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Abstract

A treatment process for Acid mine drainage (AMD) using coal fly ash (CFA) was devel-
oped. AMD was treated with CFA as the alkaline agent at different CFA: AMD ratios and 
pH, electrical conductivity (EC) evolution monitored over time. In a separate experiment 
two AMD sources with differing chemistry were treated with the same CFA to evaluate 
the impact of AMD chemistry on the treatment process and product water quality. Various 
CFA: AMD ratios were stirred in a beaker for a pre-set time and the process water chemistry 
determined. pH was observed to increase in a stepwise manner with buffer zones observed 
at 4-4.5, 4.5-7 and 6-8. AMD with low concentration of Al3+, Fe2+, Fe3+ and Mn2+ didn’t exhibit 
these buffer zones. Two competing processes were observed to control the evolving pH of 
process water: dissolution of basic oxides (CaO, MgO) from CFA led to pH increase and 
hydrolysis of AMD species such as Al3+, Fe2+, Fe3+ and Mn2+ led to pH decrease. These pro-
cesses initiated mechanisms such as precipitation, adsorption and ion exchange that led to 
decrease in inorganic contaminants as the treatment progressed. Inorganic contaminants 
removal was directly related to amount of CFA in reaction media. Precipitation of insoluble 
hydroxides and Al, Fe-oxyhydroxysulphates contributed to removal of major and minor 
chemical species. Precipitation of gypsum contributed to removal of sulphate. Na, K and Mg 
remained largely in solution after initial decrease. Significant leaching of B, Sr, Ba, and Mo 
from CFA was observed and was directly linked to amount of CFA in the reaction media. 
This will be a shortcoming of the treatment process since other processes may be required to 
polish up the product water. The treatment of AMD with CFA was observed to depend on 
CFA, AMD chemistry, treatment time and might therefore be site specific.

Keywords: acid mine drainage, coal fly ash, sulfate, neutralization, inorganic 
contaminants, pH, coal fly ash: acid mine drainage ratios
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1. Introduction

The mining industry in South Africa has a huge potential to impact negatively on the envi-
ronment. Negative impacts include generation of reactive tailings and acid mine drainage 
(AMD). In South Africa, the Witwatersrand basin alone decants approximately 10–60 mL/
day into nearby rivers [1]. AMD is highly acidic (pH 2–4), sulfate-rich and frequently carries 
a high concentration of inorganic contaminants. AMD is extremely acidic (as low as pH 2.0) 
and enriched with iron, manganese, aluminum, sulfate, and metal species such as lead, mer-

cury, cadmium, zinc [2–6]. When sulfide minerals such as pyrite (FeS
2
), its dimorph marcasite 

and pyrrhotite (Fe1−xS) are exposed to oxygen and water, they undergo a bacterially catalyzed 
oxidation reaction which lead to generation of acidity and increased Fe and sulfate concentra-

tions in recipient water bodies (Eq. (1)). The overall reaction is often written as [7]:

   FeS  
2
  (s ) +3.75 O  

2
   + 3.5 H  

2
   O → Fe (OH )  

3
  (s ) +2 SO  

4
  2−  + 4 H   +   (1)

On interacting with the mine bedrock, the acidic water leaches more chemical species leading 
to high concentrations of Fe, Mn, Al, Cu, Zn, Mg, Na and Ni in the AMD streams [2, 3].

South Africa environmental regulations require these AMD streams to be treated to acceptable 
levels before discharging into surface water bodies. A range of active and passive remediation 
technologies have been adopted by various mining companies to reduce impact of AMD on 
ground and surface water resources. These technologies include active neutralization by lime, 
limestone, biological sulfate removal [8–10], eutectic freeze crystallization [11] and the alka-

line barium calcium desalination process (ABC) [12]. Passive AMD remediation technologies 
include alkalinity generating artificially constructed wetlands [13]. Other innovative AMD 
management and remediation technologies have been developed which involve treatment 
and recovery of beneficial products such as gypsum and sulfur [12]. Recently, innovative and 
sustainable management technologies for AMD have been developed which involve treat-
ment and recovery of drinking water that is supplied to communities near the mines while 
the gypsum recovered is used in construction of gypsum boards and houses. This is to reduce 
the cost of treatment and make the process sustainable [14]. Bhattacharyya and Gupta [15] 

observe that these AMD management technologies are still expensive and mining companies 
are still searching for cheaper treatment and management technologies.

South Africa uses more than 100 MT of low grade bituminous coal annually to produce elec-

tricity in coal powered utilities. These coal power utilities in turn produce 28 MT of coal 
fly ash annually that is disposed of on land as ash dumps or slurried to ash dams due to 
lack of alternative application of this coal combustion by-product [16]. Fly ash is a powdery 
substance which consists of fine spherical particles which are either solid or hollow. It is a 
ferro-aluminosilicate material with particles ranging in size from 20 to 80 μm, its surface is 
enriched with trace elements of Si, Al, Fe, Ca, K and Na [17, 18]. Several authors have reported 
that South African coal fly ash consists mainly of aluminosilicate glass matrix in addition to 
crystalline mullite and quartz. This glass phase was observed to be associated with elements 
such as As, Na, Mg, K, Sr, B and Mo as soluble salts on the surface of the spheres [3, 19, 20]. 
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The South African coal is sub-bituminous and generates coal fly ash that has low Fe content 
and the aqueous extracts of this coal fly ash are strongly alkaline (pH 12–12.5) due to the free 
lime content [16, 21–24]. The highly soluble CaO occurring as sub-micron fragments on the fly 
ash particles accounts for the alkaline properties of the coal fly ash [3].

Traditionally, AMD neutralization and remediation has been carried out using liming agents 
such as limestone, lime and sodium hydroxide [9, 10, 13, 25, 26]. An important disadvantage 
of these liming agents is cost and generation of large volumes of sludge that requires disposal. 
Due to those limitations, mining companies are always on the lookout for cheaper and effec-

tive liming agents.

Several research reports have highlighted the application of fly ash for the control of acid gen-

eration from sulphidic rich wastes [27, 28] and for amendment of acidic soils [29]. The studies 
involved blending the mine spoils, tailings and acidic soils with varying amounts of fly ash. 
These authors observed that the coal fly ash controlled the acid generation from the wastes by 
release of alkalinity over time to the system which neutralized the acidity produced. Several 
authors have reported on the successful application of coal fly ash for inorganic contami-
nants removal from AMD and acidic leachates [8, 19, 30, 31]. They observed that contaminants 
removal was directly proportional to CaO content of the fly ash. The authors concluded that 
coal fly ash due to its free lime content can be used as a neutralization and inorganic contami-
nants removal for AMD remediation.

Most of the power utilities generating coal fly ash in South Africa are located near coal mines 
supplying them with coal [6]. These coal mines are also the sources of AMD that requires 
remediation. This chapter reports on work done to explore the possibility of utilizing coal fly 
ash for treatment and remediation of AMD. The fact that most of the coal-powered utilities 
are near the coal mines that supply them with coal and produce AMD, makes the proposed 
treatment process economically viable. A fundamental understanding of the solution chemis-

try and product water quality after neutralization of AMD with coal fly ash is a prerequisite 
for this treatment process.

2. Collection of samples, physicochemical analysis and experimental 

methods

2.1. Collection and preparation of samples

Coal fly ash (CFA) samples were collected from two coal-powered utilities in Mpumalanga, 
South Africa and stored in tightly lockable plastic containers. The AMD samples used were 
collected from two collieries and a government AMD treatment plant that remediates AMD 
seepage from an old abandoned mine in Witbank, South Africa. The AMD samples from the 
government AMD treatment plant were scooped from the seepage point while samples for the 
two collieries consisted of AMD pumped from underground old mine workings to a collection 
dam and underground mine voids, respectively.
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Raw AMD samples were filtered by using 0.45 μm pore cellulose nitrate membrane filters and 
diluted with MilliQ (ultrapure) water to EC < 1.5 mS/cm and 3 drops of dilute HNO

3
 added 

and kept refrigerated at 4°C until analysis for cationic species. Samples for anion analysis 
were diluted with MilliQ water and refrigerated at 4°C until analysis.

2.2. Coal fly ash/acid mine drainage treatment experiments

The AMD/coal fly ash treatment experiments were designed to develop neutralization pat-
terns that would indicate buffering properties of the AMD and also show the contact time 
required for the breakthrough to circum-neutral-alkaline pH in the product. Department of 
Water Affairs and Forestry [32] South Africa requires pH for treated water for release into sur-

face water bodies to be in the range of 6–9. The batch treatment experiments were conducted 
by stirring a mixture of coal fly ash and AMD which was pre-determined to give a specific 
coal fly ash/AMD ratio (FA:AMD). An overhead stirring system was used to agitate the mix-

ture for all experiments. The progress of the reaction was monitored by measuring the pH and 
EC with a Hanna HI 991301 portable pH/EC/TDS/Temperature metre.

A second set of treatment experiments were repeated at selected FA:AMD ratios to explore 
the product water chemistry and inorganic contaminants removal efficiency of the coal fly ash 
with increasing pH of the process water. The solid residues were separated by filtration and 
the process water samples were prepared for cationic and anionic species analysis. Cationic 
species were analyzed using ICP-MS (ELAN 6000) and the accuracy of the analysis monitored 
by the use of NIST water standards. Fe2+/Fe3+ analysis was done by the colorimetric method 
using 2, 2-bipyridal as the complexing reagent. Sulfate analysis was done turbidimetrically by 
a portable data logging spectrophotometer (Hach DR/2010) and ion chromatography (Dionex 
DX-120).

Chemical characteristics of the coal fly ash samples were ascertained by X-ray fluorescence 
spectroscopy (XRF) by fusing with lithium metaborate. The solid residues collected after 
reacting coal fly ash with AMD were analysed by Phillips PANalytical X-ray diffractometer 
(XRD) using Cu Kα radiation generated at 20 mA and 40 KV. Specimens were step scanned as 
random powder mounts from 5 to 85° 2θ integrated at 0.02° 2θ per second. Powder samples 
of the solid residues were also observed under a scanning electron microscope (SEM-EDX) 
equipped with an energy dispersive X-ray analysis system (Hitachi X-650 microanalyzer).

3. Results and discussion

3.1. Chemical composition of coal fly ash

The chemical composition of the coal fly ashes used in the AMD treatment experiments are 
presented in Table 1.

The three major oxides identified in the two coal fly ashes were Al
2
O

3
, Fe

2
O

3
 and SiO

2
. Coal 

fly ash B had higher Al
2
O

3
 content while coal fly ash A showed higher Fe

2
O

3
 content. These 
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coal fly ashes can be classified as class F according to the American Society for Testing and 
Materials [33] since (SiO

2
 + Al

2
O

3
 + Fe

2
O

3
 ≥ 70%). The CaO content shows slight variation with 

coal fly ash B showing a slightly higher value. The total CaO content detected by XRF includes 
total CaO including that locked up in the aluminosilicate matrix. XRF does not distinguish the 
free lime from that trapped within the glass matrix. The free CaO content of CFA is important 
because of its availability for rapid dissolution, which has implications on its neutralization 
potential during AMD treatment. Substantial MgO was observed in both coal fly ashes and 
could contribute significantly in the neutralization of AMD. Both coal fly ashes showed high 
concentrations of Sr, Ba, Cr, Zr and Ni (Table 1). Trace elements of Mo are also present. These 
species are likely to be released into solution during the AMD treatment process.

3.2. Physicochemical properties of acid mine drainage samples

The physicochemical properties of the AMD samples used in the treatment experiments are 
presented in Table 2.

The AMD samples are highly acidic with the pH ranging from 2.39 for Navigation samples 
to 2.92 for Brugspruit samples (Table 2). All the samples exhibit high electrical conductivity 

Coal fly ash A Coal fly ash B

Species % (w/w) Species ppm Species % (w/w) Species ppm

SiO
2

53.4 ± 2.4 Cu 47.3 ± 6.6 SiO
2

53.8 ± 0.29 Cu 57.9 ± 9.9

TiO
2

1.34 ± 0.05 Mo 5.22 ± 0.14 TiO
2

1.44 ± 0.11 Mo 6.56 ± 0.15

Al
2
O

3
23.4 ± 1.1 Ni 93.4 ± 6.5 Al

2
O

3
26.2 ± 2.52 Ni 58.2 ± 1.2

Fe
2
O

3
4.72 ± 0.96 Pb 56.4 ± 13.6 Fe

2
O

3
3.40 ± 0.24 Pb 29.1 ± 7.18

MnO 0.06 ± 0.002 Sr 1463.9 ± 111.8 MnO 0.05 ± 0.02 Sr 2056.0 ± 205

MgO 2.69 ± 0.05 Zn 57.3 ± 4.71 MgO 2.48 ± 0.58 Zn 25.4 ± 1.35

CaO 8.43 ± 0.57 Zr 488.1 ± 125.7 CaO 8.50 ± 1.75 Zr 536.1 ± 131.3

Na
2
O 0.35 ± 0.25 Co 18.3 ± 13.08 Na

2
O 0.49 ± 0.05 Co 10.4 ± 3.3

K
2
O 0.49 ± 0.03 Cr 179.2 ± 1.14 K

2
O 0.86 ± 0.07 Cr 122.7 ± 27.8

P
2
O

5
0.35 ± 0.22 V 147.4 ± 38.9 P

2
O

5
0.60 ± 0.22 V 145.8 ± 32.8

Cr
2
O

3
0.03 ± 0.009 Ba 928.0 ± 91.9 Cr

2
O

3
0.03 ± 0.006 Ba 1559.2 ± 346.7

NiO 0.011 ± 0.001 NiO 0.009 ± 0.002

V2O
5

0.019 ± 0.002 V
2
O

5
0.02 ± 0.003

ZrO
2

0.052 ± 0.012 ZrO
2

0.055± 0.003

LOI 2.36 ± 0.19 LOI 1.33 ± 0.36

Table 1. Chemical composition of coal fly ashes A and B used in AMD treatment experiments.
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(10.02–11.36 mS/cm), typical of most AMD impacted mine waters. This is attributed to high 
sulfate content which contributes to the high conductivity values of the samples. The sulfate 
correlated positively with the EC measurements for most of the acidic coal mine waters inves-

tigated in this study. The sulfate
 
recorded in these samples ranged from 6155 to 14950 mg/L 

making this anion dominant in the AMD samples while major cationic species included Na, 
Ca, Mg, Al, Mn and Fe. It is worth noting that Navigation and Bank AMDs had significantly 
higher total Fe iron content than Brugspruit AMD.

Parameter Navigation Bank Brugspruit

pH 2.39 ± 0.05 2.46 ± 0.03 2.91 ± 0.02

EC (mS/cm) 10.83 ± 0.13 10.78 ± 0.15 10.02 ± 0.06

Acidity (mg/l CaCO
3
) 6950 ± 70.7 7000 ± 70.7 500 ± 0.0

TDS (mg/L) 16765 ± 50.5 19410 ± 76.8 8975 ± 60.5

B 1.37 ± 0.163 1.51 ± 0.08 2.29 ± 0.221

Na 358.7 ± 2.95 399.9 ± 21.3 4137.9 ± 233.0

Mg 2661.7 ± 35.0 2844.2 ± 148.1 388.7 ± 19.7

Al 1068.1 ± 11.28 1140.1 ± 61.58 60.0 ± 2.9

Si 82.01 ± 1.24 87.8 ± 5.87 69.7 ± 3.5

K 23.03 ± 2.86 19.3 ± 4.21 52.6 ± 3.6

Ca 653.3 ± 10.6 1012.3 ± 75.9 842.1 ± 117.4

Mn 226.3 ± 4.7 242.3 ± 12.9 31.6 ± 1.50

Fe 5599.9 ± 80.9 6115.9 ± 327.5 250.8 ± 11.2

Fe2+ 3725.1 ± 30.5 2886.3 ± 20.7 153.1 ± 9.5

Fe3+ 1451.9 ± 45.2 3344.6 ± 50.5 126.1 ± 6.5

Ni 6.95 ± 0.02 7.96 ± 1.16 2.35 ± 0.13

Cu 0.355 ± 0.007 0.345 ± 0.018 0.116 ± 0.012

Co 4.3 ± 0.11 4.57 ± 0.32 1.15 ± 0.063

Zn 48.99 ± 30.63 17.7 ± 0.65 9.52 ± 0.49

Sr 7.69 ± 0.226 8.39 ± 0.45 1.05 ± 0.058

Mo 0.04 ± 0.002 0.044 ± 0.003 0.036 ± 0.004

Ba 0.209 ± 0.002 0.189 ± 0.01 0.148 ± 0.018

SO
4

2− 11888.1 ± 20.6 14949.7 ± 28.3 6155 ± 54.3

Cl− 729.3 ± 15.3 265.9 ± 10.6 720 ± 11.5

NO
3

− 163.2 ± 21.6 41.6 ± 5.7 BDL

Table 2. Physicochemical properties of AMD samples used in the treatment experiments.
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3.3. Treatment of Fe-rich acid mine drainage samples using different coal fly ashes: 
the role of coal fly ash chemistry

The pH and electrical conductivity (EC) trends of the treatment reactions at a FA to AMD ratio 
of 1:3 are shown in Figure 1.

The EC for treatment processes followed the same trend with continuous decrease as the 
agitation progressed. A zone was observed for the three treatment processes where the EC 
remained constant (Figure 1). In terms of contact time, it coincided with the pH buffer zones.

Both coal fly ashes A and B showed potential capacity to neutralize AMD at CFA:AMD ratios 
of 1:3. The pH-neutralization trends for all reactions showed a strong pH buffering zone at 
pH 6.2–6.8 which was observed to last for different reactions times depending on the coal fly 
ash or AMD type used. This pH buffer zone is associated with the oxidation and hydrolysis of 
Fe2+ which releases H+ ions and delays the rise in pH [6] (Eq. (3)). Al3+ undergoes hydrolysis at 
pH ≈ 4.5 and will also contribute to pH buffer in this zone (Eq. (2)).

  Al ( H  
2
   O )  

6
  3+  ⇒ Al (OH )  

3
   + 3 H   +     Acidity release : pH decrease  (2)

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

8

9

10

0 1 5

1
0

1
5

3
0

4
0

5
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

3
0
0

3
6
0

E
C

 (
m

S
/c

m
)

p
H

Reaction time (min)

pH: Arnot FA & Navigation AMD

pH: Arnot FA & Bank AMD

pH: Matla FA & Bank AMD

EC: Arnot FA & Navigation AMD

EC: Arnot FA & Bank AMD

EC: Matla FA & Bank AMD

Figure 1. pH and EC for the treatment reactions at a FA:AMD ratio of 1:3 between, CFA-A and B with Bank AMD; and 
CFA-A with Navigation AMD. Values reported as mean ± SD (n = 4), error bars reflect 1 SD above and below the mean.
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 Fe   2+  + 0.25 O  

2
   +  H   +  ⇒  Fe   3+  + 0.5 H  

2
  O

    
 Fe   3+  + 3  H  

2
  O ⇒ Fe  (  OH )    

3
   + 3 H   +   net acidity release :  pH decrease

  
 (3)

This pH buffering zone is a result of high concentrations of Fe2+ and Al3+ in the AMD (≈3000–
4000 mg/L for Fe2+ and ≈1150 mg/L for Al3+) (Table 2). It should be noted in Figure 1 that 
it took longer time for CFA-A to overstep the acidic buffer zone with Navigation AMD as 
compared to Bank AMD. This is attributed to the high concentrations of Fe2+ in Navigation 
AMD than Bank AMD (Table 3) that could sustain the buffering capacity. It is observed that 
both solutions broke through to a pH of ≈9, with Navigation AMD taking 200 min and only 
150 min for Bank AMD to break through. This indicates that the chemistry of the AMD is 
crucial in this treatment process. A small buffer zone was also observed at pH 4–4.5 for treat-
ment reaction between CFA-B and Bank AMD. This buffer zone is attributed to the hydrolysis 
and precipitation of Fe3+ with subsequent consumption of H+ (Eq. (3)). It should be observed 
that Bank AMD had twice the concentration of Fe3+ as Navigation AMD. This aspect is also 
confirmed in the pH trend for the CFA-A and Bank AMD with a slight buffering at pH ≈5.5 
(Figure 1). Coal fly ash B appeared to have less free alkalinity than CFA-A. This is evident 
from the pH trends during the treatment process between both CFAs and Bank AMD. To 
break through to pH ≥ 8.7 (Figure 1), contact time required was greater with CFA-B than 
CFA-A for the treatment of Bank AMD. The neutralization potential of CFA depends on free 
CaO available and in this case, CFA-A seems to have more free CaO than CFA-B. It should be 
noted that XRF gives the total CaO content of the coal fly ash and therefore results in Table 1 

which do not reflect free CaO. This aspect confirms that the chemistry of the coal fly ash will 
also be an important factor in this treatment process.

3.4. Treatment of iron-rich and iron-poor acid mine drainage with coal fly ash: the role of 
CFA/AMD ratios and acid mine drainage chemistry

To evaluate the effect of AMD chemistry and CFA/AMD ratios on the treatment process and 
product water quality, CFA-B was reacted with Brugspruit and Navigation AMD. Brugspruit 
AMD had low total Fe, Al and Mn content while Navigation AMD had high concentration of 
total Fe, Al and Mn in addition to high SO

4
2− content (Table 2). Figure 2 shows the trends of 

pH and electrical conductivity (EC) for the treatment process between CFA-B and Brugspruit 
AMD at various CFA:AMD ratios.

The treatment of Brugspruit AMD with low ratios of CFA-B led to alkaline pH (pH ≈ 10) within 
5 min of reaction time (Figure 2). This indicates that even low amounts of FA could be used 
to achieve neutralization in some cases depending on the chemistry of AMD being treated. 
Treatment of Brugspruit AMD with CFA-B:AMD ratios of between 1:3.5 and 1:8 led to highly 
alkaline pH (pH > 12) in product water. The ratio of CFA used was directly proportional to 
the decrease of EC. The EC seemed to decrease within the initial 5 min of treatment and then 
stabilized at a minimum of 8.5–9 mS/cm. It should be observed all the CFA-B:AMD treatment 
ratios used led to a final pH ≥ 12 after 360 min of reaction. It should be noted that the buf-
fer zones observed with CFA-A:Navigation AMD and CFA-B:Bank AMD treatment are not 
observed with Brugspruit AMD in all the CFA:AMD ratios employed (Figures 1 and 2). This 
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DWAF limits

FA:AMD AMD 1:3.5 1:5 1:8 1:2 1:3 Irrigation Domestic 
use

Species ave SD ave SD ave SD ave SD ave SD ave SD

B 2.29 0.221 1.92 0.123 2.79 0.004 5.93 0.57 6.12 0.59 4.42 1.35 0.5 0.05

Na 4137.99 233.007 1482.34 50.64 1561.34 55.04 1580.24 45.5 3034.67 80.84 2394.18 100.4 70 100

Mg 388.65 19.707 0.24 0.021 1.46 0.21 0.833 0.021 297.04 21.4 236.86 25.3 30

Al 60.04 2.886 0.15 0.003 0.99 0.06 2.44 0.25 0.153 0.011 0.32 0.015

Si 69.73 3.495 0.82 0.013 2.65 0.28 3.29 0.201 13.99 2.91 16.72 1.25

K 52.59 3.634 20.21 3.74 21.26 1.34 15.54 2.5 45.33 5.69 37.53 5.43 50

Ca 842.11 117.44 546.89 60.34 478.65 20.56 793.38 30.58 877.22 20.56 635.68 30.98 32

Cr 0.77 0.067 0.5 0.034 0.526 0.023 0.375 0.028 0.525 0.021 0.176 0.022

Mn 31.58 1.481 0.028 0.002 0.066 0.013 0.026 0.002 0.339 0.004 6.24 0.68

Fe 250.84 11.203 2.62 0.421 3.497 0.251 0.853 0.037 4.23 0.15 3.52 0.15

Ni 2.35 0.127 0.031 0.002 0.051 0.002 0.194 0.022 0.332 0.002 0.602 0.021 0.2 0–0.02

Co 1.15 0.063 0.001 0.0005 0.002 0.0005 0.004 0.00057 0.017 0.001 0.115 0.002 0.05 0–0.05

Cu 0.11 0.011 0.031 0.001 0.04 0.002 0.049 0.003 0.044 0.002 0.045 0.0015 0.2 1

Zn 9.52 0.491 1.13 0.052 9.19 1.19 16.44 1.48 1.21 0.08 8.047 0.038 1 3

As 0.11 0.491 0.004 0.001 0.006 0.001 HDL 0.014 0.002 0.007 0.002

Se 0.032 0.006 0.072 0.003 0.054 0.003 0.084 0.018 0.04 0.018 0.017 0.001

Sr 1.046 0.057 13.86 2.54 9.539 2.31 9.23 2.68 10.23 1.58 5.71 0.32

Mo 0.036 0.0037 0.219 0.002 0.181 0.011 0.16 0.004 0.134 0.013 0.092 0.003 0.01 0–0.05

Cd 0.012 0.0007 0.002 0.0004 0.002 0.001 0.003 0.00035 0.001 0.0005 0.002 0.0005

Ba 0.148 0.0147 0.569 0.005 0.684 0.026 0.626 0.058 0.579 0.026 0.432 0.015

Treatm
ent of A

cid M
ine D

rainage w
ith Coal Fly A
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DWAF limits

FA:AMD AMD 1:3.5 1:5 1:8 1:2 1:3 Irrigation Domestic 
use

Pb 0.178 0.02 0.015 0.002 0.017 0.002 0.018 0.003 0.011 0.005 0.013 0.001

SO
4

6165 10 6137 7 5668.03 47.53 4601.77 3.37 7182.96 7.46 3709.80 58.99

Cl 720 22.3 385.28 19.5 285.52 6.8 276.15 20.3 449.73 15.8 326.12 19.2

pH 2.55 0.12 9.16 0.04 9.73 0.13 12.04 0.05 12.64 0.14 12.62 0.12 6–9

ave, average; SD, standard deviation.

Table 3. Concentration of inorganic contaminants at various final pH of solution and CFA:AMD ratios for treatment of Brugspruit AMD with CFA-B (concentrations are 
in mg/L except for pH).
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is a strong indication that AMD chemistry has a significant role to play in the final product 
water chemistry.

Figure 3 shows the trends of pH and electrical conductivity (EC) for the treatment process 
between CFA-B and Navigation AMD at various CFA:AMD ratios.

The pH and EC trends for the treatment process of Navigation AMD with CFA-B are distinc-

tively different from those of the treatment process for Brugspruit AMD (Figures 2 and 3). For 
the Navigation AMD treatment process, there is a stepwise increase in pH as the treatment 
progresses. Buffer zones are also observed at pH 3.5–4 and pH 5.5–6.5.

Despite the high CFA:AMD ratios employed in the treatment as compared to Brugspruit treat-
ment, the breakthrough to pH > 10 only occurs after 210 min (Figure 3) and for lower CFA:AMD 
ratio of 1:3, a breakthrough was not achieved after 360 min. It should be noted that the stepwise 
increase in pH with time is lacking for the Brugspruit AMD. Stepwise and gradual decrease in 
EC is noted for the Navigation AMD treatment process (Figure 3). The initial decrease in EC for 
the Brugspruit treatment is not sustained and stabilizes at 8.67–9.56 mS/cm. Uhlmann et al. [34] 

observed that the buffering observed at pH 3.5–4 is due to hydrolysis of Fe3+ while oxidation 
and hydrolysis of Fe2+ contributes greatly to buffering at pH 5.5–6.5 [25] (Eqs. (2) and (3)). At  
pH ≥ 4.5, Al3+ undergoes hydrolysis forming insoluble hydroxides and will buffer pH in the 
region of 3.5–4 (Eq. (2)) [34, 35]. It should be noted that Brugspruit AMD had very low con-

centration of Fe3+/Fe2+ and Al3+ as compared to Navigation AMD (Table 2). This could explain 
the lack of stepwise decrease in pH and buffering during the treatment process. There are two 
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opposing processes that finally control the final pH of the product water in this treatment pro-

cess. The dissolution and hydrolysis of soluble alkaline oxides such as CaO and MgO (Table 1) 

from coal fly ash will contribute to increase in pH (Eqs. (4) and (5)). This is also confirmed by 
the fact that the time taken for breakthrough of the buffer zone 5.5–6.5 reduced with increase of 
CFA in the treatment mixture. CFA:AMD ratio of 1:1.5 took the shortest time to breakthrough 
this buffer zone (Figure 3).

  CaO + H  
2
  O ⇒  Ca   2+  + 2 OH   −  pH increase  (4)

  MgO +  H  
2
  O ⇒  Mg   2+  + 2 OH   −  pH increase  (5)

Hydrolysis of AMD constituents such as Fe3+, Al3+ and Fe2+ releases protons (acidity increase) 
(Eqs. (2) and (3)) and offsets the pH increase attributed to the dissolution of the alkaline oxide 
from coal fly ash. The net result is a pH buffer zone, this buffer zone is only overstepped when 
the components leading to release of acidity are completely hydrolyzed. These hydrolysable 
components will finally determine if the final pH of the product water will be acidic or alka-

line at any given treatment time. It will also be observed that the final pH of the product water 
also depended on the CFA:AMD ratio applied. Higher CFA:AMD led to higher pH of product 
water regardless of treatment time. It can therefore be concluded that factors that will control 
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the product water chemistry and quality would be, CFA:AMD ratio, the treatment time and 
the chemistry of the AMD.

3.5. Inorganic contaminants removal: product water quality compared to South African 
water quality guidelines

Acid mine waters are highly reactive solutions that can dissolve most primary minerals when 
reacted with an alkaline solid waste material such as coal fly ash with subsequent formation of 
a variety of secondary minerals that can potentially adsorb trace chemical species. Dissolution 
of coal fly ash by AMD triggers several processes such as hydrolysis of soluble alkaline oxides 
leading to increase in pH. Several authors observe that pH is the most important parameter in 
coal fly ash solutions and accounts for significant inorganic toxic elements removal through 
precipitation, ion exchange and adsorption processes [13, 30].

Tables 3 and 4 present results of inorganic contaminants removal as a function of final solu-

tion pH and CFA:AMD ratios for Brugspruit and Navigation AMD treatment with CFA-B. 
The results are discussed with respect to pH of precipitation of the various metal species as 
determined from thermodynamic calculations and experimental observations from titration 
of solutions containing the stated species as reported by Britton [36].

3.6. Brugspruit AMD treatment with CFA-B: inorganic contaminants removal

Brugspruit AMD had different chemistry compared to that of Navigation AMD, it had low 
concentration of the major hydrolysable chemical species Al3+, Fe3+, Fe2+ and Mn2+. Major inor-

ganic contaminants Fe, Mn, Al and Mg were reduced significantly in all the ratios investigated 
(Table 3). Fe and Al were reduced by >95% at pH ≥ 9.16 attained in the final process waters for 
CFA:AMD ratios, 1:3, 1:5, 1:8, 1:2 and 1:3. It should be noted that final pH also depended on the 
treatment time employed. Mn removal was ≥90% for all CFA:AMD ratios evaluated except for 
1:3 ratio at 80%. Jenke et al. [25] observed that at the pH of minimum solubility of the hydroxides 
of Fe3+ (pH 3.0), of Fe2+ (pH 6.0–8.0), of Mn2+ (pH 8.41–9.0) and of Zn2+ (pH 6.0–6.5), a significant 
proportion of the initial concentration should be precipitated out of solution. Gitari et al. [19] 

observed that at pH ≥ 4.5, most of the mineral phases bearing these species were at saturation 
or oversaturation (SI ≥ 1). At pH ≥ 12, a slight increase in Al, Fe and Mn was observed. At pH 
12.0–12.5 attained for ratios 1:8, 1:2 and 1:3, the formation of hydroxy complexes was attributed 
to the decreased removal. Drever [37] observes that Al3+ hydroxide exhibits minimum solubil-
ity at pH 6–6.5, therefore at pH > 6.5, the Al-hydroxy complexes become more important [38].

Among the minor and trace species, Ni, Cu, Pb, Mg, Cr, Ni,Co, Cu, As and Cd were all 
observed to decrease as the pH increased. The Cu, Cr, Zn and Pb removal efficiency was 
observed to decrease at CFA:AMD ratio of 1:8 which attained a pH of 12.04. The decrease in 
removal of these species could be attributed to soluble hydroxo species formed at pH > 12.0. 
Another reason for the increase could be reduced adsorption due to reduced formation of 
amorphous Fe(OH)

3
, MnOOH and Al(OH)

3
 due to the low concentration of Fe3+, Mn and Al3+ 

in Brugspruit AMD. Mg2+ removal efficiency approached 100% at pH 9.16 with a decrease 
observed as the pH increased to 12.62. Decreased removal could be due to the formation of 
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FA:AMD AMD 1:3 1:2.5 1:2 1:1.5 DWAF limits

Species ave SD ave SD ave SD ave SD ave SD Irrigation Domestic 
use

B 1.37 0.163 23.44 3.44 24.38 2.56 17.57 2.356 17.86 3.456 0.5 0–0.5

Na 358.72 2.946 71.76 10.23 72.53 9.87 68.21 10.12 62.02 21.8 70 100

Mg 2661.67 35.008 636.85 80.45 618.06 70.8 200.04 34.5 1.5 0.02 30

Al 1068.00 11.279 2.85 0.05 3.26 0.35 2.35 0.56 9.41 1.97

Si 82.01 1.238 4.39 0.52 2.05 0.003 2.3 0.16 1.09 0.03

K 23.03 2.856 16.27 2.45 19.45 1.56 14.87 2.35 10.33 2.45 50

Ca 653.33 10.626 368.19 23.8 495.11 20.45 448.53 19.67 477.92 35.63 32

Cr 1.11 0.009 0.069 0.003 0.163 0.013 0.141 0.001 0.083 0.015

Mn 226.2.5 4.742 56.65 5.68 5.15 0.456 1.11 0.005 0.133 0.005

Fe 5599.92 80.862 293.3 19.57 52.25 6.78 43.23 4.578 4.7 0.67

Ni 6.95 0.018 0.58 0.04 0.134 0.002 0.088 0.004 0.051 0.001 0.2 0–0.02

Co 4.3 0.105 0.312 0.012 0.014 0.001 0.019 0.003 0.002 0.0015 0.05 0–0.05

Cu 0.355 0.007 0.045 0.003 0.055 0.011 0.073 0.005 0.034 0.006 0.2 1

Zn 48.99 30.624 1.3 0.012 1.2 0.05 1.26 0.02 0.736 0.012 1 3

As 0.193 0.012 0.003 0.0005 0.005 0.0015 0.003 0.0005 0.004 0.001

Se 0.032 0.002 0.037 0.002 0.026 0.003 0.052 0.001 0.112 0.003

Sr 7.69 0.226 15.71 1.34 17.18 2.543 14.48 2.87 17.72 1.48

Mo 0.04 0.002 0.025 0.002 0.622 0.002 0.665 0.002 0.77 0.04 0.01 0–0.05

Cd 0.032 0.001 0.003 0.0015 0.004 0.001 0.003 0.0015 0.002 0.0004

Ba 0.209 0.002 0.369 0.003 0.347 0.032 0.336 0.034 0.319 0.013

Pb 0.314 0.107 0.019 0.002 0.041 0.004 0.0301 0.005 0.0154 0.0021
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FA:AMD AMD 1:3 1:2.5 1:2 1:1.5 DWAF limits

Species ave SD ave SD ave SD ave SD ave SD Irrigation Domestic 
use

SO
4

11949.6 61.5 5483.3 14.9 2414.3 28.1 2508.1 247.6 4570.7 110.3

NO
3

163.17 10.01 68.43 7.82 23.69 5.34 <0.1 0 9.3.44 10.21

Cl 729.27 100.1 65.8 3.21 63.168 6.21 44.744 3.03 88.172 9.65

pH 2.69 0.21 6.33 0.15 8.72 0.62 9.47 0.43 12.1 0.18 6–9

ave, average; SD, standard deviation.

Table 4. Concentration of inorganic contaminants at various final pH of solution and CFA:AMD ratios for treatment of Navigation AMD with CFA-B (concentrations are 
in mg/L except for pH).
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soluble hydroxo species at the high pH. Na and K were removed by 50% as the pH increased. 
Gitari et al. [19] observed that as pH increases and in presence of SO

4
2-, several Na-K bear-

ing mineral phases such as jarosite are precipitated and would account for this decrease. 
Sulfate did not register significant removal and in some CFA:AMD ratios (1:2) was observed 
to increase, this increase is attributed to release from the coal fly ash.

3.7. Navigation AMD treatment with CFA-B: inorganic contaminants removal

The pH increase with increase of CFA:AMD ratios was observed to be gradual for Navigation 
AMD treatment as compared to that of Brugspruit AMD (Tables 3 and 4). Several inorganic 
contaminants removal trends are observed as the pH increases. At final pH 6.33 achieved 
for the CFA:AMD ratio of 1:3, a sharp decrease in concentration is observed for Fe, Al and 
Mn. These are the major inorganic contaminants that characterize Navigation AMD. With 
subsequent CFA:AMD ratios, the removal efficiency of ≥90% are observed. Gitari et al. [19] 

observed that as pH increases, mineral phases bearing these chemical species are precipitated 
and account for their increased removal in solution. Minor and trace inorganic species such 
as Si, Cr, Ni, Co, Cu, Zn, As, Se, Cd and Pb were all observed to decrease as the pH increased 
with subsequent CFA:AMD ratios. Their removal could be attributed to several mechanisms 
such as precipitation of mineral phases and adsorption to high surface area Fe and Al oxyhy-

droxy precipitates. Gitari et al. [19] observed that co-precipitation of Fe, Al-oxyhydroxides, 
oxyhydroxy sulfates and adsorption could be responsible for attenuation of Cu2+, Zn2+ species.

Britton [36] observes that the pH of minimum solubility of the hydroxides/oxyhydroxides 
of Fe3+, Fe2+, Al3+, Zn2+, Cu2+ and Ni2+ are 3.0, 6.0–8.0, 4–4.5, 6.0–6.5 and 6.66, respectively. The 
pH attained for CFA:AMD ratio of 1:3–1:2 is within this range. This would explain the high 
removal of these species within this pH range. However, Cu and Pb registered an increase in 
concentration in final process waters for CFA:AMD 1:2 and 1:2.5 ratios whose final pH ranged 
from 8.7 to 9.5 (Table 4). This would be attributed to the formation of soluble hydroxo com-

plexes for both species at this pH range.

Mg, Na, K and Ca removal increased with increasing pH of the final process water. These chemi-
cal species are highly soluble in the pH range generated in process waters and likely removed 
through incorporation in precipitating mineral phases. Gitari et al. [19] observed that mineral 
phases such as alunite, basaluminite, jurbanite, brucite and jarosite are likely to precipitate out in 
CFA:AMD reactions leading to removal of these species. Sulfate was likely removed through for-

mation of gypsum, incorporation into Al, Fe-oxyhydroxysulfates. A direct relationship between 
percent sulfate removal and FA content in the reaction mixture suggests that dissolution of CaO 
and subsequent formation of gypsum accounts for the sulfate removal in both AMD treatments. 
XRD analysis identified gypsum in the solid residues of the CFA:AMD reactions [3, 39].

3.8. Leaching of chemical species from coal fly ash in the treatment process

Coal fly ash is a reactive material and on contact with aqueous solutions such as AMD under-

goes dissolution with subsequent release of chemical species. An observation of results in 
Tables 3 and 4 show that interaction of coal fly ash and AMD leads to the release of B, Sr, Mo 
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and Ba. The fact that these chemical species increased with increase in the ratio of CFA in the 
treatment mixture attests to the fact they were being released from the coal fly ash. Mattigod 
et al. [17] and Eary et al. [20] reported that the glassy phase in coal fly ash is enriched with As, 
Na, Mg, K, Sr, B, Mo and Ba as soluble salts which are released into solution when the CFA 
contacts aqueous solutions.

3.9. Comparison to South Africa water quality guidelines

The product water for various CFA:AMD ratios was compared to the Department of Water 
Affairs and Forestry [32] water quality limits for irrigation and domestic use. Treatments of 
Navigation AMD with CFA-B resulted in much cleaner water with Cu, K, Mo, Na and Zn 
being within the domestic water use limits for 1:3 CFA:AMD ratio and Co, Cu, K, Na and 
Zn being within the domestic water limits for 1:2.5 CFA:AMD ratio. Treatment of Brugspruit 
AMD with CFA-B produced less clean water although breakthrough to alkaline pH was 
established within less than an hour. Only Cu and K were within the domestic limits for 1:3 
FA:AMD ratio. This comparison includes only the FA:AMD ratios that resulted in process 
water in the pH range 6–9. The alkali and alkaline earth metal species (Na, B, Mg, Ca, Sr and 
Ba) remained largely in the process water in concentrations beyond the guideline limits. B, 
Mg, Sr, Mo and Ba were largely released from dissolution of coal fly ash and additional treat-
ment options such as reverse osmosis will be required to further clean the water to required 
standards.

4. Conclusions

The dissolution and hydrolysis of basic oxides such as MgO and CaO from coal fly ash on 
contacting AMD led to an increase in pH. On the other hand, hydrolysis of AMD chemi-
cal species such as Al3+, Fe3+, Fe2+ and Mn2+ led to release of acidity that counteracted the 
pH increase leading to stepwise increase in pH of process water and buffer zones as the 
treatment processes progressed. This was clearly observed for Navigation AMD as opposed 
to Brugspruit AMD that had low hydrolysable species. These two processes initiated sev-

eral processes such as precipitation and adsorption that led to attenuation of the major and 
minor chemical species leading to much cleaner product water. Efficiency of the inorganic 
contaminants removal was directly linked to amount of FA in the reaction mixture and to 
the final pH in product water. Three processes were identified that would finally control 
the quality of the product water, these were (1) CFA:AMD ratios, (2) treatment time and 
(3) chemistry of the AMD. Most of the major contaminants were reduced to below South 
African water quality guidelines; however, the coal fly ash was observed to release other 
contaminants in solution and this could be a drawback for the proposed treatment process. 
Other factors that would improve the sustainability of the treatment process are beneficial 
application of the treatment residues as backfill material. Economic viability of this process 
would also depend on closeness of the AMD generating mines and the coal power utilities 
generating the coal fly ash.
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