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Abstract

Inflammatory bowel diseases (IBDs) comprise primarily two disease manifestations, 
ulcerative colitis (UC) and Crohn’s disease (CD), each with distinctive clinical and patho-
logical features. Environmental and clinical factors strongly affect the development and 
clinical outcomes of IBDs. Among environmental factors, cigarette smoke (CS) is consid-
ered the most important risk factor for CD, while it attenuates the disease course of UC. 
Various animal models have been used to assess the impact of CS on intestinal patho-
physiology. This chapter examines the suitability of animal inhalation/smoke exposure 
models for assessing the contrary effects of CS on UC and CD. It presents an updated lit-
erature review of IBD mouse models and a description of possible mechanisms relevant 
to relationships between IBD and smoking. In addition, it summarises various technical 
inhalation approaches, in the context of mouse disease models of IBD.

Keywords: inhalation, inflammatory bowel disease, animal models, cigarette smoke, 
ulcerative colitis, Crohn’s disease

1. Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal 
tract encompassing two main disease manifestations, Crohn’s disease (CD) and ulcerative 
colitis (UC) [1].

CD and UC have many similarities in symptoms and disease phenotypes, making diagno-

sis challenging [2]. Currently, criteria for distinguishing these two manifestations are based 
exclusively on histopathological and endoscopic examinations [3]. Thus, UC is defined as a 
chronic, non-transmural inflammatory disease characterised by diffuse mucosal inflammation 
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involving only the colon. Its primary clinical symptom is bloody diarrhoea [2, 4–7]. As UC 
is an inflammatory disease, the state of the immune system is a fundamental aspect of the 
disorder, with an atypical T helper cell (Th)2 response, mediated by natural killer T cells that 
secrete interleukin (IL)-13 [1, 8, 9]. CD is a relapsing, transmural inflammatory disease that 
may affect the entire gastrointestinal tract. Its major clinical symptom is abdominal pain or 
nonspecific abdominal symptoms and bloody diarrhoea is rare. The T cell profile in CD is 
different from that of UC and, in fact, a Th1 cytokine profile is dominant in patients with CD 
[4, 7, 10, 11]. Notably, innate immune responses are similarly activated in both CD and UC 
[12]. Several studies suggested that IBD pathologies result from an inappropriate inflamma-
tory response to intestinal microbes in a genetically susceptible host, with consequent altera-
tion of the intestinal epithelium.

During IBD development, the paracellular space in the intestinal epithelium becomes more 
permeable, impacting defensive strategies naturally activated by specialized epithelial cells, 
including goblet and Paneth cells [13–16]. This process primes a positive feedback loop, with 
increased exposure to the intestinal microbiota, leading to amplification of the inflammatory 
response. Observations in patients or animal models show that host-microbiome interactions 
and microbiome fluctuations play prominent roles in such inflammatory processes [17, 18]. 
However, whether these alterations contribute to the disease, or simply reflect secondary 
changes caused by the inflammation, is still under debate.

Indeed, the basic aetiology of IBD is still unclear and the potential factors contributing to the 
pathogenesis of the disease, such as dysbiosis, epithelial and/or immune system dysfunc-
tions and oxidative stress, represent the major research topics in the IBD field. Moreover, new 
area of interest arose from the necessity of understanding the potential environmental causes 
behind the disease onset.

Among the environmental factors associated with IBDs, the most significant causes are ciga-
rette smoke (CS) and nicotine, and these inversely affect the risk and course of UC and CD. 
The relationship between smoking and IBD has been known for many years, with the first 
report of a negative correlation between IBD and smoking, in a cohort of UC patients, pub-
lished 40 years ago [19]. Since then, there have been numerous epidemiological, clinical and 
pre-clinical studies describing the dual effects of active smoking in the two forms of IBD 
[20, 21]. CS is associated with a higher risk for developing CD and a worse outcome in CD 
patients. In contrast, UC is considered a non-smokers’ disease, with a significantly lower risk 
of disease development in current smokers. Despite the considerable research on smoking 
and IBD, the molecular mechanisms for CS-induced impacts on IBD development, as well as 
the specific CS components responsible, are not well understood [22].

To better understand the different aetiological factors in the onset of IBD, a variety of disease 
models were developed. Human and in vitro studies have historical limitations because of 
design complexity, duration and cost or, for in vitro studies, the lack of translational appli-
cability. Therefore, animal models are advantageous by allowing in vivo experiments to be 
conducted under more easily controlled conditions than those in human studies, while pro-
viding the organism complexity lacking in in vitro systems. Increased knowledge of mucosal 
immunity and host-microbiome interactions and dynamic, as well as the availability of new 
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genetic engineering technologies, enabled the development of numerous murine models 
that, in turn, substantially increased the understanding of intestinal inflammatory processes  
[23, 24]. Arguably, none of these models can completely recapitulate the complexity of 
human IBD, but they can provide valuable information about major aspects of the disease, 
thereby enabling a common set of principles of human IBD pathogenesis to be established.

This book chapter reviews key studies conducted in animal inhalation/smoke exposure 
models aimed at evaluating the different modulation of UC and CD by CS. The application 
of inhalation technology to rodents, reproducing the clinical effects of smoking on colonic 
inflammation, will increase the chances of identifying new anti-inflammatory molecular 
mechanisms and possibly therapeutics, finally increasing the chances of IBDs defeat.

2. Technical aspects of inhalation

2.1. Methods of acute and chronic pulmonary delivery of aerosols to rodents

The technical means for pulmonary delivery of aerosols (either small molecules, proteins or 
mixtures) may employ either direct intratracheal administration or, alternatively, inhalation 
exposure, the latter often requiring restraint of animals.

For acute pulmonary delivery of an agent, intratracheal administration may be ideal. Its 
main advantages are that it requires little infrastructure or equipment and can be performed 
in a basic in vivo lab environment [25]. In addition, dose delivery can be accurately and 
reproducibly estimated [26]. However, this method also has several shortcomings, such as 
need for anaesthesia, inability to administer volatile agents or gases and unequal distribu-
tion in the lungs, resulting in minimal exposure to the alveoli. Overall, such concerns make 
intratracheal administration a less suitable method for subchronic or chronic pulmonary 
delivery.

For subchronic or chronic administration of aerosols to rodents, repeated inhalation expo-
sure systems are preferred. Thus, animals are exposed to aerosols within a confined environ-
ment for a fixed daily duration. In the field of toxicology, testing guidelines for repeated dose 
exposure for toxicological assessments, such as the OECD TG413 guideline, recommend up 
to 6 h per day exposure for a 90 day exposure period. However, for therapeutic or disease 
modelling purposes, the exposure period must be determined empirically, based on the effec-
tive dose and the time needed for the target biological effect to occur. Importantly, exposure 
systems must enable consistent delivery of aerosols, at concentrations that are stable during 
the exposure period, and with appropriate aerosol properties to enable efficient inhalation 
and uptake [27].

Principally, two types of exposure chambers are routinely used to administer aerosols to 
rodents, whole body or nose-only exposure chambers, each with its own advantages and 
disadvantages [27]. Whole body exposure systems are restraint free, as the animals are placed 
into an exposure chamber, either in a cage or on a mesh or grid surface, depending on the spe-
cific system. Both chambers are technically simple, assuming sufficient infrastructure (aerosol 
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generation and functional chambers). Both also enable exposure of large numbers of animals, 
for example, chambers of >700 L may each accommodate approximately 200 mice. The free-
dom of movement of animals during exposure results in minimal stress, although the animals 
require training to adjust to grid-caging systems and food is typically withdrawn to minimise 
oral uptake of aerosol constituents. One criticism of whole body exposures is that there is a 
high potential for compound uptake through non-inhalation routes because animals have 
surface contact with aerosol deposits on the cage surfaces and on their fur. In historical stud-
ies, up to 60% of aerosol constituents on the fur (pelt burden) were ingested following whole 
body exposures [28] and transdermal uptake may also be significant for some compounds. 
Because the skin is an effective barrier for drug transport, only potent drugs with appropriate 
physicochemical properties (low molecular weight and adequate solubility in aqueous and 
non-aqueous solvents) are suitable candidates for transdermal delivery [29–31]. Such mixed 
uptake mechanisms potentially occurring in whole body exposure systems complicate both 
dose estimations and require deconvolution of uptake amounts through oral/transdermal 
and inhaled routes.

Nose-only exposure chambers require restraint of the animals to permit only the head (nose) 
to be exposed to the test aerosol. This has the major advantage of decreasing deposition of 
aerosol constituents on the pelts, resulting in less oral uptake from grooming behaviour [32]. 
However, there are also disadvantages with this system, including technical asphyxiation 
(animal movements in the exposure tube may cut off their air supply); therefore, constant 
monitoring during the exposure period is required. In addition, because of stress associated 
with restraint in nose-only exposure systems, training is required to adapt animals to the 
technical procedures. Vehicle or fresh air exposures are also needed to help distinguish such 
stress-related effects from treatment effects [33]. The daily execution of nose-only exposures 
requires that animals be individually inserted into the exposure tubes, a technical aspect that 
may limit the numbers of animals that can be used in the experiments.

2.2. Dose translatability

Measurement of dosages in an in vivo inhalation experiment is dependent upon many param-

eters, including deposition of the agent to the lungs (which itself is dependent upon aerosol 
droplet size), respiratory minute volume and body weight of the animal. This relationship is 
generally described by the following formula [34]:

  DD =   C × RMV × D × IF  _______________________  Body weight  (kg)     (1)

where DD is the delivered dose (mg/kg); C is the concentration of substance (mg/L); RMV is 
the respiratory minute volume (L/min) and IF is the inhalable fraction.

Among these parameters, the respiratory minute volume is important to determine the 
availability of compound for deposition and exchange in the lungs. This parameter may be 
calculated using allometric formulae relating body weights to minute volumes in labora-
tory animals [35, 36]. The alternative, direct measurement of the minute volume, as can be 
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performed when nose-only exposure tubes are used (head-out plethysmography measure-
ments), is preferable as it would enable the researcher to control any effects of test item on the 
minute volume, when calculating the estimated dosage.

Important for in vivo disease modelling is the translation of the animal models to human 
therapeutics or treatment regimen. This will require an estimation of human equivalent dose 
(HED), based on the animal data. The most commonly used method to convert to HED is 
with a body surface area conversion factor [37]. Alternatively, a mg/kg conversion factor may 
be applied, though this typically will result in a lower safety margin and higher HED values, 
compared with the body surface area conversion. HED is generally described by the follow-

ing formula [37]:

  HED =   
animal dose  (mg /  kg)  × animal  K  m  

   ___________________________________________________  human  K  m      (2)

where Km is the correction factor reflecting the relationship between body weight and body 
surface area (e.g. human Km = 37; mouse Km = 3; rat Km = 6 and dog Km = 20).

3. Overview of animal IBD models

The various types of animal models developed to study IBD may be divided into several 
categories depending on: the method of inducing the pathology (chemically induced, bacteria-

induced or genetically engineered); the IBD subtype modelled in the animal (UC or CD); the site 
of inflammation (colon, ileum, both sites or systemic); and, in genetically engineered models, the 
gene modification strategy (conventional transgenic (Tg) or knockout (KO), cell-specific conditional 
Tg or KO, inducible KO, knock-in, innate, mutagen-induced or spontaneous models) [23, 38, 39]. The 
total number of IBD mouse models is growing, especially because of current genetic engineer-
ing approaches that accelerate development of new strains, so far, over 74 genetically engi-
neered mouse models were reported to spontaneously develop intestinal inflammation [38]. 
The full description of all IBD models is beyond the scope of this chapter. However, Table 1 
summarises the most significant IBD murine models, highlighting their methods of pathol-
ogy induction, IBD subtypes, sites of inflammation and mechanism of action (Figure 1). More 
detailed reviews of the different mouse models of IBD are available (e.g. see Refs. [23, 40, 41]).

There is a close agreement in many pathological findings among experimental IBD models 
and human disease. These include the molecular pathways and histological features of tissue 
injury, dysfunction of the immune system (including impact of the microbiome), genetic het-
erogeneity and primary defects in mucosal barrier function. All pathologies have been well 
established in several experimental models of colitis; therefore, these models closely resemble 
aspects of the human diseases. These common features enable exploration of specific path-
ological mechanisms, facilitating development of new therapeutic approaches. However, 
none of these models fully reflects human IBD, with each representing rather a small tile of a 
mosaic. This hinders a generalised view of the systemic consequences of IBD, often masking 
possible extra-intestinal implications [42].
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IBD model Model category IBD subtype Site of 

inflammation
Mechanism References

DSS Chemically 
induced

UC Colon Epithelial cell damage [147, 148]

TNBS CD/UC Colon Hapten-dependent 
immunogenic response

[149]

DNBS CD/UC Colon Hapten-dependent 
immunogenic response

[150]

Oxazolone UC Colon Hapten-dependent 
immunogenic response

[151]

Acetic acid UC Colon Epithelial cell damage [152]

Carrageenan UC Colon Epithelial cell damage [153]

Indomethacin CD Small intestine

Colon
Epithelial cell damage [154]

Iodoacetamide UC Colon Sulphydryl (SH) 
compound (e.g. 
glutathione) blocker

[155]

DNCB UC/CD Colon Hapten-dependent 
immunogenic response

[156]

Salmonella 
induced

Bacterially 
induced

UC Colon Bacterial colonisation-
induced inflammation

[157]

Adherent 
invasive E. coli

UC Colon

Small intestine
Bacterial-dependent 
epithelial cell damage

[158]

C3H/HejBir Spontaneous CD Small intestine

Colon
Epithelial cell dysfunction [39]

SAMP1/4it CD Small intestine Epithelial cell dysfunction [40]

IL-10−/− Genetically 
engineered/
knockouts (KO)

CD Small intestine

Colon
Impaired Treg function [74]

TGF-β−/− UC/CD Systemic Macrophage 
hyperactivation and 
impaired Treg function

[159]

IL-2−/− UC Colon/systemic 
(no small 
intestine)

Impaired T cell/Treg 
function

[160]

NOD2−/− CD Small intestine
Colon

NF-κB and TLR2 signalling 
dysregulation

[161]

A20−/− UC/CD Colon
Small intestine

TNF-induced NF-κB 
signalling dysregulation

[162]

MDR1A−/− UC Colon Accumulation of bacterial 
products and increased T 
cell activation

[163]

Gαi2−/− UC Colon Impaired T/B cell function 
and epithelial cell damage

[164]

TCRα−/− UC Colon Th2-type inflammation [75]

IL-23−/− CD Small intestine
Colon

Impaired Th17 cell 
function

[165, 166]
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The presence of such a multitude of mouse models indicates that IBD is mediated by compli-
cated, multifactorial mechanisms. As expected, this complexity is greater in human beings, 
where environmental and clinical factors, such as smoking, diet, drugs, ethnicity, geographical 
area, social status, gender, stress and appendectomy, further modulate onset of IBD patholo-
gies [43–46].

3.1. Inhalation studies investigating the effect of CS in rodent models of IBD

Clinical and pre-clinical findings suggested divergent effects of smoking or smoke constitu-
ents on the pathophysiology of the gut depending mainly on two conditions, the IBD sub-
type and the route of administration of the active substance (such as nicotine or CS). Active 
human smoking is difficult to mimic under laboratory conditions, while classical in vitro 
approaches have translational limitations. Thus, several animal models have been used to 
assess the impact of CS, nicotine or non-nicotine CS constituents on intestinal pathophysiol-
ogy [47]. Both genetic- and chemically induced IBD models have been used and effects of 
various treatment regimens on gut inflammation in these systems are summarised in Table 2. 
There is a general consensus that CS and nicotine administration do not cause macroscopic or 
histological damage or inflammation in the healthy gut. However, differences in immune cell 
recruitment [48], cytokine secretion [49–51], mucosal barrier [52, 53] and oxidative stress were 
observed [54, 55], although without evident tissue damage.

IBD model Model category IBD subtype Site of 

inflammation
Mechanism References

XBP1−/− Genetically 
engineered, 
conditional KO

CD Small intestine

Colon
Loss of Paneth and goblet 
cells with impairment of 
mucosal defence

[167]

NEMO−/− CD Small intestine/
colon

NF-κB signalling 
dysregulation

[168]

IL-7 Tg 
mice (IL-7 
overexpression)

Transgenic mouse UC Colon CD4+ T cell infiltration-
dependent inflammation

[169]

STAT4 Tg 
mice (STAT4 
overexpression)

CD Small intestine
Colon

Th1-type inflammation [170]

HLA-B27 Tg 
mice

UC/CD Small intestine
Colon

Bacterial sensitisation [171]

DNN-cadherin/
keratin8−/−

CD Colon Epithelial cell dysfunction [172]

TNFΔARE Mutation 
knock-in

CD Small intestine TNF-α overproduction [64]

CD45RB 
high-transfer

Adoptive transfer CD Small intestine

Colon
IL-12-driven Th1 
hyper-response

[173]

Table 1. Classification of animal models of IBD. IBD subtype and site of inflammation predominantly addressed by the 
model, where applicable, are shown in bold font. DSS, dextran sulfate sodium; IBD, inflammatory bowel disease; DNBS, 
2,4-dinitrobenzene sulfonic acid; TNBS, 2,4,6-trinitrobenzenesulfonic acid; UC, ulcerative colitis; CD, Crohn’s disease; 
DNCB, Dinitrochlorobenzene.
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Consistent with results of human epidemiological studies, CS had opposing effects on devel-
opment of CD (negatively) and UC (positively) in several, but not all, of their respective IBD 
models. Only a few of these studies used inhalation exposure (Table 2) and most of their find-
ings mimicked the effects of smoking in humans with IBD.

Thus, the dichotomous effects of CS inhalation, on development of CD versus UC, were per-
fectly reproduced using two different rat IBD models [54–60]. 2,4,6-trinitrobenzenesulphonic 
acid (TNBS) and 2,4-dinitrobenzene sulphonic acid (DNBS) were instilled into the rat colon to 
induce, respectively, CD- and UC-like symptoms. Indeed, pre-exposure of rats to CS increased 
acute (2–24 h post-induction) intestinal inflammation in the TNBS-induced colitis (CD-like) 
model [54–57]. The authors used a ventilated smoking chamber filled with a fixed concentra-
tion of smoke, delivered by burning commercial cigarettes at a constant rate (2 or 4%, vol/
vol, smoke/air) [61]. These results showed that promotion of neutrophil infiltration, as well as 
free radical production with the accumulation of reactive oxygen metabolites in the intestinal 

Figure 1. Schematic view of major inflammatory and anti-inflammatory mechanisms implicated in inflammatory bowel 
diseases and the potential role of a nicotinic anti-inflammatory pathway. Top: altered microbiota in the colonic lumen 
and/or epithelial-damaging factors (e.g., DSS in experimentally induced colitis) lead to the disruption of the epithelial 
barrier function and the consequent infiltration of bacteria and other antigens. Middle: various inflammatory processes 
can be triggered in the lamina propria by the infiltrating bacteria (DSS-induced epithelial barrier; “Barrier dysfunction and 
epithelial permeability” and “Nicotinic anti-inflammatory pathway” sectors), haptens (oxazolone- and TNBS-induced 
inflammation, “Differential nicotine effects in UC-like (oxazolone) and CD-like (TNBS) colitis” sector) or by endogenous 
dysregulation of the balance between Th1/Th17-driven and Th2-driven immune activities, (genetically engineered mouse 
models; “Immune regulation” section). A hypothetical role of nicotinic receptor-mediated anti-inflammatory response 
is depicted in the “Nicotinic anti-inflammatory pathway” sector. Bottom: the colonic vasculature is symbolized as a 
tube running perpendicular to the cross section of the colon. The blood stream delivers leukocytes recruited by cytokine 
shedding from the local inflammatory sites and enables the perpetuation of the inflammation, e.g., via circulating T-cells. 
Systemically provided nicotine could increase the anti-inflammatory nicotinic signaling that is naturally transmitted by 
acetylcholine shed from the efferents of the vagus nerve that innervate the colonic wall. For details of these mechanisms, 
see Chapter 4.1 to 4.4. Modified from: De Jonge & Ulloah (2007), Ordas et al. (2012), Xu et al. (2014).
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IBD model IBD subtype—species Treatment Endpoint observed Effects on intestinal 
inflammation

References

TNBS colitis CD—rat Cigarette smoke (inhalation) Mucosal damage: ↑
MPO activity: ↑
LTB

4
 level: ↑

GSH level: ↓
ROM generation: ↑
TNF-α protein: ↑
SOD activity: ↓
iNOS activity: ↑
COX2 protein: ↑

↑ [54–57]

Oral nicotine LTB
4
 level: ↓

PGE2 level: =
MPO activity: ↓
Histology score: ↓
iNOS protein: ↓
Serum IL-1: =

Low dose: ↓
High dose: ↑ or no effect

[78, 79]

CD—mouse Subcutaneous nicotine Histology score: ↑
DAI scoring: ↑
Treg/Th17 cell ratio: ↓
α7nAChR expression in T cells: no

↑ [77]

Carbon monoxide (inhalation) Histology score: ↓
MPO activity: ↓
TNF-α protein and RNA: ↓

↓ [73]

Oral TCDD Histology score: ↓
Colon cytokine proteins: ↓
Gene expression
Immune cells in MLN and colon

↓ [174]

Iodoacetamide CD—mouse Oral nicotine Mucosal damage: J↑; C↓

iNOS activity: J NA; C=
MPO activity: J=; C NA
PGE

2
 level: J↓; C↓

Histology score: J↑; C↓

Jejunitis: ↑
Colitis: ↓

[175]
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IBD model IBD subtype—species Treatment Endpoint observed Effects on intestinal 
inflammation

References

IL-10−/− mice CD—mouse Oral nicotine Mucosal damage: J↑; C↓

Histology score: J↑; C↓

Gene expression

Jejunitis: ↑
Colitis: ↓

[52]

Carbon monoxide (inhalation) Histology score: ↓
Colon cytokine proteins: ↓
Gene expression

↓ [71]

DNBS colitis UC—rat Cigarette smoke (inhalation) Histology score: ↑
Mucosal damage: ↑
MPO activity: ↑

↑ [58]

Subcutaneous nicotine Mucosal damage: ↓
MPO activity: ↓
LTB

4
 level: ↓

ROM generation: ↓
Colon cytokine proteins: ↓

↓ [59]

Cigarette smoke (inhalation) Mucosal damage: ↓
MPO activity: ↓
LTB

4
 level: ↓

ROM generation: ↓
Colon cytokine proteins: ↓

↓ [59]

Cigarette smoke (inhalation) Histology score: ↓
Mucosal damage: ↓
MPO activity: ↓
iNOS activity: ↓
LTB

4
 level: ↓

Colon cytokine proteins: ↓

↓ [60]

Oxazolone colitis UC—mouse Subcutaneous nicotine Histology score: ↓
DAI scoring: ↓
Treg/Th17 cell ratio: ↑
α7nAChR expression in T cells

↓ [77]
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IBD model IBD subtype—species Treatment Endpoint observed Effects on intestinal 
inflammation

References

DSS Colitis UC—mouse Oral nicotine Histology score: ↓
DAI scoring: =
MPO activity: =
PGE

2
 level: ↓

↓ [80]

Subcutaneous nicotine DAI scoring: ↓
Histology score: ↓
miRNA expression

↓ [50]

Cigarette smoke (inhalation) Colon cytokine RNA: ↓
MPO activity: ↓
Infiltrating immune cells
DAI scoring: ↓

↓ [22]

Cigarette smoke (inhalation) Mucosal damage: =
Colon cell proliferation: =
Colon cell apoptosis: =
Colon angiogenesis: ↑
Bcl2/VEGF protein: ↑

No effect [66]

Subcutaneous nicotine DAI scoring: ↓
Histology score: ↓
MPO activity: ↓
TNF-α and IL-6 mRNA: ↓

↓ [176]

Oral nicotine DAI scoring: ↓
Histology score: ↓
Colon TNF-α protein: ↓
MPO activity: ↓
Colon cytokines mRNA: ↓

↓ [81, 102]

Oral cotinine DAI scoring: = No effect [81]

Subcutaneous nicotine DAI scoring: =
Histology score: =
Colon TNF-α protein: =

No effect [81]

Intraperitoneal nicotine DAI scoring: =
Histology score: ↓
Colon TNF-α protein: ↑

No effect [81, 82]

Oral TCDD Histology score: ↓
Colon TNF-α RNA/protein: ↓
MPO mRNA: ↓

↓ [177]
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IBD model IBD subtype—species Treatment Endpoint observed Effects on intestinal 
inflammation

References

TCRα−/− mice UC—mouse Carbon monoxide (inhalation) Histology score: ↓
Colon cytokines RNA/protein: ↓

↓ [72]

Clostridium 

difficile ToxA
UC—mouse Intraluminal nicotine MPO activity: ↓

LTB
4
 level: ↓

Luminal fluid: ↓
Substance P release: ↓

↓ Colon;
No effect in ileum

[178]

↑, potentiating effect; ↓, attenuating effect; =, no changes; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TCR, T cell receptor; NA, not applicable; ROM, reactive oxygen metabolites; 

DAI, disease activity index (for further details please see the reference), MPO, myeloperoxidase; LTB4, leukotriene B4; PGE2, prostaglandin E2; SOD, superoxide dismutase 2; COX, 

cyclooxygenase; iNOS, nitric oxide synthase.

Table 2. Effects of cigarette smoke or related compounds in experimental models of IBD.
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tissues, contributed significantly to the potentiating effects of CS on intestinal inflammation. 
In contrast, in DNBS-treated rats (UC-like model), CS inhalation improved macroscopic signs 
of colitis at the mucosal level and decreased the levels of colonic pro-inflammatory cytokines 
[59, 60]. In these latter papers, Ko et al. used a similar inhalation method to the aforemen-
tioned study [61], but with a different time of exposure and a few “homemade” modifica-
tions to the smoking chamber. One study, conducted in DNBS-treated rats exposed to CS 
for 15 days before and 2 days after DNBS instillation, showed increased macroscopic and 
histological damage in the CS-exposed rat colon [58]. Noteworthy, this study used a different 
inhalation method than did the others. Rats were exposed to a rhythmic inhalation of smoke, 
with only the nose exposed to the specialized chamber [62], and this chamber was filled with 
mainstream smoke from a high tar, unfiltered cigarette.

Furthermore, the effect of CS on the development of small intestinal inflammation (CD-like 
pathophysiology) was studied in a TNFΔARE mouse model [63]. In this mouse model, a knock-
in mutation determines the deletion of the AU-region of the TNF-α mRNA, resulting in a 
systemic TNF-α overproduction and the consequent development of chronic Crohn’s-like 
ileitis and inflammatory arthritis [64]. The authors exposed the mice to CS 4 times a day with 
30 min smoke-free intervals, 5 days per week for 2 or 4 weeks [65]. Contrarily to what obtain 
in human and rat CD, in this model CS did not modulate gut inflammation. Both molecular 
(e.g. inflammatory and autophagy gene expression) and histopathological endpoints were 
not affected by CS smoke compared to fresh air exposed mice.

In contrast to its effects in CD rodent models, CS exposure for 2 weeks decreased UC-like 
inflammation in an acute DSS-induced colitis model in mice [22]. Montbarbon et al. showed a 
significant decrease in macroscopic and histological colon damage, as well as in colonic pro-
inflammatory cytokine expression, in DSS-exposed mice after CS inhalation. Interestingly, 
this study highlighted a pivotal role for a specific intestinal lymphocyte type, iNKT, in the 
CS-dependent protection of the colon. The authors used a ventilated smoking chamber of 
the InExpose® System and exposed the mice to the mainstream smoke of research cigarettes 
5 days per week (5 cigarettes/day). However, a previous study, in a long-term mouse model 
of DSS-mediated chronic colitis, showed a CS-dependent increase in inflammation-associated 
colon adenoma/adenocarcinoma formation. Although specific inflammatory endpoints were 
not reported, the number of colon adenomas/adenocarcinomas was significantly increased in 
the CS-exposed mice [66]. This tumour formation was associated with inhibition of cellular 
apoptosis and supported by increased angiogenesis. As a possible explanation for this dis-
crepancy, this study used Balb/c mice while the protective effects of CS [22] were observed in 
C57BL/6 mice. Opposite responses in Balb/c mice, compared with C57BL/6 and other mouse 
strains, were also reported for other chemical inducers of IBD [67]. Moreover, a different inha-
lation method was applied in the Balb/c mouse study. These mice were exposed to 2 or 4% CS 
in a ventilated smoking chamber for 1 h per day.

In the context of inhalation studies aimed to understand the major CS component responsible 
for the observed anti-inflammatory effects in the intestine, three studies on the anti-inflamma-
tory properties of carbon monoxide (CO) in IBD models are notable. Indeed, CO, a prominent 
component of CS long considered as just being a toxic gas [68], was recently shown to exert 
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potent cell protective effects because of its anti-inflammatory, anti-apoptotic and anti-oxidant 
capabilities [69, 70]. In three different studies, inhaled CO consistently decreased inflammation 
in chemically induced and genetic mouse models of UC and CD, respectively [71–73]. In par-
ticular, the same group of researchers [71, 72] exposed two different knockout mouse models, 
IL-10−/− [74] and TCRα−/− [75, 76], to CO at a concentration of 250 ppm (part per million) or com-

pressed air (control), attempting to recapitulate, at least in part, CS effects on the development 
of CD and UC, respectively. IL-10−/− mice were generated by gene targeting in 1993 by Kuhn et 
al. [74], introducing two stop codons in exon 1 and 3 of the IL-10 gene in murine ES cells. These 
mice are characterised by extensive Th1-mediated enterocolitis originated by an antigen-driven 
uncontrolled immune response mainly resembling human CD condition. T cell receptor (TCR)
α knockout mice were generated with a similar gene targeting approach [76], thus integrating 
a neomycin cassette in the first exon of the TCRα locus. In these mutant mice, the intestinal 
mucosal immunoregulatory mechanisms are negatively affected, triggering the development of 
UC-like symptoms [75]. Surprisingly, CO inhalation suppressed inflammation in both models, 
regardless of their IBD subtype, through a heme oxygenase (HO)-1 dependent pathway. The 
anti-inflammatory capabilities of CO were also confirmed in a TNBS-induced mouse model of 
CD. Mice were exposed to CO at 200 ppm, beginning after TNBS administration and through-
out the remaining study period (3 days) [73]. Thus, the increased colonic damage induced by 
TNBS was significantly inhibited by the CO treatment, with a consistent suppression of inflam-

matory markers, such as TNF-α levels and myeloperoxidase (MPO) activity.

As highlighted in the aforementioned reports, although CS or CS component inhalation stud-
ies in mouse models seem to recapitulate most epidemiological observations in humans, dif-
ferences in the inhalation methodologies are many and frequent, making impossible a clear 
and solid comparison between the studies.

The route of administration was relevant on the final effect also when single CS components, 
such as nicotine, were administered to IBD mouse models or patients [47]. Thus, in a TNBS 
mouse model of CD, the detrimental effects of subcutaneous nicotine administration [77] 
contrasted with the dose-dependent bivalent effect of nicotine administered in the drink-
ing water, that is, positive at low and negative at high concentrations [78, 79]. Furthermore, 
subcutaneous or oral nicotine administration to rats treated with DNBS led to, respectively, 
decreased or increased colon inflammation [58, 59]. Finally, while oral or subcutaneous nico-
tine administration attenuated inflammation caused by DSS treatment in mice [50, 80], intra-
peritoneal nicotine injection had no effects [81, 82]. Inconsistencies related to different routes 
of administration of CS components were also observed in human studies [83–86]. Overall, 
these observations suggested that the route of administration of a CS-related compound, 
such as nicotine, is important to consider in treating colitis. In animal models, it is clear that 
mimicking the nicotine intake profiles in smokers (inhalation) could result in increased treat-
ment efficacy. This idea was supported in humans by the conflicting results obtained by local 
nicotine application (enemas) [87]. Therefore, although the colon may be an important site 
of action for CS components, the responsible molecule for the observed effects might act on 
many peripheral and central inflammatory pathways, such as vagus-related anti-inflamma-
tory nicotinic signalling, or might require intermediate metabolic transformations.
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3.2. Limits and pitfalls of studies using inhalation mouse models

Among the aforementioned studies, only a few used inhalation exposure (Table 2) models 
were observed, although many of the findings mimicked human smoking effects in IBD, 
the results were still variable. Such heterogeneity in observed CS effects on experimentally 
induced colitis is not unexpected, given variability in animal species and strains, IBD induc-
ers, CS exposure schedules, endpoints and observation periods.

When comparing such quality-relevant exposure conditions, group sizes were usually suf-
ficient, but most of the studies used only male mice or rats, instead of both genders as 
recommended by the Organisation for Economic Co-operation and Development (OECD) 
test guidelines. Only one rat study employed the preferable nose-only inhalation mode 
[58]. Many of the papers did not describe the exposure chambers sufficiently and expla-
nations of exposure concentration parameters (such as number of puffs, flow rate and 
chamber volume) often did not enable derivation of the standard Total Particulate Matter 
(TPM) or smoke constituent concentration values, in a weight per volume unit (e.g. mg/L). 
The most evident heterogeneity among studies, however, was in exposure schedules and 
durations. The CS inhalation studies in IBD models typically used daily exposure dura-
tions no longer than one hour, with none using the recommended 6 h/day duration. Some 
studies pre-exposed the animals a few days before IBD induction and discontinued CS 
exposure after the induction treatment, while others continued exposure until the end 
of the study or began CS inhalation after IBD induction [59]. To explore more systemati-
cally the effects of inhaled CS or CS constituents on IBD in various models, there is a clear 
need to harmonise exposure conditions to be closer to minimal standards for inhalation 
toxicity studies. This is particularly true for exposure schedules and durations, as well 
as for documentation of meaningful concentration measurements in the exposure atmo-
spheres (Table 3). Finally, to elucidate the molecular mechanisms of IBD-CS interactions, 
beyond the current knowledge, it will be necessary to combine robust IBD models (UC 
and CD), well-controlled, state-of-the-art inhalation exposure design and technology and 
disease-specific endpoints with systems-wide molecular profiling. We conducted systems 
toxicology-oriented inhalation studies using mouse models to investigate effects of CS 
and candidate modified risk tobacco products in chronic obstructive and cardiovascu-
lar diseases [33, 88–91]. These studies demonstrated the feasibility and suitability of this 
approach for identifying the molecular basis of disease mechanisms and the biological 
impacts of CS. The study design and inhalation exposure technology were based on the 
OECD guidelines TG412 and TG413 for 28 and 90 days inhalation toxicity studies, respec-
tively [92, 93]. Satellite groups were included to provide material for the additional molec-
ular investigations and a similar study was conducted on rats exposed to nicotine aerosols 
[33]. A very detailed description of the study design and methodology was provided [94] 
and this might serve as a template for new IBD inhalation studies. Of course, adaptations 
will be necessary, based on specifications of the IBD models. For example, most chemi-
cally induced IBD models require acute, rather than subchronic or chronic, observation 
periods, while the genetically engineered IBD models develop the disease in a similar 
timeframe as the COPD and CVD models.
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IBD model, 

induction

Study design Exposure duration Inhalation 

technology

CS/inhalant 

characterisation

References

(OECD TG 412 
recommendation)

At least 5 males 
and 5 females 
per group, 3 dose 
levels of test 
article, filtered 
air and/or vehicle 
control

6 h/day; 5 (7) days/
week; 28 days

Nose-only 
preferred, whole 
body acceptable, 
detailed description 
of exposure 
chamber to be given

Analytical 
characterisation; 
respirable 
particle size (1–3 
μm MMAD), 
nominal and 
actual test article 
concentration 
(mass per 
volume) to be 
indicated, constant 
concentration 
during exposure 
period

[92]

Rat (Sprague 
Dawley), TNBS 
enema

8–10 rats/group 
(males only), 1 
dose level, fresh 
air control

1 h/day; 4 days 
pre-induction

Whole body, 
ventilated smoking 
chamber (20 L) with 
5–6 rats, smoke 
generated with 
peristaltic pump

“Camel” cigarettes, 
4% v/v smoke, no 
characterisation

[56]

Rat (Sprague 
Dawley), TNBS 
enema

10–12 rats/group 
(males only), 2 
dose levels, fresh 
air control

1 h/day; 4 days 
pre-induction

Whole body, 
ventilated smoking 
chamber (20 L) with 
5–6 rats, smoke 
generated with 
peristaltic pump

“Camel” 
cigarettes, 2 and 
4% v/v smoke, no 
characterisation

[55]

Rat (Sprague 
Dawley), TNBS 
enema

6–8 rats/group 
(males only), 1 
dose level, fresh 
air control

1 h/day; 4 days 
pre-induction

Whole body, 
ventilated smoking 
chamber (20 L) with 
5–6 rats, smoke 
generated with 
peristaltic pump

“Camel” cigarettes, 
4% v/v smoke, no 
characterisation

[54]

Rat (Sprague 
Dawley), TNBS 
enema

10 rats/group 
(males only), 2 
dose levels, fresh 
air control

1 h/day; 8 days 
pre-induction

Whole body, 
ventilated smoking 
chamber (20 L) with 
5–6 rats, smoke 
generated with 
peristaltic pump

“Camel” 
cigarettes, 2 and 
4% v/v smoke no 
characterisation

[57]

Mouse (C57BL/6), 
DSS in drinking 
water

6–10 mice/group 
(males only), 1 
dose level, fresh 
air control

2 week (5 days/
week) pre-induction 
and 1 week 
post-induction

Whole body, 
InExpose chamber 
(Scireq) and rotary 
smoking machine

3R4F reference 
cigarettes, 
mainstream smoke 
from 5 cigarettes (8 
puffs per cigarette), 
no concentration/
characterisation

[22]

Rat (Sprague 
Dawley), DNBS 
enema

6–8 rats/group, 3 
dose levels, fresh 
air control (10 
rats/group)

5–40 min/day, 
15 days pre-
induction and 2 day 
post-induction

Nose-only, puffwise 
smoke injection into 
chamber

2R1 reference 
cigarette, 5, 20 
or 40 puffs/day 
(undiluted), no 
concentration/
characterisation

[58]
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4. Mechanisms of IBD pathogenesis with possible relationship to CS 

constituents

4.1. Nicotinic anti-inflammatory pathway

The vagus nerve transmits signals by releasing acetylcholine that, in turn, stimulates neuro-
nal and immune cells via their nicotinic acetylcholine receptors (nAChR) [95, 96]. These are 
ligand-gated ion channels expressed not only in neuronal cells, but also in most mammalian 
non-neuronal cell types, though different cell type-specific downstream signalling functions 
[97]. In the nicotinic anti-inflammatory pathway, nAChR activation by acetylcholine or other 
ligands inhibits the downstream NF-κB pathway, attenuating production of TNF-α and other 

IBD model, 

induction

Study design Exposure duration Inhalation 

technology

CS/inhalant 

characterisation

References

Rat (Sprague 
Dawley), DNBS 
enema

7 rats/group, 2 
dose levels, fresh 
air control

1 h/day; 3 days 
post-induction

Whole body, 
ventilated smoking 
chamber (20 L) 
with 5–6 rats, 
smoke generated 
with peristaltic 
pump smoke, no 
characterisation

“Kings” cigarettes, 
4% v/v; no 
concentration/
characterisation

[59]

Rat (Sprague 
Dawley), DNBS 
enema

6–8 rats/group, 1 
dose level, fresh 
air control

1 h/day; 3 days pre-
induction, 4 day 
post-induction

Whole body, 
ventilated smoking 
chamber (20 L) with 
5–6 rats, smoke 
generated with 
peristaltic pump

“Camel” 
cigarettes, 2 and 
4% v/v smoke, no 
characterisation

[60]

Mouse (Balb/c), 
DSS in drinking 
water

5–12 mice/group 
(males only), 2 
dose levels, fresh 
air control

3 cycles of: 7 days 
DSS + CS (1 h/day) 
followed by 14 days 
recovery

Whole body, 
ventilated smoking 
chamber (20 L), 
smoke generated 
with peristaltic 
pump

“Camel” 
cigarettes, 2 and 
4% v/v smoke, no 
characterisation

[66]

TCRα−/− mouse 
(C57BL/6)

10 mice/group 
(5 males and 5 
females), 1 dose 
level, fresh air 
control

4 week (daily 
duration not 
indicated)

Whole body, 3.70 ft2 
plexiglass animal 
chamber, 12 L/min 
flow rate

CO gas, 250 ppm 
in air, continuous 
measurement

[72]

IL-10−/− mouse 
(C57BL/6)

12 mice/group 
(males only), 1 
dose level, fresh 
air control

4 week (daily 
duration not 
indicated)

Whole body, 3.70 ft2 
plexiglass animal 
chamber, 12 L/min 
flow rate

CO gas, 250 ppm 
in air, continuous 
measurement

[71]

Mouse (C57BL/6), 
TNBS enema

12 mice/group, 1 
dose level, fresh 
air control

3 day (permanent) 
post-induction

Whole body, acrylic 
chamber

CO gas, 200 ppm 
in air, continuous 
measurement

[73]

Table 3. Comparison of exposure conditions in published inhalation studies using rodent IBD models.

Animal Inhalation Models to Investigate Modulation of Inflammatory Bowel Diseases
http://dx.doi.org/10.5772/intechopen.69569

197



cytokines [98, 99]. This pathway was reported to be one of the most likely explanations for 
CS-associated anti-inflammatory responses in the gut. Mapping the relevant neuronal cir-
cuits revealed that efferent vagus nerve fibres innervated the small intestine and proximal 
colon [100]. Vagotomised mice were more susceptible than normal mice to developing colitis 
after exposure to DSS and had increased levels of NF-κB and cytokines, such as IL-1β, IL-6 
and TNF-α [101–103]. Pretreatment with nicotine reversed these effects through activation of 
α7nAChR, identified as the major receptor involved in nicotinic anti-inflammatory pathways 
[99, 104]. Potential therapeutic applications of selective α7nAChR agonists, such as the par-
tial α7 agonists 3-(2,4-dimethoxybenzylidene)-anabaseine (GTS-21) and anatabine citrate, and 
of α7nAChR-positive allosteric modulators, was explored in pre-clinical and clinical studies 
[105–109]. Moreover, additional nAChR subtypes, such as α4β2, α3β4, α3β2 and α6, were also 
proposed as targets for nicotine treatment [110–112], increasing the complexity, but also the 
therapeutic potential, of this approach. Although research on the mechanisms involved in nic-
otinic anti-inflammatory pathways has highlighted the pharmacological potential of nAChR 
agonists, studies showing contradictory results obtained with specific α7nAChR ligands [82] 
suggested that these compounds should be used with caution in patients with IBD.

4.2. Immune regulation

The immunosuppressive effects of cigarette smoking, on both cellular and humoral immunity, 
have long been recognised [113–115]. Studies exploring how nicotine or CS can suppress the 
immune system indicated that, in nicotine-treated animals, T cells did not enter the cell cycle 
and proliferate as expected. Similar effects were observed in smokers and in animals exposed 
to CS [116–118]. Several studies described the implications of CS for different immune cell 
types, as well as the diverse actions of nicotine or CS, depending on the pathological environ-
ment, for example, UC or CD, in which the immune cells originated [77, 99, 112, 119–122]. 
For instance, when stimulated by lipopolysaccharide, peripheral blood mononuclear cells 
derived from smokers showed decreased IL-8 release only if subjects were also CD patients 
[122]. Similarly, the same investigators demonstrated that smokers with CD had significantly 
lower IL-10 (anti-inflammatory)/IL-12 (pro-inflammatory) ratios than non-smokers or smok-
ers with UC. As suggested in some reports, the differential signalling of dendritic cells from 
CD (Th1-like) and UC patients exposed to cigarette smoke extract (CSE) in vitro could play a 
role in the opposing responses of cigarette smoke exposure, that is, a Th1-like response in CD, 
with increased Foxp3-positive CD4 T cells [121].

4.3. Barrier dysfunction and intestinal permeability

The intestinal mucosa is one of the most important physical barriers against external threats. 
Changes in intestinal permeability are crucial for the development of IBD [123] and several 
studies implicated CS in regulating barrier integrity. However, the effects of smoking on 
intestinal permeability are controversial. Several in vitro and in vivo observations, in stud-
ies using humans or rodents, suggested that decreased intestinal permeability in smokers 
might explain the protective effects of smoking in UC [53, 124–127]. In contrast, a recent article 
reported that mice exposed to CS exhibited increased intestinal permeability and bacterial 
translocation, intestinal villi atrophy, damaged tight junctions and abnormal tight junction 
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proteins [128]. However, no intestinal barrier changes were identified in the colons of control 
or CS-exposed mice, suggesting that there was CS-related organ specificity and, thus, possibly 
explaining the opposing effects of smoking on CD and UC.

4.4. Gut microbiota

Much evidence supports the strong impact of environmental factors on gut microbiota, and 
smoking has recently been investigated as a potential factor shaping the microbiota. This 
potential connection implied new possibilities regarding the role of smoking in IBD devel-
opment. Thus, studies targeting selected bacterial groups reported that patients with active 
CD, who also smoked, had microbial profiles different from those of non-smoking patients 
with CD. Similar results were found in healthy smoking controls, suggesting that the associa-
tion related not to intestinal inflammation but, instead, to a direct impacts of smoking on the 
microbiota [129, 130]. Differences between mice and humans at the level of the gut micro-
biota limit the usefulness of mouse models, relevant to CS, gut microbiota and IBD. However, 
a few studies using rats and mice were consistent with observations in humans, indicating 
CS-dependent shifts in gut microbiota compositions [131–133]. These observations supported 
a possible role for CS in shaping the gut microbiome, with potential, though still unknown, 
consequences for evolution of inflammation-related disorders, such as IBD.

4.5. Other potential mechanisms

Currently, the processes described in Sections 4.1–4.4 have been those most explored as poten-
tial links between CS and IBD development. However, there are several other possible mecha-
nisms, indicative of how environmental factors might exponentially increase complexity of 
IBD pathology.

4.5.1. Colon motility

In UC, fasting colonic motility increased, whereas motor responses to food significantly 
decreased [134]. Observations in experimental animals and humans showed that nicotine 
promoted smooth muscle relaxation, reducing symptoms, such as diarrhoea and urgency 
without significantly influencing inflammation [135–137].

4.5.2. Eicosanoid-mediated inflammation

Smoking and nicotine may also affect UC by reducing eicosanoid-mediated inflammatory 
responses. Two studies independently demonstrated this specific effect in humans and rab-
bits [53, 138].

4.5.3. Rectal blood flow

Patients with UC have significantly higher rectal blood flow than normal controls, but smok-
ing decreased rectal blood flow to within normal ranges [139–141]. However, changes in blood 
flow can affect intestinal inflammation in opposing ways. Decreasing blood flow can reduce 
levels of inflammatory mediators that reach the mucosal surface, while long-term impairment 
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of rectal mucosal microvascular blood flow can result in a higher incidence of anastomotic 
breakdown in chronic smokers [140].

4.5.4. Non-nicotine-mediated effects

Although nicotine is considered to be the major mediator of CS effects on intestinal inflamma-
tion, there is a clear evidence for involvement of other smoke constituents in CS-dependent 
responses. Both UC and CD mouse models were affected by carbon monoxide (CO) inhala-
tion [71–73, 142]. These studies suggested that the mechanism through which CO protected 
against intestinal inflammation involved promoting bactericidal activities of macrophages 
[142]. Nitric oxide (NO) was also suggested as contributing to beneficial CS effects, based on 
its relaxant effects on colonic smooth muscle from UC patients [143]. Moreover, physiological 
NO, derived from nicotine-stimulated intestinal neuronal cells, functioned as a mediator in 
smooth muscle relaxation in the colons of DSS-treated mice [137].

5. Conclusions

Smoking cigarettes is addictive and causes a number of serious diseases, including those of 
the respiratory and cardiovascular system [144], it also negatively impact on the gastroin-
testinal tract, such as CD [145]. Many of the adverse health effects of smoking are reversible 
and important health benefits are associated with smoking cessation [146]. With regard to the 
other major IBD form, a protective effect of cigarette smoking on the risk of UC development 
is well documented. However, whether CS constituents have beneficial effects on the course 
of the disease is less clear and the potential mechanisms are not understood.

CS inhalation studies in IBD mouse models would, ideally, reproduce the clinical effects of 
CS on colonic inflammation. This would facilitate identification of the mechanisms involved 
in the effects of CS on colitis and, eventually, lead to the characterisation of new anti-inflam-

matory processes involved in colon protection [22]. Nonetheless, so far, the results obtained 
using animal models of IBD following exposure to inhaled CS or to nicotine via non-inhala-
tion routes, reflected the ambiguity of the clinical observations. These inconsistencies often 
reflect the high variability related to animal models (e.g. strains, IBD inducers, etc.) and inha-
lation methodologies. A more systematic and standardised approach is required to obtain 
consistent and reproducible data addressing the mechanisms by which CS interacts with the 
inflammatory processes in animal models of UC-like and CD-like colitis. Such systematic 
investigations could provide valuable insights into the possible anti-inflammatory effects of 
CS constituents in models related to UC. Corresponding studies in CD models would provide 
more mechanistic detail about how these compounds can enhance inflammation in CD.
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