
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 7

Simulating Memristive Networks in SystemC-AMS

Dietmar Fey, Lukas Riedersberger and
Marc Reichenbach

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69662

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Dietmar Fey, Lukas Riedersberger and
Marc Reichenbach

Additional information is available at the end of the chapter

Abstract

This chapter presents a solution for the simulation of large memristive networks with
SystemC-AMS. SystemC-AMS allows simulating memristors both on analogue level and
on digital level to link analogue memristive devices to digital circuits and system level
specifications. We investigate the benefits and drawbacks of a SystemC-AMS simulation
compared to a simulation in SPICE. We show for the example of a two-layer memristive
network emulating an optical flow algorithm by the detection of moving edges that large
memristive networks can be simulated with a free available SystemC-AMS simulation
environment, whereas free available SPICE simulation environment fails. However, it
is also shown that commercial SPICE simulators are superior against current SystemC-
AMS implementations concerning the size of simulated memristive networks. However,
SystemC-AMS simulations of memristive networks offer both still more flexibility and
similar run times compared to commercial SPICE simulators for small-sized memris-
tive networks. The flexibility and the powerfulness of a SystemC-AMS solution is dem-
onstrated for a complex network that solves edge detection, filtering and detecting of
moving objects. The possible run times of the memristive network are determined in the
SystemC-AMS simulation environment and are compared with an optical flow algorithm
on classical hardware like a CPU and a GPU.

Keywords: memristive networks, SystemC-AMS, memristor modelling, optical flow,
SPICE memristor simulation

1. Introduction

One of the missing things in the research on modelling and simulation of large memristor

networks is the availability of an adequate simulation system, which is both fast and flexible.
Available SPICE models offer for commercial products, for example, Spectre Circuit Simulator,

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

fast simulation times but don’t offer flexibility. To establish links to higher abstraction levels,
for example, to the system level, in order to combine memristive circuits with extensive digi-
tal circuits, or even the integration in processor architecture descriptions to execute software
in virtual environments is very cumbersome.

Therefore, we established a model for memristors in SystemC-AMS. A SystemC simulation

can be carried as fast as SPICE simulations but allows a better linking to higher system levels
as it is possible, for example, with Verilog-A, for which already memristor models exist [1].

SystemC-AMS allows also a detailed investigation of the analogue behaviour in the same way

as one it is used it in SPICE.

For the modelling of single memristor behaviour in SystemC-AMS, we used the possibility to

model variable resistors in SystemC-AMS with electrical linear networks (ELNs) as starting

point. The resistance values of such elements can be controlled and modified by a discrete
event input signal. We start to demonstrate this possibility with the well-known SPICE mem-

ristor model from Biolek et al. [2], which is based on an electronic equivalent circuit of the

simple memristor behaviour description from Hewlett-Packard.

However, we do not mimic the electronic equivalent circuit in SystemC-AMS. The memristor

model is realized in SystemC-AMS as an own object-orientated class. Using object-orientated

programming principles allows simply exchanging the model for the memristive behaviour
by another one. In principle, it is possible to use any other model as long as it is specified by a
C/C++ code snippet. We have implemented in SystemC-AMS two memristor models, the HP
model that is also used in Biolek’s SPICE model [2] and a statistic description for a commercial

memristor coming from Knowm Inc. [3].

We demonstrate the usefulness and the strength of a SystemC-AMS-based simulation system
for a three-dimensional (3D) memristive circuit that implements a detection based on an opti-

cal flow. For this application, a memristive network was proposed in Ref. [4]. We adapt this
solution and modelled the complete network in SystemC-AMS. We compare the achieved
results with an implementation on a GPU to evaluate possibilities and limits of the compute

capability of memristive circuits. The chapter is organized as follows. In Section 2, we present

our solution for the modelling of memristors in SystemC-AMS. Section 3 gives a brief insight

in the optical flow algorithm we used for an implementation on a GPU and a multi-core CPU
serving as reference architecture for the simulated memristive network. The correspond-

ing memristor network calculates optical flow gradients as moving edges with a memris-

tive network. We selected exactly this network as a representative complex example for a
SystemC-AMS specification of memristive networks. Section 4 specifies the achieved results
for the simulation and compares it with a GPU/CPU implementation concerning the run time.

Furthermore, the simulation time of a SystemC-AMS specification and a SPICE simulation of
the specific memristive network are compared. Finally, the chapter ends with a conclusion.

2. Modelling memristors in systemC-AMS

SystemC-AMS is an extension of the modelling language SystemC about analogue-
mixed signals. It allows not only the modelling of digital hardware and corresponding

Memristor and Memristive Neural Networks148

 software in one homogeneous environment but also the combination of discrete and con-

tinuous analogue systems. SystemC-AMS contains a solver for the Kirchhoff equations
which are used for the computation of the behaviour of electrical networks. SystemC as

well SystemC-AMS is not a new language but an extension of C++ about a correspond-

ing library. Therefore, it allows the modelling of analogue and digital systems using a

class-orientated structure. This feature is very beneficial for designing complex mem-

ristor networks using different models. Just by instantiating another memristor model
in the SystemC-AMS program, a whole network can be simulated with another mem-

ristor model in a very convenient way. A modification of the electronic network is not
necessary.

SystemC-AMS offers three main options for the modelling of discrete and continuous sys-

tems on different abstraction levels. Furthermore, these models can also be coupled via
matched interfaces. An example scenario for such a coupling of components modelled in
different domains consists of, for example, a binary module that is connected to a linear
electronic circuit. In this case, the binary module could differ between two states which are
used to control a voltage source. According to a state transfer of the binary output, the polar-

ization of the continuous output voltage signal is reversed. For the work presented in this

chapter, we used a proof-of-concept implementation of SystemC-AMS from Accellera and

Coseda Technologies [5], which is freely available under an Apache 2.0 licence. Since this

implementation was developed primarily with respect to its correct implementation of the

IEEE standard 1666.1, the main focus was not laid on the simulation speed. Therefore, it is to

investigate how other possible SystemC-AMS simulators could offer an alternative in future,

resp. a re-evaluation has to be done when the current version of Coseda leaves its current

proof-of-concept state.

2.1. SystemC-AMS modelling options

In the following, we briefly present the above-mentioned three modelling options offered
by SystemC-AMS and evaluate them for their appropriateness to model memristors.

The timed data flow (TDF) model allows the modelling of discrete time steps. Each TDF mod-

ule has a couple of inputs and outputs, which consume an event at discrete time steps. As

result of this occurred event, the module can change its internal state. However, processing

at discrete time steps does not help us to model the analogue behaviour of memristors. The

linear signal flow (LSF) allows solving continuous equations. For that purpose, different basic
blocks like adders, multipliers and integrators are offered, which can be connected and are
processed by a built-in solver for differential equations. Also, this option does not meet our
intention of memristor modelling since LSF is more orientated to model signal-processing

algorithms based on pre-built blocks. The third main modelling method is thought to model

analogue systems as electrical linear networks (ELNs). It allows the set-up and solving of elec-

trical networks by applying the Kirchhoff circuit laws for electronic meshes and nodes. An
electrical network consists of modules which are connected via nodes. Using these laws,

increasing and decreasing currents and voltages can be determined for the devices. Since

memristors are part of electronic circuits, we use this modelling technique primarily for the

memristor modelling.

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

149

In the following, we describe in detail the SystemC-AMS specification we selected for the
memristor modelling. Figure 1 shows a block diagram of the corresponding model. The basic

idea is to model the memristor with a SystemC-AMS built-in data type variable resistor which

allows changing dynamically its resistance by a discrete value. For each memristor in the

simulated network, the voltage, which drops down at its ports p and n, is read out via get_volt-
age() in each simulation step. Depending on the used memristor model, the new memristor’s

memristance is calculated. Subsequently, the new value is assigned to the variable resistance

via assigning a discrete signal by the method set_resistance().

The code fragment shown below is the corresponding SystemC-AMS specification:

1. The memristor is modelled as an object-orientated class Memristor in SystemC-AMS. The

memristance is calculated and stored as discrete variable in R.

2. The memristor has two ports p and n.

3. The memristor device, denoted as memristor_resistor, is modelled as variable resistor. It

inherits its characteristics from the SystemC-AMS built-in type sca_eln::sca_de::sca_r. This

variable is used in the circuit to which an instanced memristor element of the class Memristor

is connected to via the ports p and n.

4. The voltage drop at the memristor can be measured by a kind of display variable out, this

is the readable voltage value, that is given out via the virtual voltage metre vout. The cor-

responding voltage value is stored at memristor_voltage.

5. SystemC uses a discrete-event simulation, for that it is necessary to define a so-called con-

trol port parameter that checks if a signal change occurs at its input. This is the variable

memristor_control. To this port, a signal has to be attached which is memristor_port.

Figure 1. Block diagram for the selected SystemC-AMS model for a memristor.

Memristor and Memristive Neural Networks150

6. The functional behaviour of a memristor, defined by its specific model, is specified by a
later instanced virtual function solve(), which can be implemented in C/C++ code for each

specific memristor model:

//Base class

class Memristor {

public:

double R;

//ports of the memristor

sca_eln::sca_terminal p,n;

//resistor controlled by discrete-event input signal, needs input

sca_eln::sca_de::sca_r memristor_resistor;

//converter and voltage meter

sca_tdf::sca_out<double> out;

sca_eln::sca_tdf::sca_vsink vout;

//systemc ams interface to read voltage over the resistor

sca_tdf::sca_signal<double> memristor_voltage;

//control port of controlled resistor

sc_core::sc_in<double> memristor_control;

//systemc ams interface to set the new resistance

sc_core::sc_signal<double> memristor_port;

//solve must be implemented by the specific model
virtual void solve(const double dt) = 0;

};

A specific memristor is modelled by an inheritance from the class Memristor. This is shown

in the following for the specification of a class MemristorBiolek, which is inherited by the

generic public class Memristor. The functional behaviour of the inherited memristor is orien-

tated to the SPICE equivalent model from Biolek given in Ref. [2]. Some physical features

for the memristor are defined as constants at the beginning like the DRIFT_MOBILITY of

the ions and the LENGTH of the channel of the modelled memristor. Furthermore, variables

for the maximum and the minimum resistance, R_ON and R_OFF, and the width of the

doped region, w, are declared. Furthermore, the class constructor and some parameters

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

151

(R_ON, R_OFF, R_INIT) are defined, which can be passed to the class element when it is
instanced to initialize these memristor parameters. The functionality of the memristor type

is defined by the method solve. A discrete solution of a differential equation for the mem-

ristance change is used; the step width for the integration is defined by dt. The method solve

is the central key of the flexibility in the simulation. It can be changed by another function
to implement another model.

The following SystemC-AMS code sequence shows the specification of a class that models a
memristor’s behaviour specification according to the Biolek model

class MemristorBiolek: public Memristor {

private:

 const double DRIFT_MOBILITY = 440000.0 * pow(10.0, −18.0);
 const double LENGTH = 41.0 * pow(10.0, −9.0);
 double R_ON, R_OFF, w;

public:

MemristorBiolek(const double R_ON, const double R_OFF,

const double R_INIT);

void solve(const double dt, std::function<double(double)>

voltage_function = [](const double val) -> double

{

return val;

}

);

std::string name() const { return "Biolek"; }

};

The following code snippet specifies the constructor for the inherited class MemristorBiolek:

Memristor::Memristor(const double R_INIT): R(R_INIT) {} ;

MemristorBiolek::MemristorBiolek(const double R_ON, const double R_

OFF, const double R_INIT): R_ON(R_ON), R_OFF(R_OFF), Memristor(R_INIT)

{

double x = (R_INIT − R_OFF)/(R_ON − R_OFF);
if (x > 1.0) x = 1.0;

Memristor and Memristive Neural Networks152

if (x < 0.0) x = 0.0;

w = x * LENGTH;

}

The next code sections show the implementation of the method solve() to calculate the mem-

ristance of the memristor. The nonlinear behaviour of the memristor is modelled by the

window function windowBiolek() that was set up by Biolek in Ref. [2] in order to modify the

changing of the width of the memristor’s doped region w at the edges of the device

inline long double windowBiolek(double x, double I,

double const P_WINDOW) const

{

if (−I >= 0)
return 1 - pow(x − 1, 2 * P_WINDOW);
return 1 - pow(x, 2 * P_WINDOW);
}

void MemristorBiolek::solve(const double dt, std::function<double(dou

ble)> voltage_ function) {

double U = memristor_voltage.read(0);

double I = U/R;
R = R_ON * (w/LENGTH) + R_OFF * (1 − w/LENGTH);
double vD = ((DRIFT_MOBILITY * R_ON)/LENGTH) *
I * windowBiolek(w/LENGTH, I, 7.0);
w += vD * dt;
write_resistance();

}

} ;//end of definition of class Memristor

Figure 2 shows multiple overlaid hysteresis curves for the I-U relation at the memristor’s

poles. Throughout, the memristor was simulated with a minimum resistance R
OFF

= 200 Ω,
a maximum resistance R

ON
 = 28 Ω and an initial resistance R

INIT
= 100 Ω. A sinusoidal volt-

age source is attached serially to the memristor. The voltage source is oscillating with 1 kHz
between −1 and 1 V. The simulated time was set to 1 s with a time resolution of 1 µs. It is to
observe that with each oscillation, the hysteresis curve becomes more flat until it ends in a
more or less straight line, that is, the non-linear behaviour disappears.

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

153

3. Simulation of an optical flow algorithm with a memristor
network in SystemC-AMS

In the last chapter, we have shown how to simulate the analogue behaviour of a single mem-

ristor element. The next step is to demonstrate the possibility to simulate a much more com-

plex example, namely the simulation of optical flow as detection of moving edges in a grid
of memristors. The network mimics the functional behaviour of an artificial retina with a
network consisting of resistors and memristors. The network was presented in Ref. [4]. In

the following, we describe the set-up of the memristive network and the necessary functions

to realize the detection of moving edges. We compare in the following the solution with an
optical flow implementation on classical hardware. The optical flow follows the procedure
according to Horn and Schunk [6]. For reasons of completeness, we briefly describe this algo-

rithm first and the corresponding memristive network later as well as its SystemC-AMS speci-
fication developed by us.

Figure 2. Result of SystemC-AMS simulation of a memristor excited by a sinusoidal voltage signal.

Memristor and Memristive Neural Networks154

3.1. Procedure of the optical flow

The procedure of Horn and Schunk was one of the first optical flow methods. It provides a dense
and smooth global result. Global in this sense means that the whole image is considered and not

only a local region around a pixel in order to solve the equation motion for pixels in two sub-

sequent images. In an optical flow procedure, a vector field h is computed according to Eq. (1)

that describes the translation of pixel (x,y) in a two-dimensional (2D) image over time dx

 dt and

dy

 dt .

 h =  (u, v)  =  (dx _
dt

 , 
dy

 _
dt

) (1)

For the calculation of translating pixels, it is assumed that their intensities remain constant
after the translation. That means, a pixel, which is moved between two images I(x,y,t) and

I(x,y,t+dt), has to maintain its brightness

 I (x, y, t)  = I(x + u ⋅ dt, y + v ⋅ dt, t + dt ) (2)

As a consequence, each algorithm, which is based on this equation, has to calculate with

scalar, that is, grey values, and not with colour values. This has to occur also later in the

memristive network. Finally, after applying the chain rule, Eq. (2) can be transformed to the

central Eq. (3) that is solved in a similar way by detecting moving edges by the corresponding

memristive network presented in Ref. [3]. This network is simulated here with SystemC-AMS

to demonstrate that complex memristive networks can be simulated with our approach of
modelling the dynamic of memristors with variable resistors

 I (x, y, t)  = I (x, y, t) + u ⋅ dt  ∂ I ___ ∂ x + v ⋅ ∂ I ___ ∂ y + dt  I __ ∂ t (3)

 I
x
 (x, y) ⋅ u + I y (x, y) ⋅ v + I

t
 (x, y)  = 0 (4)

3.2. Memristive network and SystemC-AMS specification

In the following, we exemplarily consider the details only for the derivatives in the space
to x and y dimension for a corresponding 2D memristor network. The extension to the time
domain would be an additional layer in the third direction between corresponding pixels in
neighboured images. As mentioned, the algorithm works on grey-scaled images; therefore,

the scales have to be inverted in corresponding voltages. For the simulation, it is enough to

restrict to an 8-bit resolution. Since the voltage of a photo-sensitive cell is in the range of 0–40

mV, we get the following scaling of the input voltage for each pixel Eq. (4)

 V
p
 (x ) = x ⋅ (40 _

255
) mV (5)

This scaling has to be carried out for each pixel in the image. In our SystemC-AMS spec-

ification, this is done per instruction code, which calculates Eq. (4) and uses the result to

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

155

 instantiate a DC voltage source. Figure 3 shows a scheme for a memristive circuit that handles

each pixel in the image.

The voltage V, representing a changed grey value, is attached to the network via a resistance R
C
,

which influences the time behaviour of the network for solving the optical flow. Since the opti-
cal flow changes dynamically in the network, the flow is modelled by current flowing through
dynamically adapting resistances for which memristors are required. A memristor R

M
, which

stores the result of the optical flow, again as an encoded grey value, and two further memris-

tors, denoted as outer plexiform layer (OPL) in Figure 3, complete the circuit handling a pixel.

A corresponding description of the header file for the pixel (without the OPL) in SystemC-
AMS is shown below. Firstly, the parameters are specified for the constructor of a pixel class
called PixelNode. Since an instance of PixelNode is one pixel within a 2D array, it receives two
identifiers. The first one is image_id. It identifies in which image the pixel is, remember the
optical flow requires two subsequent layers connected with each other. The second identifier,
idx, addresses uniquely the pixel within the image. Then, four resistance values are as follows:
R_CONST, the starting value for the top resistor R

C
, R_ON, R_OFF and R_INIT for the initial

setting of the memristor denoted as A in the class, which corresponds to the bottom memristor
R

M
 in Figure 3. The parameters initial_pixel and vsource correspond to the input grey value of

the pixel and the input voltage V, which has to be calculated elsewhere in the code according

to Eq. (4). The further specifications eln_pixel and neighbours refer to the virtual electronic net-

work to make a connection to a virtual potentiometer to measure current running through the

pixel and the voltage applied at that pixel, respectively, to the connection to the neighboured
pixels via the OPL. Both specifications and the ground connection, gnd, also require unique

identifiers which are passed as strings, eln_pixel and gnd, in the parentheses to the instances of

A. Finally, the instructions given within the brackets provide the connections to the memris-

tor as variable resistor analogue to the example given in the previous chapter for a memristor
of the class MemristorBiolek. The result voltage will adjust at R

C
. It is calculated in the method

PixelNode::pixel_value. This voltage can be used in order to calculate the resulting grey value

Figure 3. Electrical network for one pixel. The memristive fuse OPL realizes the connection to the neighbour pixel. All
pixels correspond to the mid-layer. The resistance R

C
 controls the speed of the adaption of the memristive network,

the voltage over resistance R
M

 corresponds to the result, that is, if a moving pixel was detected according to a detected
optical flow.

Memristor and Memristive Neural Networks156

PixelNode::PixelNode(const size_t image_id, const size_t idx,

const double R_CONST, const double R_ON,

const double R_OFF, const double R_INIT,

const unsigned char initial_pixel_value,

const double vsource):

R_CONST(R_CONST),

initial_pixel_value(initial_pixel_value),

vsource(vsource),

A(R_ON,R_OFF,R_INIT),

eln_pixel(("eln_pixel_"+std::to_string(image_id)+"_"
+std::to_string(idx)).c_str(,vsource,R_CONST),
neighbours(("eln_pixel_neighbour_node_"+std::to_string(image_id)+"_"
+std::to_string(idx).c_str()),
gnd(new sca_eln::sca_node_ref(std::string("gnd"+std::to_
string(image_id)+"_"
+std::to_string(idx).c_str())) {
eln_pixel.memristor_controll(A.get_control_port());

eln_pixel.out(A.get_voltage_port());

eln_pixel.neighbours(neighbours);

A.write_resistance();

}

double PixelNode::pixel_value() const {

double mapped_voltage = A.read_voltage() *

((R_CONST+A.resistance())/A.resistance());
return mapped_voltage;

}

If a low-resistance value is assigned to R
C
, the voltage drop at the resistance will occur slowly,

and due to the higher voltage that is applied to the subsequently attached memristors, in this
case, their memristances are changing faster. In opposite, a higher resistance produces a more

time-lag reaction in the network since now the memristors need more time to adapt their

internal states. This new generated voltage via R
C
 is now the input for the main layer of the

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

157

network. The function of this main layer is adapted to the outer plexiform layer of the retina.
This main layer mimics horizontal cells in the retina. Therefore, a connection to the neighbour

pixels has to be realized via the so-called memristive fuses. These fuses provide an automatic

averaging of the voltages connected to neighboured pixels. If there is a high potential differ-

ence between two neighboured pixels, then the memristive fuse adjusts faster a higher mem-

ristance. This leads to an edge-preserving property of the filter since the influence of the pixel
decreases by the time. However, this idea would not work with a single memristor because

the potential difference on that memristor could be either positive or negative. In the case of
a negative potential, the memristance would decrease. This is the reason why two memris-

tors, which are connected with reversed poles, are seen as depicted in Figure 3. Doing this, it

does not play a role if the applied voltages are either negative or positive. In case an edge is

detected, one of the memristors behaves always different to the other one and we receive as
output the voltage that can be detected at resistor R

C
.

The following specification in SystemC-AMS shows the code for a memristive fuse. Such a fuse
has also a positive and a negative port like a single memristor. Therefore, it can be attached to an
electrical network. Furthermore, as already shown in the example for a memristor, we need con-

trol signals, memristor_control_one and memristor_control_two, as discrete input signals to change

the resistances of the variable resistors, memristor_resistor_one and memristor_resistor_two. These

memristors are connected via an electrical node called node, which is defined in the constructor
as well as the binding of their control signals memristor_control_one/two to their ports memristor_
resistor_one/two.inp. Furthermore, the virtual circuit points memristor_resistor_vout_one/two.n/p

are defined to measure the voltage at these memristors via the signals memristor_resistor_vout_
one/two.outp. These signals allow displaying the voltages at both memristors

SC_MODULE(memristive_fuse)

{

 //negative and positive terminal
 sca_eln::sca_terminal n, p;

 sc_core::sc_in<double> memristor_control_one, memristor_control_two;

 sca_tdf::sca_out<double> memristor_resistor_voltage_one;

 sca_tdf::sca_out<double> memristor_resistor_voltage_two;

private:

 sca_eln::sca_node node;

 sca_eln::sca_tdf::sca_vsink memristor_resistor_vout_one;

 sca_eln::sca_tdf::sca_vsink memristor_resistor_vout_two;

 //two memristors
 sca_eln::sca_de::sca_r memristor_resistor_one;

Memristor and Memristive Neural Networks158

 sca_eln::sca_de::sca_r memristor_resistor_two;

 SC_CTOR(memristive_fuse) :

 memristor_resistor_one("memristor_resistor_one",1.0),

 memristor_resistor_two("memristor_resistor_two",1.0),

 node("node"),

 memristor_resistor_voltage_one("memristor_resistor_voltage_one"),

 memristor_resistor_voltage_two("memristor_resistor_voltage_two"),

 memristor_resistor_vout_one("memristor_resistor_vout_one")

 memristor_resistor_vout_two("memristor_resistor_vout_two")

 {

 //setup memristors
 memristor_resistor_one.n(node);

 memristor_resistor_one.p(p);

 memristor_resistor_one.inp(memristor_control_one);

 memristor_resistor_two.n(node);

 memristor_resistor_two.p(p);

 memristor_resistor_two.inp(memristor_control_two);

 //setup voltage measurements for memristor one and two
 memristor_resistor_vout_one.p(n);

 memristor_resistor_vout_one.n(p);

 memristor_resistor_vout_one.outp(memristor_resistor_voltage_one);

 memristor_resistor_vout_two.n(node);

 memristor_resistor_vout_two.p(p);

 memristor_resistor_vout_two.outp(memristor_resistor_voltage_two);

 }

 };

After the definition for a pixel and a memristive_fuse, both these devices can be connected to
construct the circuit shown in Figure 3 by attaching one of the ports p or n of the memristive fuse

to the port neighbor of a pixel node. The connection scheme for one pixel detecting the deriva-

tives I
x
 and Iy in a 2D grid for a direct hexagonal neighbour connection is shown in Figure 4.

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

159

This can also be specified in SystemC-AMS which we are unable to present in this paper
due to reasons of clarity since the corresponding code is larger. Before we can move to the

achieved simulation results, some things concerning the functionality of the network have to

be explained before.

The electrical network constructed in this way fulfils several tasks. For example, before the
optical flow processing takes place, a Gaussian filtering is carried out on the pixels, which is
done by the OPL imitating memristive fuses, too.

An important thing that has to be avoided is that both memristors of a fuse have the same

initial mid resistance = 
 R

ON
 + R

OFF

 2 . In this case, the changes of memristances in both memristors

countermand themselves. If the memristance of one memristors increases, the memristance of

the other one decreases. A possible solution for this problem is that both memristors are ini-

tialized with a low resistance. In case of a given potential difference between two neighboured
pixels, independent of its direction, only one memristor increases, whereas the other one’s

Figure 4. Scheme for the 2D memristive grid with X connection, that is, each pixel has eight connections to four
neighbours in rectangular direction (left, right, top, bottom) and to the four diagonals.

Memristor and Memristive Neural Networks160

memristance stays low and we can detect a corresponding voltage change at R
C
 correspond-

ing to a given edge pixel.

The result voltage UG is given to, it can be converted to a grey value x according to Eq. (5):

 U G  =  I
M

 ⋅ (R
C
 + R

M
) x =  U G ⋅ (255 _

40 mV) (6)

Both things, initializing the memristors as described earlier and the grey scale conversion,

are performed in our SystemC-AMS specification by appropriate instruction codes, for exam-

ple, the calculation of the result voltage is carried out with the method PixelNode::pixel_value
shown above in the class description of PixelNode. Besides the automatic filtering of neigh-

boured input voltages, the network as described above allows the detection of edges, too,

because edges are nothing else than potential differences. Figure 5 shows the scheme for a

potential propagation if the input voltage is applied left and the ground is applied right. Since

this happens also for small differences very fast due to the memristive fuses, a threshold has
to be introduced in order to detect real edges. The detection assigns a pixel only then as edge
pixel if at least three of the neighbour pixels are above the threshold. This is directly pro-

grammed in the SystemC-AMS code which is not shown here. We have not seen a possibility
to carry out such thresholding directly in the original analogue network published in Ref. [4].

So far, we have described a solution for determining the derivatives I
x
 and Iy within the 2D

network and its SystemC-AMS equivalent. However, the optical flow requires the input and
analysis of input data from two subsequent images in order to detect also the derivative I

t
.

Therefore, the network has to be extended in the third dimension and we have done that also
in our SystemC-AMS specification. This is shown in Figure 6 in a lateral view for two neigh-

boured pixels located at the same coordinate in two subsequent layers which are connected in
the same way as the lateral connections by an additional memristive fuse.

That means we connected together in SystemC-AMS two grids of the size 16 × 12 as shown

for one pixel in Figure 4. The first gird hosted an image I(x,y,t) and the second one the timely

Figure 5. SystemC-AMS network for a detection of a moving edge pixel. The edge pixel disappears on the left (two short

arrows) side and moves to the right (long arrow).

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

161

displaced image I(x,y,t+dt). A larger size could not be selected because the free SystemC-AMS

version of Coseda did not allow generating more active elements. The SystemC-AMS code

we tested extends more than 3000 memristors in all fuses and pixels for two images of size
16 × 12.

4. Results

Figure 7 shows the achieved functional results of the SystemC-AMS simulation for a traffic
scene with the memristive network that works on the detection of moving edges with the

memristive 2D network compared to a classical solution calculated according to Horn and

Schunk on an Inteli5-6600 CPU. It is to recognize that the Horn and Schunk procedure algo-

rithm works much better on a higher resolution, (a) versus (b), whereas the lower resolution
is sufficient for the SystemC-AMS detection of moving edges (c). The low resolution was
selected since this was the limit for the SystemC-AMS simulation with the proof-of-concept

software solution. These moving edges are combined in one object. The grey edges are the dis-

appearing edges, whereas the dark square corresponds to an appearing edge. The assignment

Figure 6. 3D connection of a pixel between two pixels neighboured in subsequent images.

Memristor and Memristive Neural Networks162

between the two edges (see arrows in Figure 7(d)) can be identified and by this also the mov-

ing of the cars shown in front and of the smaller one shown behind in the image.

The results of Figure 7 demonstrate that it is possible to detect moving objects with the mem-

ristive network and its SystemC-AMS model. We are now interested on how fast the network
and the SystemC-AMS simulation work. The simulation of the detected moving edges in

Figure 7(c) shows simulation results for a simulated memristive network for a time interval

of 3000 ms. In this case, Biolek model was not used for the memristors but the model from

Knowm which produced a significantly higher contrast. At the beginning, only a wave can be
observed. After a simulated real time of 3000 ms, a higher contrast is given with that model

compared to the input image and the moving objects can be detected. As comparison with

existing hardware, we have determined the run times of the detection with the optical flow
based on Horn and Schunk on a CPU (corei5-6600 corresponds to Intel’s Skylake microar-

chitecture) and a Jetson TX1-embedded GPU board from Nvidia. The CPU could compute
in 3000-ms image sizes of 160×120. It is to expect that the memristive network works also on
higher resolution since it is a highly local parallel-processing scheme.

Therefore, the memristive network lies in the same range as the CPU concerning the compute

performance. The situation is different compared to the GPU. We measured a time of about
100 ms for an image size of 640 × 480. Hence, the GPU has clear advantages versus the mem-

ristive network concerning the run time.

However, the actual interesting point in this paper is the simulation time of the SystemC-

AMS specification. In order to get significant values we have carried out a series of pos-

sible optimization measures concerning the network topology and the monitoring, resp.,

the virtual voltage measuring during the simulation. Figure 8 shows the simulation time

(a) (b) (c) (d)

Figure 7. Used test input images (top), the two scenes are slightly displaced. On the bottom left side, (a) solution based
on Horn and Schunck procedure calculated on CPU with 32 × 24 image size; (b) solution for 16 × 24 image size. On the

bottom right side, the solution for the same scenes determined with the simulated memristive network in SystemC-AMS.
Firstly, the detected edges (c), afterwards the detected directions of the moving edges (d).

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

163

for filtering and edge detection in one image for the following different sizes 16 × 12, 32 × 24
and 35 × 26 for a not optimized version (most-left bars—non-optimized), a version, which

uses only one memristor in the fuses which is sufficient for edge detection as we found out
(second left bar—optimized memristive fuses), using a hexagonal grid instead a 3 × 3 grid as
local neighbourhood for a pixel (second right bar—hexagonal grid), and removing the volt-
age potentiometers for each memristor in the SystemC-AMS code (most right bar—removed

not required potentiometers). It is to detect that simulation time can be drastically reduced,

for example, for a 35 × 26 image from 4500 ms down to about 750 ms for the largest resolu-

tion of 35 × 26 if all optimization steps are applied subsequently.

Our efforts to carry out an equivalent SPICE simulation with LT Spice have been in vain. The
LT Spice simulator ended in an endless loop by the trial to simulate this large memristive

network. With the PSpice A/D Lite version, the simulation aborted orderly with the message
that the symbol table entry is out of bounds. May be the commercial version of Pspice allows

to simulate such a large amount of devices. In all, in the 32 × 24-sized grid 768 voltage sources,
1536 resistors and 5461 memristor subcircuits have to be simulated. Further work has been

Figure 8. Measuring the simulation time in SystemC-AMS for different options.

Memristor and Memristive Neural Networks164

done using Cadence Virtuoso. While Virtuoso was able to read the network and create a sche-

matic view, it was not possible to start the Spectre simulation due to incompatibilities using

the memristor Spice description.

In an older work [7], a similar 32 × 32 array of memristors was simulated in SPICE. Recently,
Biolek et al. published a work [8] in which they used a parallel version of a commercial

HSPICE simulator which allowed them to simulate extremely large memristor networks.
They managed it to simulate a 100 × 100 memristive grid network containing 20,200 memris-

tors in 5.5 s and a 1500 × 1500-sized memristive network containing 4.5 million memristors in

76 min by applying a modified version of the so-called S-model for memristors on a current
Intel core i7 architecture.

5. Conclusion

Exploiting the flexibility of a high-level language like SystemC-AMS, the presented simula-

tion environment enables designers to carry out extensive investigations on large memristive
circuits to estimate latency and energy consumption just by simple C++ code modifications.
Furthermore, such a system allows the simulation of thousands of connected memristors at

acceptable simulation times, which is shown by a direct comparison to an equivalent SPICE

simulation. A SystemC-AMS description allows faster simulation, but currently the inves-

tigated SystemC-AMS implementations do not allow the simulation for networks concern-

ing more than 10 k memristors. Therefore, there seems to be a need for action concerning

an extension of SystemC-AMS environments in the future. On the other side, free available
SPICE versions failed to simulate memristor networks in the size of 1000 s, whereas the pre-

sented SPICE-AMS implementation could handle it in acceptable simulation time of 4–5 s

and around 1 s for an optimized version. However, compared to commercial HSPICE simu-

lators only smaller-sized networks of memristors can be investigated. On the other side, a

SystemC-AMS solution simplifies a coupling to digital system layers to realize mixed-signal
simulations. We demonstrated this flexibility in principle in this paper for the optical flow
algorithm.

For the optical flow example, a comparison of a memristive network with real processor
architecture like a GPU was carried out. It could be shown by simulations that using a

GPU architecture is more efficient for the optical flow problem than a 2D grid memristive
network solving the problem by detecting moving edges. The performance of a current

CPU solution on the other side offers not more compute power than the memristive net-
work which probably requires less energy consumption than the CPU. At all, we think

that mixed-signal solutions are to favour, which combine analogue memristive circuits
with digital processors, to unite computational flexibility and the benefits of energy-sav-

ing neuromorphic analogue memristor networks. A SystemC-AMS-based simulation envi-

ronment is generally well suited for the design of such architectures and to estimate the

required power and processing time. Our solution laid the foundation for such work in

the future.

Simulating Memristive Networks in SystemC-AMS
http://dx.doi.org/10.5772/intechopen.69662

165

Author details

Dietmar Fey*, Lukas Riedersberger and Marc Reichenbach

*Address all correspondence to: dietmar.fey@fau.de

Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Computer Architecture,
Department of Computer Science, Erlangen, Germany

References

[1] Kvatinsky S, Friedman EG, Kolodny A, Weiser UC. TEAM: ThrEshold adaptive memris-

tor model. IEEE Transactions on Circuits and Systems. 2013;60-I(1):211-221

[2] Biolek Z, Biolek D, Biolkov V. SPICE model of memristor with nonlinear dopant drift.
Radioengineering. 2009;18(2):210-214

[3] Nugent MA, Molter TW. AHaH computing–From metastable switches to attractors to
machine learning. PLoS ONE. 2014;9(2):e85175. DOI: doi:10.1371/journal.pone.0085175

[4] Lim CKK, Gelencser A, Prodromakis T. Computing image and motion with 3-D mem-

ristive grids. In: Adamatzky A, Chua L, editors. Memristor Networks. Cham: Springer
International Publishing; 2014. pp. 553-583

[5] Coseda Technologies GmbH. SystemC AMS Proof-of-Concept Download [Internet].
Available from: http://www.coseda-tech.com/systemc-ams-proof-of-concept [Accessed:
20-March-2016]

[6] Horn BKP, Schunck BG. Determining optical flow. Artificial Intelligence. 1981;17

[7] Wang Y, Fei W, Yu H. SPICE simulator for hybrid CMOS memristor circuit and system.
In: 13th International Workshop on Cellular Nanoscale Networks and their Applications
(CNNA 2012); August 29-31, 2012; Turin, Italy: IEEE; 2012. pp. 1-6

[8] Biolek D, Kolka Z, Biolkova V, Biolek Z. Memristor models for spice simulation of
extremely large memristive networks. In: IEEE International Symposium on Circuits
and Systems (ISCAS); May 22-25, 2016, Montreal, QC: IEEE; 2016. pp. 389-392

Memristor and Memristive Neural Networks166

