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Abstract

The aim of the present paper is to make a review of the properties of dental alloys, fabri-
cated using Additive Technologies (AT). The microstructure and mechanical properties 
of Co-Cr alloys as well as the accuracy and surface roughness of dental constructions 
are discussed. In dentistry two different approaches can be applied for production of 
metal frameworks using AT. According to the first one the wax/polymeric cast patterns 
are fabricated by 3D printing, than the constructions are cast from dental alloy with as-
printed patterns. Through the second one the metal framework is manufactured form 
powder alloy directly from 3D virtual model by Selective Electron Beam Melting (SEBM) 
or Selective Laser Melting (SLM). The microstructure and mechanical properties of Co-Cr 
dental alloys, cast using 3D printed patterns, are typical for cast alloys. Their dimensional 
and adjustment accuracy is higher comparing to constructions, produced by traditional 
lost-wax casting or by SLM. The surface roughness is higher than that of the samples, cast 
by conventional technology, but lower comparing to the SLM objects. The microstructure 
of SLM Co-Cr dental alloys is fine grained and more homogeneous comparing that of the 
cast alloys, which defines higher hardness and mechanical properties, higher wear and 
corrosion resistance.

Keywords: materials science and engineering, biomaterials, regenerative stomatology, 
additive technologies, Co-Cr dental alloys, microstructure and properties

1. Introduction

Dental alloys on the basis of cobalt and chromium are one of the most preferred for production 

of metal frameworks of dental constructions because of their high strength, high corrosion and 

wear resistance, high biocompatibility, and a relatively low cost [1, 2]. The chemical composi-

tion of Co-Cr dental alloys consists of 53–67% of Co, 25–32% of Cr, 2–6% of Mo, and small 
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quantities of W, Si, Al, and others [3]. Cr, Mo, and W are added for strengthening of the solid 

solution. Due to the relatively large amount of Cr, dense passive layer of Cr
2
O

3
 with 1–4 nm 

thickness on the surface as well as carbides in the microstructure of the details is formed, deter-

mining the high hardness, high corrosion, and wear resistance [4, 5]. According to the phase 

diagram, Co-Cr dental alloys are characterized with face-centered cubic (fcc) lattice, γ phase in 
high temperatures, and with hexagonal close packed (hcp) lattice, ε phase in room temperature 
[4, 6]. The γ phase defines the ductility, while the ε phase defines the corrosion and wear resis-

tance of the alloy [7]. In proper alloying, the microstructure of the Co-Cr dental alloys consists 

mainly of γ phase and carbides of the M
23

C
6
 type [4]. Therefore, the properties of Co-Cr dental 

alloys depend on the ratio between γ/ε phases and the type, quantity and distribution of the 
carbide phase in the microstructure.

The microstructure and properties of dental alloys depend on the manufacturing process and 

the technological regimes. Since the beginning of the last century, casting is the most com-

mon technology for production of metal constructions in dentistry. During this conventional 

technology, the metal frameworks are fabricated by centrifugal casting using hand-built wax 
patterns. The technological process is characterized with large amount of manual work, and 
although it is performed by a qualified dental technician, it can lead to low accuracy and 
satisfactory quality. The advent of the modern CAD/CAM systems and the additive tech-

nologies in the last 30 years of the last century allow to decrease the amount of manual work 

and production time, to improve the quality of dental constructions and as a consequence to 

reduce their price [8, 9].

The additive technologies (AT) are developed in the late 1980s as an alternative of the subtrac-

tive technologies. They are characterized with building of one layer at a time from a powder 

or liquid that is bonded by means of melting, fusing, or polymerization. The American Society 

for Testing and Materials (ASTM) defined additive manufacturing as ‘the process of join-

ing materials to make objects from 3D model data, usually layer upon layer, as opposed to 

subtractive manufacturing methodologies’ [8–10]. These processes are also known as ‘three-
dimensional printing’, ‘layered manufacturing’, ‘free-form fabrication’, ‘rapid prototyping’ 
and ‘rapid manufacturing’ [9–11]. The ASTM international committee, intended for specifica-

tion of standards for additive manufacturing—ASTM F42—created a categorization of all 3D 

printing technologies into seven major groups [11]. According to it, the following 3D printing 

technologies are used in work with biomaterials: 3D plotting/direct ink writing, laser-assisted 
bioprinting, selective laser sintering, stereolithography, fused deposition modeling, and 

robot-assisted deposition/robocasting. The stereolithography (SLA), fused deposition model-
ing (FDM), selective electron beam melting (SEBM), selective laser sintering (SLS), selective 

laser melting (SLM), and ink-jet printing (IJP) are among the AT, mostly used in the dental 

medicine [8, 9, 12–15].

During the SLA process, a concentrated beam of UV light is focused on the surface of a tank 

filled with liquid photopolymer. As the light beam draws the object on the surface of the liq-

uid, each time a layer of resin is polymerized or cross-linked until the real object is obtained 

[8, 9, 12, 14, 16]. The FDM characterizes with extruding the thermoplastic materials through 
heated nozzle, or the material is fed from a reservoir through a syringe [9, 12, 16]. By SEBM, 
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the parts are manufactured by melting metal powder layer per layer with an electron beam 

in a high vacuum [8, 9, 14, 16]. In SLS/SLM technology, layers of particular powder material 
(mainly polymers and porcelains in SLS and pure metals or alloys in SLM) are fused into a 

real detail by a computer-directed laser [8, 9, 12, 17]. During IJP process, an extremely small 
ink droplet is ejected toward the substrate. Different substances can be used as ink aqueous 
solution of colouring agents and binders to a ceramic suspension to produce zirconia dental 

restorations [8, 9, 12, 18]. Another variant of the IJP is by depositing droplets of a polymer, and 

each formed layer is cured by UV light, which allows polymer material with characteristics 

similar to the technical wax to be used [8, 9, 13].

The main advantages of AT include production of complex objects from different materials—
polymers, composites, metals and alloys; manufacturing of parts with dense/porous structure 
and predetermined surface roughness and controllable, is an easy and relatively quick process 

[9]. Due to the various materials used and the great variety of additive manufacturing processes, 

AT can be successfully applied in many fields of dentistry for the production of different types of 
dental constructions. AT give even opportunities to fabricate structures of hard-to-handle materi-

als such as cobalt and chromium alloys [19]. Polymeric study models instead of dental plaster 

casts, surgical guides for placement of dental implants, temporary crowns and bridges as well 

as resin models for lost-wax casting can be fabricated by SLA and FDM [8, 9, 12, 20–22]. SEBM 

and SLM are used for manufacturing of customized implants for maxillofacial surgery, dense or 
porous dental implants, dental crowns and bridges as well as partial denture frameworks [23–31]. 

IJP is suitable for printing of zirconia dental restorations, polymeric dental models, orthodontic 

bracket guides, wax patterns of complete dentures, or wax models for casting [8, 9, 32, 33].

There are two main approaches for the production of metal constructions from Co-Cr dental 

alloys using AT. The first one concerns to the fabrication of wax/polymeric cast patterns by 
3D printing, and the second one is casting of the framework from dental alloy. Through the 

second one, the metal object is manufactured directly from the 3D virtual model by SEBM or 

SLM. As the additive technologies are relatively new, develop extremely fast and with their 
indisputable advantages enter in many areas, so their implementation into the dentistry is 

faster than the research and data about the quality of the details produced by them. The aim 

of the present chapter is to make a review of the properties of dental alloys, fabricated using 

additive technologies. The microstructure and mechanical properties of Co-Cr alloys as well 

as the accuracy and surface roughness of dental constructions are discussed.

2. Properties of Co-Cr dental alloys cast with 3D-printed patterns

The wax/polymeric cast patterns can be produced from generated 3D virtual models by laser-
assisted or digital light projection (DLP) stereolithography, fused deposition modeling, and 

ink-jet printing. The type of the additive manufacturing process, the parameters of its techno-

logical regimes, and the properties of the used materials influence mainly on the geometrical 
characteristics, adjustment accuracy, and surface roughness of the cast patterns [33–36], thus 

defining the accuracy and surface quality of the cast dental constructions. As with any AT, 
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the layer's thickness, the position of the object toward the print direction, and the optical 

properties of the polymers (in SLA) have a decisive effect on the object's accuracy. The thinner 
the layer, the lower the angle to the print direction, and the lower the surface roughness, the 

higher the resolution and the dimensional accuracy, but the longer the production time [37].

The accuracy of dental constructions, produced by the modern CAD/CAM systems, is defined 
in the standard ISO 12836:2015 ‘Dentistry—Digitizing devices for CAD/CAM systems for 
indirect dental restorations—Test methods for assessing accuracy’ [38]. Three standardized 

geometrical figures for accuracy evaluation are described in its Annexes A, B, and C [38]. 

Braian et al. [39] used the figures in the Annexes A and C, specifying the measurement of an 
inlay-shaped object and a multiunit specimen to simulate a four-unit bridge, for determining 

the production tolerances of four commercially available additive manufacturing systems, 

working on the SLS, multi-jet, or poly-jet principles. The samples were printed with different 
layer's thicknesses, optimal for each system, and ensuring the highest product's accuracy (as 

per the equipment manufacturer). According to the ISO/IEC GUIDE 99:2007(E/F) [40], the 

‘accuracy’ is the closeness of agreement between a measured quantity value and a true quan-

tity value of a measured object. The authors [39] defined the terms ‘resolution’ and ‘repeat-
ability’. The resolution refers to the smallest feature that the system can produce, while the 

reproducibility is described as the system ability to produce consistent output time after time. 

The researchers established that the accuracy of both types of samples, produced with four 

printers, is different in the three directions. The multi-jet printing ensures the highest accu-

racy of the linear as well as angular dimensions, followed by poly-jet process and SLS. It was 

concluded that the suitable type of printer should be chosen according to the intended dental 

application.

In evaluation of restorations, fabricated by digital technologies, subtractive (milling of wax 
and zirconia) and additive (SLA of photopolymer and SLS of Co-Cr alloy), Bae et al. [41] 

found out that the dimensions of the samples of all four groups are smaller than the refer-

ence data. Concerning to the repeatability of AT, they established the smallest difference 
from the reference data in the specimens, fabricated using SLA, and no significant differ-

ences between the SLA and SLS methods. Therefore, they concluded that the accuracy of 

additive manufacturing methods is better than the subtractive ones, as the mean accuracy 
discrepancies are the smallest for SLA, followed by the SLS, wax, and zirconia milling. But 
they pointed out the following as disadvantages: the print layers, clearly seen on the sur-

face of the SLA sample, and circular, sunken forms of approximately 80 μm in diameter 
on the SLS specimen surface. The investigations of Mai et al. [42] proved that the crowns 

fabricated by CAD/CAM systems (milling and polymer-jet 3D printing) have higher fitting 
accuracy than that of the molded ones. Among them, the polymer-jet 3D printing signifi-

cantly enhanced the fit of the interim crowns, particularly in the occlusal region. According 
to Kim et al. [43], the fitting accuracy of dental crowns is affected by the number of copings 
fabricated by micro-stereolithography. Based on the marginal discrepancy, the most precise 

copings are printed when three arrays are used on a single-built platform. Therefore, there 

are limitations concerning to the reproducibility and accuracy of polymeric dental construc-

tions, manufactured by 3D printing.
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Ishida and Miyasaka [44] investigated the accuracy of the patterns for casting of all metal 
crowns, manufactured by four 3D printers, using different manufacturing processes: laser-
assisted SLA, SLA with concentrated UV beam, FDM, and IJP. They established that in all 

types of manufacturing process, the outer and the inner diameters of the crowns are smaller 

than that of the virtual 3D model, which could be compensated with 3–5% increasing the 

dimensions of the virtual model. The FDM-printed crowns are characterized with the highest 

surface roughness, while the lowest is typical for the crowns, fabricated by laser-assisted SLA. 

Additionally, the difference of the roughness values along the 3D axes exists. They estab-

lished that the roughness along the tooth axis of the crown created by laser-assisted SLA was 
the smallest, while that along the horizontal direction of the crown printed by multi-jet mod-

eling (MJM) was the smallest. This can be explained with the specific features of the additive 
manufacturing process [8, 12, 45].

The higher roughness of the surfaces, parallel, or inclined to the print direction (Z axes), com-

pared to that along X and Y axes is also established in the research of Dikova et al. [46]. Their 

investigations of cubic samples, printed with different polymers by DLP SLA, show that the 
roughness of the surfaces of the cubes with horizontal position toward the basis is less than 

those of the cubes, printed inclined in almost all types of polymers. All sizes of the cubes in 

both positions are larger than the size of the virtual model. In their subsequent investigations 

[47], it is observed that the decrease of the layer's thickness from 50 (recommended by the 

equipment manufacturer) to 35 μm leads to nearly twice decrease of the surface roughness 
of the samples, made of resin NextDent Cast (developed especially for manufacturing of cast 
patterns), in both printing positions. It also leads to the highest dimensional accuracy and 
the least interval of deviation. The research team has shown that the dimensions, parallel to 

the basis, axes X and Y, are the most precise, while those, parallel or inclined to the print-

ing direction, axis Z, are the most deviating. The dimensional and adjustment accuracy as 
well as the surface roughness of four-part dental bridges, made of polymers NextDent Cast 
and NextDent C+B (for temporary crowns and bridges) by DLP SLA, are investigated in the 
work of Dikova et al. [48]. They established that the dimensions in both directions of the 

bridges from both polymers, fabricated with less layer's thickness of 35 μm, are smaller with 
0.29–1.10%, compared to those of the virtual model, while the sizes of the bridges with larger 

layer's thickness of 50 μm are 1.51–3.45% more than the virtual model. Dimensions of the 
samples of both polymers, situated in the building direction, are larger with 1.51–3.45%, and 

those, which are not in the print direction, are 0.49–0.53% smaller than those of the virtual 

3D model. The inaccuracy in the geometrical dimensions causes inaccuracy of adjusting and 

absence of gap between the bridge constructions and the gypsum model. The surface rough-

ness of the cast patterns, manufactured with regime, recommended by the producer (50 μm 
layer's thickness), is relatively high with average arithmetic deviation of the surface rough-

ness Ra = 3.24 μm. Decreasing the layer's thickness to 35 μm leads to the lower surface rough-

ness of Ra = 2.18 μm. The surface observations with optical microscopy proved the layered 
structure, which is a specific feature of the objects built up via stereolithography. The higher 
roughness of the 3D-printed cast patterns can complicate the cast process and cause higher 
roughness of the cast itself.
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The geometrical accuracy of fixed dental prostheses, manufactured by additive technologies, 
is investigated in Ref. [49]. Four-part dental bridges are produced of Co-Cr alloy by three 

technological processes: conventional lost-wax casting with wax models, manufactured in 
silicon mold; lost-wax casting with 3D-printed (multi-jet modeling (MJM) cast patterns, and 
direct fabricating by SLM. It was established that the surface roughness of Co-Cr fixed partial 
dentures, cast with 3D-printed wax patterns, is more than three times higher than the rough-

ness of dentures, cast by conventional lost-wax technology (Ra = 3.39 μm and Ra = 1.11 μm, 
respectively). The surface observation of Co-Cr dental bridges proves the higher roughness as 

well as the traces of the layered manufacturing of the cast patterns, left even after sandblast-
ing. The fixed partial dentures, cast with 3D-printed cast patterns, possess higher accuracy of 
the shape, sizes, and adjustment compared to the dentures, produced by conventional lost-

wax casting. This is mainly due to the minimal manual work, because 3D-printed cast pat-
terns are produced directly from the virtual model.

The microstructure of Co-Cr sample, cast with 3D-printed pattern (MJM), is a typical cast 
microstructure—inhomogeneous, consisting of large grains with dendrite morphology [50]. 

A large amount of lamellar and blocky carbides of different sizes are located mainly along the 
grain boundaries. The dendrites consist of γ phase, while the inter-dendritic regions consist 
of microeutectic (Co solid solution with intermetallic precipitations) and carbides of the (Cr, 

Mo)
23

C
6
 type. The hardness of the Co-Cr samples, cast with 3D-printed patterns, is in the 

range 327HV–343HV with uneven distribution due to the inhomogeneous microstructure. 

The dendritic grains with intermetallic phases, precipitated along the grain boundaries, were 

observed in the microstructure of the samples, cast with 3D-printed patterns from Co-Cr alloy 
remanium star CL by Kim et al. [51]. They characterized with yield strength 540 ± 20 MPa, 

mean percent elongation 10 ± 2 and Young's modulus 260 ± 20 GPa.

The microstructure and strength properties of Co-Cr dental alloys, cast with 3D-printed pat-

terns, are typical for castings. Their dimensional and fitting accuracy is higher than that of 
the constructions, manufactured by conventional casting, while their surface roughness is 

more than three times higher. Therefore, the dimensional and fitting accuracy and the surface 
roughness of Co-Cr dental substructures are strongly influenced by the quality of the cast 
patterns fabricated via AT. The data about the dimensional accuracy of wax/polymeric dental 
constructions, produced by different additive manufacturing processes, are contrary. In some 
cases, the dimensions of the printed objects are smaller than the virtual model; in another 

case, they are larger. It depends not only on the type of the manufacturing process but also 

on the scale factor—the sizes of the printed object. As a consequence of the low dimensional 

accuracy, the fitting accuracy is lower. The strategy of printing should be chosen very care-

fully, because too much objects in the same built platform can cause lower dimensional and 

fitting accuracy. Due to the features of the 3D printing processes, the sizes of the detail can 
be different in the three directions X, Y, and Z; therefore, it should be paid attention to the 
position of the object, especially toward the print direction. This will influence the surface 
roughness, too. The parameters of the technological regimes also influence the dimensional 
accuracy. Decreasing the layer's thickness leads to smaller sizes and lower roughness, which 

in some cases defines the higher accuracy. The special requirements to the materials, used for 
3D printing of cast patterns, exist—to have no burned out residue and null or minimal ther-

mal expansion—otherwise, the casting with low quality will be the result.
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For fabricating the high-quality castings from Co-Cr dental alloys using 3D-printed patterns, 
some steps concerning to the processes of 3D printing and casting should be observed. In 3D 

printing (1) the printer, ensuring the cast pattern with high dimensional and fitting accuracy 
and satisfactory surface roughness, has to be chosen. The present review shows that the sys-

tems, working on the principle of the laser-assisted SLA, DLP SLA, MJM, and polymer-jet 

printing, are good candidates; (2) As each printer works with its specific materials, the right 
material, meeting the requirements for manufacturing the cast patterns, should be used; 
(3) The optimal technological regime has to be chosen, including the layer's thickness; (4) 

The strategy of printing has to be developed—positions, and the number of the objects; (5) 

Preliminary tests, calibration on the three axes X, Y, and Z of the printer and compensation 

(if needed), have to be done to guarantee dimensions with high accuracy; and (6) 3D print-

ing, post-curing (in some processes), and final surface treatment to enhance the smoothness. 
In the second part, the casting processes are (1) selection of the investment material, relevant 

to the material of the 3D-printed cast pattern, should be done for manufacturing casting 
mold; (2) heating of the casting mold with temperature regime concerning to the material of 

the 3D-printed cast pattern and the Co-Cr alloy and (3) casting with the given Co-Cr alloy, 
keeping the manufacturer's requirement.

3. Properties of Co-Cr dental alloys fabricated via SLM

The properties of the Co-Cr dental alloys depend on the microstructure, its morphology, and 

composition, which are defined by the manufacturing process and the technological regimes. 
The SLM is a complex thermophysical process, depending on a number of important param-

eters. During SLM, layers of metal powder are fused into a real object by a computer-directed 

laser. The process characterizes with high heating and cooling rates, leading to fine-grained 
microstructure of the solidified layer. As the heat is led away through the solid body, phase 
transformations run in the underneath layers heated above the transition temperatures [50]. 

Due to the high-temperature gradients during the SLM process, high residual stresses are 

generated in the details, which can cause subsequent deformations [17, 52–54]. These charac-

teristics determine the specific microstructure and properties of the objects, produced by SLM 
as compared with that, manufactured by casting. The main technological parameters that are 

crucial for the production of high-quality construction are the laser power, scanning speed, 

laser beam diameter and distance between the traces, layer's thickness, and the working area 

[55–58]. In the development of any process for production of an object by SLM, it is necessary 

to evaluate the density, accuracy, surface roughness, hardness, and strength properties.

In SLM process, the volume of the molten metal depends on the volume energy density E
v
, 

which is directly proportional to the power density N
s
 and inversely proportional to the scan-

ning speed V. If the volume energy density E
v
 is insufficient, the incomplete melting of the 

deposited layer will occur. Therefore, the lower volume energy density E
v
 is the main rea-

son for the porous structure [50]. This can be avoided by optimization of the technological 

parameters—increasing the laser power or decreasing the scanning speed. Varying with the 

input energy and scan spaces, Takaichi et al. [59] established that dense structure of SLM 

Co-29Cr-6Mo alloy can be obtained when the input energy of the laser scan increased more 
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than 400 J/mm3 and porous, in input energy less than 150 J/mm3. Vandenbroucke and Kruth 

[60] ensured 99.9% density of the SLM Co-Cr-Mo alloy, working with optimized techno-

logical regime. In the investigation of the possibility for manufacturing of three-part dental 

bridge from Co-Cr alloy by SLM, Averyanova et al. [29] stated that all samples are densed 

with porosity less than 1%.

The specific features of the SLM process, characterizing with high heating and cooling rates, 
define unique microstructure of Co-Cr dental alloys and mechanical properties higher than 
that of the cast alloys. Meacock and Vilar [61] reported that the microstructure of biomedical 

Co-Cr-Mo alloy, produced by laser powder micro-deposition, is homogeneously composed of 

fine cellular dendrites. The average hardness was 460 HV0.2, which is higher than the values 
obtained by the other fabrication process. In investigation of Co-Cr-Mo parts, produced by 

direct metal laser sintering, Barucca et al. [62] established that the microstructure consists of γ 
and ε phases. The ε phase is formed by athermal martensitic transformation, and it is distrib-

uted as network of thin lamellae inside the γ phase. The higher hardness (47 HRC) is attrib-

uted to the presence of the ε-lamellae grown on the {111}γ planes that restricts the dislocation 

movement in the γ phase. Lu et al. [63] investigated the microstructure, hardness, mechani-

cal properties, electrochemical behaviour, and metal release of Co-Cr-W alloy fabricated by 

SLM in two different scanning strategies—line and island. They established the coexistence 
of the γ and ε phases in the microstructure and nearly the same hardness, 570 HV for line-
formed alloy and 564 HV for island-formed alloy. Their research shows that the results of 

tensile strength (1158.22 ± 21 MPa for line scheme and 1115.56 ± 19 MPa for island scheme), 

hardness, density, electrochemical, and metal release tests are independent of the scanning 

strategy, and the yield strength of both samples meets the ISO 22764:2006 standard for dental 

restorations. The tensile strength of two Co-Cr dental alloys—cast remanium GM and SLM 
F75— was investigated in the work of Jevremovic et al. [64]. They established more than 1.5 

times higher tensile strength of the SLM samples compared to the cast ones (1363–1472 MPa 

and 900 MPa, respectively). Vandenbroucke and Kruth [60] did complex investigation of SLM 
titanium and Co-Cr-Mo alloys. The mechanical tests proved that the SLM Co-Cr details fulfil 
the requirements for hardness, strength, and stiffness. Concerning to the corrosion—the SLM 
Co-Cr samples showed lower emission than the cast ones due to the more homogeneous and 

finer microstructure of the laser molten material.

In investigation of the influence of the object's position to the building direction, some research-

ers established anisotropy of the mechanical properties and especially of fatigue strength. The 

microstructure and mechanical properties of SLM Co-29Cr-6Mo alloy were studied out in the 

work of Takaichi et al. [59]. Unique microstructure was formed, consisting of the fine cellular 
dendrites in the elongated grains, parallel to the building direction. The cellular boundaries 

were enriched with Cr and Mo, and the γ phase was dominant in the SLM building. Due 
to the unique microstructure, the mechanical anisotropy was confirmed in the samples, but 
the yield strength, Ultimate Tensile Strength (UTS), and elongation were higher than that of 

the cast alloy. The research of Kajima et al. [65] shows that the microstructure of SLM speci-

mens of Co-Cr-Mo alloys is quite different from those of the cast samples, which consists of 
coarse dendrites with visible precipitates in the inter-dendritic regions. The fine cellular den-

drites with diameter about 0.5 μm were observed in the SLM samples parallel to the building 
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direction, while in directions, perpendicular or inclined at 45° to the building direction, fine 
columnar structures with diameter about 0.5 μm, elongated along the building direction, were 
found. In lower magnification, gradual arch-shaped molten pool boundaries, typical for the 
SLM process, were observed. The tensile strength of the three groups of specimens is in the 

range 1170–1274 MPa, which is higher than that of the cast samples. Concerning to the fatigue 

strength, the results confirmed the anisotropy of the SLM alloy. The samples, parallel to the 
building direction, exhibit significantly longer fatigue life than the cast specimens, while the 
fatigue life of the two groups is significantly shorter than that of the cast specimens.

The research of Kim et al. [51] shows that the SLM Co-Cr alloy remanium star CL clearly 

exhibits the laser scan traces, as in higher magnification, the presence of fine grains with sizes 
about 35 μm can be recognized. The SLM samples showed the highest mean ultimate tensile 
strength, followed by milled/post-sintered, cast, and milled samples. The yield strength and 
mean percent elongation of SLM alloy were higher than the cast alloy (R

0.2
 = 580 ± 50 MPa and 

R
0.2

 = 540 ± 20 MPa, respectively), while Young's modulus was lower (200 ± 10 GPa for SLM 
and 260 ± 20 GPa for cast). A high yield strength and relatively low but sufficient modulus 
of elasticity of the SLM samples allow this technology to be used for manufacturing dental 

constructions, such as removable partial dentures, clasps, thin-veneered crowns, and wide-

span bridges.

Averyanova et al. [29] investigated three-part dental bridge of Co-Cr alloy, manufactured 

by SLM. The hardness of the SLM Co-Cr alloy is in the range of 400 ± 14 HV10 and 462 ± 22 

HV0.05, while the average tensile strength is 1157 MPa, which is equal to that of the wrought 

alloy and about twice higher than the cast Co-Cr alloy (655 MPa). The microstructure of SLM 

dental bridges is nonequilibrium, consisting mainly of 98.7 ± 1.8% fcc Co-rich solid solution 

and 1.3 ± 0.5% of hcp ε phase. The investigation of Dikova et al. [50] established similar hard-

ness of Co-Cr four-part dental bridges, produced by SLM (407–460 HV), which is higher than 

the cast alloy and has nearly even distribution along the depth of each crown. Their subse-

quent investigations [66] show that the tensile strength and the yield strength of the SLM 

Co-Cr alloy are higher than the cast alloy (R
0.2

 = 720 MPa and R
0.2

 = 410 MPa, respectively), 

while the elastic modulus is comparable (213 and 209 GPa, accordingly). The higher hardness 
and more homogeneous microstructure of SLM Co-Cr dental alloys determine their higher 

wear and corrosion resistance [67].

The specific features of the SLM process and the parameters of the powder materials used 
determine the high surface roughness of the SLM Co-Cr dental alloys. The object position and 

orientation to the building direction as well as the choice and modeling of the supports are 

also of great importance [58]. The accuracy and the relation between the surface roughness 

and the sloping angle were researched in Ref. [60] using special benchmark models. It was 

proven that the surface roughness depends on the layer's thickness and sloping angle to the 

basis. The average arithmetic deviation of the surface roughness Ra varies between 6–18 μm 
for 20 μm layer's thickness and 13–33 μm for 50 μm layer's thickness. The higher values con-

cern to the lower sloping angle to the basis of 8°, while the lower values for the larger angle 

of 70°. The research of Kajima et al. [65] confirmed that the surface roughness depends on 
the building direction. It is the lowest in the samples, perpendicular to the building direction, 
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Ra = 10.22 μm, followed by that of the samples, inclined at 45o with Ra = 13.67 μm, and the 
highest in the samples, parallel to the building direction, Ra = 18.17 μm. It was established 
in Ref. [49] that the roughness of the vestibular surface of the second premolar of four-part 

dental bridge, manufactured by SLM, is nearly four times higher than the roughness of the 

conventional cast bridge (Ra = 4.24 μm and Ra = 1.11 μm, respectively) and 25% higher com-

pared to that cast with 3D-printed patterns (Ra = 4.24 μm and Ra = 3.39 μm, respectively). It is 
proposed that the considerably higher roughness and partially melted powder on the surface 

of the SLM samples could lead to the increase of the mechanical as well as the chemical com-

ponents of the adhesion of the porcelain to the Co-Cr alloys, thus promoting higher adhesion 

strength of the porcelain coating.

Concerning to the standard ISO 9693-1:2012 [68], the minimum acceptable bond strength of 

metal-ceramic is 25 MPa. Kaleli and Sarac [69] compared porcelain bond strength of Co-Cr 

frameworks manufactured by conventional lost-wax technique, milling, direct metal laser 
sintering (DMLS), and direct process powder-bed method. There was no significant differ-

ence between the values of porcelain bond strength to the samples, produced by different 
methods. The mean bond strength was 38.08 MPa for cast samples, while that of the DMLS 

samples was 40.73 MPa. The type of failure of the cast samples was adhesive/mixed, while 
that of the DMLS samples was cohesive/mixed. Li et al. [70] confirmed that there are no 
significant differences between the bond strength of the cast, milled, and SLM Co-Cr alloys. 
The milled and SLM groups showed significantly more porcelain adherence than the cast 
group. Akova et al. [71] also revealed no statistically significant difference of the shear bond 
strength of porcelain to the cast and SLM Co-Cr dental alloys (72.9 and 67.0 MPa, respec-

tively). The failure type of the porcelain of the cast samples was of the mixed adhesion-
cohesion type, while the failure of the SLM samples was of the mixed/adhesive type. The 
similar porcelain bond strength to the cast and SLM Co-Cr dental alloys was confirmed in 
the work of Wu et al. [72]—54.17 and 55.78 MPa accordingly. They established that the SLM 

alloy had an intermediate layer with elemental interpretation between the alloy and the 

porcelain, resulting in an improved bonding strength. Xiang et al. [73] established no sig-

nificant difference for the mean bond strength of the SLM (44 MPa) and traditional cast (43 
MPa) Co-Cr samples. A mixed fracture mode on the debonding interface of both the SLM 
and the cast groups was observed, but the SLM group showed significantly more porcelain 
adherence. Only Wang et al. [74] stated that there are statistically significant differences 
of the porcelain bond strength to the cast, CNC milled and SLM Co-Cr samples (37.7 ± 6.5 

MPa, 43.3 ± 9.2 MPa and 46.8 ± 5.1 MPa, respectively), as the debonding surface of the all 

samples was of the cohesive failure mode. It should be noticed out that the surface rough-

ness of the SLM samples decreases two–three times after sandblasting before porcelain fir-

ing (from Ra = 15 μm of as-received SLM Co-Cr samples to Ra = 8 μm of glass blasted and to 
Ra-5 μm in ultrasonic ceramic field) [60]; as in the most cases, the physical appearance and 

the surface quality are similar to the conventionally manufactured by investment casting 

[58]. Current investigations show that the SLM metal-ceramic system exhibits a bonding 
strength that exceeds the requirement of ISO 9691: 1:2012. It even shows a better behaviour 
in porcelain adherence comparable to the traditional cast methods.
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The higher roughness of SLM Co-Cr alloys can cause lower dimensional accuracy and com-

paratively satisfactory adjustment accuracy in comparison to the objects, cast by conventional 

technology or with 3D-printed patterns. In SLM of Co-Cr-Mo alloy, Vandenbroucke and Kruth 
[60] established the process accuracy below 40 μm, which fulfil requirements of most medical 
and dental applications. According to Bibb et al. [30], SLM-manufactured Co-Cr frameworks for 

removable partial denture possess accuracy and quality of fit comparable to the existing tradi-
tional methods used in the dental laboratories. Averyanova et al. [29] confirmed that the geo-

metrical accuracy of three-part dental bridge of Co-Cr alloy, produced by SLM, is comparable 

to that of the substructures, produced by conventional technology. The good repeatability of the 

SLM process in manufacturing Co-Cr four-part dental bridges was reported by Dzhendov et al. 

[49]. The maximal deviations of the dimensions of SLM bridges were the lowest compared to 
the conventional casting and casting with 3D-printed patterns. But the dimensions of the SLM 
dentures were lower than that of the base model with −0.07/−0.23 mm. The adjustment accuracy 
of the SLM bridges is comparable to that of the bridges, cast with 3D-printed patterns, and is 
higher than that of the conventionally cast dentures.

There is no consensus regarding the clinically acceptable limits of marginal fit of dental res-

torations. Most researchers agree on an acceptable marginal discrepancy (distance from the 

abutment margin to the metal coping in a straight line) below the range of 100–120 μm [75], 

as values, greater than 120 μm, are considered not clinically acceptable [76–78]. The research 

of Kim et al. [75] stated that the marginal fit values of the Co-Cr alloy greatly depended on the 
fabrication methods and, occasionally, on the alloy systems. They found out that the marginal 

discrepancy of the SLM crowns (98.7 μm for 20-μm-thick layer and 128.8 μm for 30-μm-thick 
layer) is larger than the cast crowns (65.3–70.4 μm). In SLM samples, the marginal discrepancy 
increases with the increase of the layer's thickness. Kaleli and Sarac [76] compared the marginal 

adaptation after fabrication of the framework, porcelain application, and cementation of metal-

ceramic restorations prepared by conventional lost-wax technique, milling, DMLS, and a direct 
powder-bed process. They observed the lowest marginal discrepancy values in the crowns, 

prepared by direct process powder-bed method, followed by the DMLS, milling, and casting. 

The research of Pompa et al. [77] concerns to the differences of marginal fit of laser-fused and 
conventional technologies for production of fixed dental prostheses. They established that the 
copings, manufactured by SLM, have better marginal adaptation within an acceptable range. 
But the cement gap characterized with irregular distribution was wider in the region of the 

shoulder than at the point of closure. The marginal discrepancy increased after porcelain appli-

cation and cementation. In comparison of the marginal fit of metal laser sintered (MLS) Co-Cr 
alloy copings and conventional cast Ni-Cr alloy copings, Sundar et al. [79] concluded that the 

MLS copings had a better marginal fit and a decrease in micro-leakage compared to the copings, 
manufactured by conventional lost-wax technique. Huang et al. [80] compared the marginal 

and internal fit of SLM metal-ceramic crowns with lost-wax cast ones. They established that the 
SLM Co-Cr metal-ceramic crowns were better in marginal fit, not significantly different in axial 
fit and less accurate in occlusal fit than that of the cast samples. Concerning to the gap distribu-

tion, Tamac et al. [81] reported nearly the same results in comparing the clinical marginal and 

internal adaptation of metal-ceramic crowns, fabricated by CAD/CAM milling, DMLS, and 
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traditional casting. They established that mean marginal gap values were 86.64 μm for milling, 
96.23 μm for DMLS, and 75.92 μm for casting. The gap values in the axial wall region were the 
higher for the three groups of samples, followed by the gap values of axio-occlusal and occlusal 
surface regions. The cement film thickness at the occlusal region and axio-occlusal region was 
higher for the DMLS crowns. Consequently, the laser-assisted technologies for direct produc-

tion of metal dental restorations, such as SLM, SLS, and DMLS, ensure improved or at least 

clinically acceptable fitting values compared with that of the conventional casting.

The Co-Cr dental alloys, fabricated by SLM, characterize with homogeneous fine-grained 
microstructure, consisting mainly of γ and ε phases in different ratios. Their unique micro-

structure defines higher mechanical properties,—hardness, yield and tensile strength, fatigue 
strength as well as higher wear and corrosion resistance—compared to the cast alloys. As 

a consequence of the peculiarities of the SLM manufacturing and the position of the object 

toward the building direction, anisotropy in mechanical properties, especially in the fatigue 

life, can be observed. The work with optimized technological regimes can guarantee the con-

structions with density higher than 99% and comparatively low roughness. But as a whole, 

the surface roughness of the SLM Co-Cr alloys is higher than the alloys, cast conventionally 

or with 3D-printed patterns, due to the specific features of the manufacturing process and the 
use of metal powder as raw material. It was expected that the higher surface roughness could 
decrease the dimensional and fitting accuracy and promote the higher adhesion strength of 
the porcelain coating. But the current review shows that the dimensional accuracy of the 

SLM details is higher than the cast samples and the fitting accuracy is improved or clinically 
accepted, most probably due to the CAD/CAM nature of the manufacturing process, which 
additionally enables high repeatability. Concerning to the adhesion strength of the porce-

lain to the SLM dental alloys, more authors reported that it is comparable with the adhesion 

strength to the cast alloys, which may be due to the decreased roughness of the SLM samples 

after sandblasting before porcelain firing. The Co-Cr dental alloys, fabricated by SLM, comply 
with the standards and requirements concerning the dimensional and fitting accuracy as well 
as strength properties and can be successfully used in production of dental constructions.

4. Conclusion

In dentistry, two different approaches can be applied for the production of metal frameworks 
using AT. According to the first one, the wax/polymeric cast patterns are fabricated by 3D 
printing, and the constructions are cast from dental alloy with as-printed patterns. Through 
the second one, the metal framework is a manufactured form of powder alloy directly from 

the 3D virtual model by SEBM or SLM.

The specific features of the manufacturing processes, the parameters of the technological 
regimes, and the properties of the materials influence on the accuracy and properties of Co-Cr 
dental constructions.

The microstructure and mechanical properties of Co-Cr dental alloys, cast using 3D-printed 

patterns, are typical for cast alloys. Their dimensional and adjustment accuracy is higher 
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compared to the constructions, produced by traditional lost-wax casting or by SLM. The sur-

face roughness is higher than that of the samples, cast by conventional technology, but lower 

compared to the SLM objects.

The microstructure of SLM Co-Cr dental alloys is fine grained and more homogeneous com-

paring to that of the cast alloys, which defines higher hardness and mechanical properties, 
higher wear and corrosion resistance. The surface roughness of SLM Co-Cr dental alloys is 

higher than that of the alloys, cast conventionally or with 3D-printed patterns. The dimen-

sional accuracy of SLM Co-Cr details is higher than the cast samples, while the fitting accu-

racy is improved or clinically accepted.
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