs. While this abiotic reaction can lead to the develop-

ment of acidic conditions, the degree to which acid mineral drainage becomes an overwhelm-

ing burden on the environment results from the oxidative dissolution, a reaction catalyzed by 

microorganisms [69]. This process affects differently to the terrestrial and marine glaciers. In 
land glaciers, the runoff waters become more acidic, which affects the rivers and lakes that 
receive their waters. This can affect the flora and fauna, the crops and the human populations 
that live downstream. When this fact affects the marine glaciers, the composition of marine 
tidewater tongues changes their chemical composition: water salinity decreases, and at the 

same time, water becomes more acidic. Acidification of sea water impacts ocean species to 
varying degrees. A more acidic environment has a dramatic effect on some calcifying species, 
including oysters, clams, sea urchins, corals, and calcareous plankton [70].

7. Microorganisms as indicators of the conservation status of glaciers

In the last few decades, recently deglaciated areas present in different glacial zones in the 
world, are available for colonization and primary succession, especially initiated by pioneer 

microorganisms [71] followed by plants [72] and animals [73].

Figure 5. Alkalinization of runoff waters. (A) Formation of an alkaline lake (pH 9.1) due to the mineral salts entrained 
by the water of runoff in the ground that had been occupied by a glacier. The inset shows the location of Figure 5(B). (B) 
Calcareous skeleton of a stromatolite of Amarga Lagoon at Chile.
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In retreat glaciers, the microbial populations of the glaciers are very different from those found 
in the surrounding soils. Some reports [61] have demonstrated that both bacterial and fungal 

community structures show significant differences between deglaciated sites and successional 
sites that had been ice-free over more than 100 years [74]. These changes have a strong influ-

ence on the processes of colonization and succession in the areas where glacier ice has melted 

[72]. Firstly, microbial communities change as psychrophilic microorganisms are replaced by 

mesophilic microorganisms. Then, plants and animals colonize these newly formed environ-

ments. Additionally, characteristic bacterial species can be found in each glacier zone and 
not found in the others. So, there are “type species” that can subsist thanks to their special 

metabolism and molecular mechanisms of adaptation. An example is shown in Figure 6, in 

which the population of microorganisms in three habitats: glacier snow [51, 75, 76], glacier 

front [6], and forefield [6, 62, 71] are compared. Although the compared glaciers are located 
in very different places around the world, it can be observed that the distribution of the main 
groups of microorganisms is different for each of the three habitats.

7.1. Glacier snow

Several reports have been published [77] about the little microbial abundance observed on 
glacier snow. For example, in Alpine snow packs, bacterial abundances range between 103 

and105 cells/ml [78, 79], and in Svalbard archipelago, snow bacterial abundances are about 

2 × 104 cells/ml [75, 80]. In cell counts performed on Antarctic snow, it was observed that the 
microbial abundance was even lower (<103 cells/ml).

Regarding microbial diversity in glacier snow (Figure 6(A)), the effect of snow melt on bacte-

rial community structure and diversity of surface environments of a Svalbard glacier has been 

Figure 6. Bacterial community structure along a glacier front based on 16S rRNA gene sequences. Pie charts represent 
relative abundances of bacterial classes for three glacier environments: glacier snow, glacier front and forefield. The 
data come from Refs. [51, 76, 77] for glacier snow, from Ref. [6] for glacier front and from Refs. [6, 62, 74] for forefield.
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examined using analyses of 16S rRNA genes [51]. In these studies, it was observed that the 

bacterial community structure depends on the type of snow deposition. However, the most 

interesting fact, from the point of view of monitoring the state of conservation of the glacier is 

that slush (the product of decomposition of snow when it melts) contains lineages of bacteria 

completely different from those of freshly fallen snow, which implies a change in the compo-

sition of the community structure that is post-depositional.

Other studies carried out in Greenland demonstrated that the phylogenetic composition 

of the microbial communities was different within the snow layers [75]. Proteobacteria, 

Bacteroidetes, and Cyanobacteria dominated in the middle and top snow layers, although 
Actinobacteria and Firmicutes were also abundant. In the deepest snow layer, large percent-
ages of Firmicutes and Fusobacteria were found [75]. Large numbers of eukaryotic chloro-

plasts belonging to Streptophyta and Chlorophyta were also observed, demonstrating that 
microeukaryotes were also present in snow. Cyanobacteria and algae were almost exclusively 
found in the top and middle layers of the snow pack which are probably feeding the hetero-

trophic members of the microbial communities.

Some reports have demonstrated that the composition of snow microbial communities 

depends on the proximity to the sea [76]. In glacier snow, typical species of marine environ-

ments such as the Alphaproteobacteria have been found in samples from Antarctica, although 
Bacteroidetes and Cyanobacteria are also present [76].

7.2. Glacier front

Microbial communities in glacier fronts have been especially studied in the Antarctic 
Peninsula which is among the regions with the fastest warming rates, and where regional 

climate change has been linked to an increase in the mean rate of glacier retreat [6].

Archaeal and bacterial 16S rRNA gene sequences obtained from soil samples collected in the 
Wanda Glacier forefield showed that the diversity and richness were surprisingly high, and 
that communities were dominated by Proteobacteria, Bacteroidetes, and Euryarchaeota, with 
many archaeal and bacterial phylotypes yet unclassified (Figure 6(B)). Some of the phylo-

types found were also related to marine microorganisms, indicating the importance of the 

marine environment as a source of colonizers for these recently deglaciated environments [6].

Concerning microbial abundance, some examples have been published. In Greenland glacier 
fronts, between 6 and 30 × 107 cells/ml, it has been reported [77].

7.3. Fore field

It has been published that microbial abundance in an Antarctic glacier (Ecology Glacier) fore-

field is increased along several sampling points from the glacier front to the farther outskirts 
of the glacier [71]. The same effect has been observed in the Peruvian Andes glaciers, where 
abundances of Cyanobacteria and Diatoms increased over the time of succession [62].

Regarding diversity, new soils from recently deglaciated soils are colonized by a diverse 

community of microorganisms during the first years following glacial retreat. Taxonomically 
 microorganisms from Ecology Glacier forefield [71] belonged to the alpha, beta, and gamma 

Glaciers Evolution in a Changing World116



subdivisions of the Proteobacteria and to the Cytophaga-Flavobacterium-Bacteroides (CFB) 
group (Figure 6(C)). Filamentous fungi were relatively abundant and represented mainly by 

oligotrophs.

In the recently deglaciated areas of the Peruvian Andes [62], it has been observed that a sig-

nificant increase in cyanobacterial diversity corresponded with increases in soil stability, 
 heterotrophic microbial biomass, soil enzyme activity, and the presence of photosynthetic 

and photoprotective pigments.

In glaciers, increasing temperature leads to a rapid retreat of ice, which increases water pro-

duction [45, 72]. In glacier forefields, the runoff water of the glaciers can origin rivers and lakes 
[81]. For example, in the High-Arctic, it has been reported that Bacteroidetes, Actinobacteria, 
and Verrucomicrobia were the most abundant phyla in freshwater, while relatively few 

Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distri-
bution of the Cyanobacteria and algae which in turn fed the heterotrophic bacteria [75].

Photosynthetic and nitrogen-fixing microorganisms play an important role in acquiring nutri-
ents and facilitating ecological succession in soils during the first years of succession, many 
years before the establishment of mosses, lichens, or vascular plants [62]. Afterward, species 
of green soil algae are important pioneers in the colonization process of the areas recently 

denuded of ice [72].

At last, soil macrofauna and mesofauna colonize the fore fields. The successional chrono-

sequence of an Alpine glacier was studied at several stages from 4 to 150 years of age since 
deglaciation [73]. Within the first 50 years, macrofauna biomass and mesofauna abundance 
increased rapidly, and successional age was the major determinant of community composi-

tion [73]. Some studies about soil mesofauna in high alpine ecosystems of the Central Alps 
demonstrated the shifts in species richness and density of arthropod such as oribatid mites 

[82]. In newly formed soils, some arthropods populate new soils, which in turn, promote the 

growth of fungi and bacteria and contribute to the formation of the new soil microstructure 

[82]. Nevertheless, these new fungi and bacteria are different from those that used to live 
in glaciers, as the novel species of plants and animals, contain associated microorganisms; 

for example, new microorganisms contained in animal droppings or symbiotic rhizosphere 

microbial communities associated to plants [65].

Microbial ecology can be a tool for monitoring the biological change that happens in retreat 

glaciers. Ecological researches conducted along deglaciated chronosequences in some glaciers 

have been carried out in order to understand the development of ecosystems. In these studies, 

distance from a receding glacier is used as a proxy for soil age, with older soils being further 

from the glacier front [62].

8. Conclusion

In summary, glaciers are retreating in many areas of the world due to global warming, 

and many of them will be severely affected or will disappear in a few years. Glaciers are 
unique biomes dominated by microbial communities which maintain active biochemical 
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routes. Their metabolic activity plays an important role in glaciers, mainly carrying out key 

processes in the development of soil, changing biogeochemical cycling, altering the com-

position of runoff waters and facilitating plant and animal colonization when glaciers have 
ultimately retired. These processes impact the planet not only locally but also globally. 

Microorganisms are perfectly adapted to their harsh environment and are very suscep-

tible to environmental changes. Colonization and primary succession of a recently deglaci-
ated area implies that the abundance of microorganisms increases along deglaciated areas. 

Yet, at the same time, the diversity of microbial populations changes. In many cases, the 

number of different species may be lower than it is in the glacier. Thus, abundance and 
distribution of microorganisms can be considered indicative of the conservation status of 

glaciers, because alterations in their abundance and distribution depend on glacier condi-

tions. Microbial ecology can be a tool for monitoring the biological change that happens in 

retreat glaciers.
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