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Abstract

Contemporary multifunctional textiles are based on hi-tech functionalization. Knitted 
structures can be relatively rapidly designed and produced in a variety of textures due 
to their composition of many interlacing loop elements and their combinations. Foldable 
weft-knitted structures exist in a wide range of forms from simple rolls, ribs, and pleats 
to more complex three-dimensional structures. They exhibit new kind of geometry and 
deformation mechanisms. Some of them exhibit auxetic potential. Foldable knitted struc-
tures are multifunctional and widely usable. They can be produced in a variety of struc-
tures, qualities, and dimensions: in panels, fully-fashioned, or seamless. Their possible 
application lies in different fields, such as fashionable and functional clothing, sports-
wear, medical care, packaging, interior design, sound and shock absorption, etc.

Keywords: knitted structures, textiles, clothing, foldable, collapsible, multifunctional

1. Introduction: new age of multifunctionality

Today, consumers are demanding textiles and clothing with high-performance properties, 
even in the traditional clothing and home textiles areas. Functional and visual appearance 

are very significant. Many textile and clothing producers develop products with innovative 
characteristics that can represent an important added value. Added value can be achieved by 

complex engineering design and by merging knowledge and skills of experts from various 

areas including craft, industrial design, materials, production technologies, marketing, psy-

chology, ecology, etc. The properties and the characteristics that were initially developed for 
products for special use are nowadays often present in functional textiles for everyday use. 

In contemporary textiles and clothing, modern technologies play an important role. Textiles 
and clothing are not “just” textiles and clothing anymore. They represent an important hi-tech 
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field even if in the people’s minds, they are still often considered as simple traditional every-

day objects. With contemporary multifunctional textiles based on hi-tech functionalization, a 
new textile tradition has been developing, slowly changing the rooted perception of textiles 
and clothing.

Functionalization of textiles aims to improve native properties as well as to impart new 

functions in the textile products [1]. For instance, with the selection of raw materials and 
the design of structural parameters of non-woven, woven and knitted structures, mechani-
cal, permeability, and comfort features of textiles can be optimized and upgraded. Textile 
 finishing can obtain new functional properties such as UV resistance, water repellency, 
flame retardancy, antibiotic, antistatic, antimicrobial activity, wrinkle recovery, etc. to the 
fabrics.

Functional properties can be defined as all the effects that are beyond the pure esthetic and 
decorative functions. As described above, they can be obtained either by:

• the raw material (characteristics of the polymer or additives before fiber forming);

• yarn, fabric or 3D textile construction; or

• textile finishing,

that is by material, mechanical, or chemical functionalization.

Multiple functions are often required, leading to what we can call multifunctional textiles [2]. 

The term “multifunctional material” is defined to be any material or material-based system 
which integrally combines two (or possibly more) properties, one of which is normally structural 
and the other functional. Both active and passive functionality are included [3].

The basic underlying technological need for the development of multifunctional materials 

is that solutions to particular problems or needs cannot always be found by using a simple 

combination of materials with different functions, and a technological barrier is reached. Real 
benefit will often only be found if true multifunctionality can be achieved [3].

The potential to exploit multifunctional materials spreads over a broad range of market 

 sectors and products. Key areas are health care, security, energy, packaging, aerospace and 
transport, consumer friendly textiles and wearables, defense, etc. [3]. The multifunctionality 

of materials often occurs at scales from nano through macro and on various temporal and 

compositional levels [4].

The major barrier to the development of multifunctional materials and systems is, paradoxi-
cally, the very thing that gives them their advantage over combinations of single functions—
multidisciplinarity. That is, the need to pull together and establish close and sustainable 
links between often disparate and closed disciplines, including materials scientists, chemists, 
physicists, engineers, biologists, physicians, and designers. Multifunctional materials have 
the potential to support the sustainability agenda. For example, multifunctional structures 
might be designed for re-use or recyclability [3]. After the first life cycle is over, the second 
one can start by up-cycling.
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Multifunctional materials can be both naturally existing and specially engineered [5]. Many 
of them may draw inspiration from nature, where size and weight are often critical and mul-
tifunctionality is a necessity rather than a luxury [3]. Biological materials routinely contain 

sensing, healing, actuation, and other functions built into the primary structures of an organ-

ism [4]. Textiles can take advantage of the very sophisticated and highly efficient mechanisms 
with which nature protects itself in hazardous environments, based on extraordinary func-

tionalities. Processes used for the functionalization of textile materials need to be increas-

ingly environmental friendly. The use of natural resources, energy, and chemicals needs to 
be minimized [2].

We have entered the era of hybridization of materials and engineering techniques, for 
 example, highly multifunctional materials, with folded materials and knitted structures 
among them. Multifunctional objects are as old as mankind, but after the period of excessive 
consumerism, it seems that we have finally focused on fewer but combined and more efficient 
multifunctional objects and processes. We are in the era which grants a new meaning to the 

multifunctionality.

Knitted structures, especially flat knitted structures, can be relatively rapidly designed and 
produced in a variety of textures due to their composition of many interlacing loop elements 

and their combinations (front and rear loop, transfer loop, tuck, miss, rack, etc.). Mechanical 
functionalization involves the design of the structural and geometrical parameters which 

influence the performance properties of foldable knitted structure. Chemical functionaliza-

tion upgrades their performance to achieve the planned characteristics. Unlike weaving, flat 
knitting enables manufacturing of fully fashioned and seamless products. Shaping and real 
three-dimensional knitting expands the boundaries of their multifunctionality.

2. Foldability as a principle of collapsibility

Collapsibility is an elementary design principle applied to a great many everyday objects [6]. 

Often, we are not even aware of it. For example, every day, we fold our newspaper or book 
after reading and fold our clothes to put them in the wardrobe.

Size adjustment to meet functional requirements is a time-honored principle in nature, too. 
Animals downsize to hide, relax, rest and protect themselves, and upsize to brag, threaten, fly, 
fight, and court [6]. In modern times, many patents have been applied for collapsible objects 
with space saving as their primary added value. Minimalization of equipment is very important 
in some areas, for example, in storage, transport, medicine, aerospace application, etc.

2.1. Genuine or quasi-collapsibles

Collapsibles are smart manmade objects with the capacity to adjust in size to meet a practi-

cal need. They are functional doubles with two opposite states, one folded and passive and 
one (or more) unfolded and active. They grow and shrink, expand and contract, according 
to functional need. To give collapsibility to an object, its volume must be redistributed in 
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one way or another to occupy less practical space. Practical space is space we want to free 

up for some other purpose. To qualify as a genuine collapsible, an object must be repeat-
edly collapsible and expandable. Object designed to fold or unfold only once does not 

qualify as collapsible. Moreover, two conditions must be met before a manmade collaps-

ible is conceived and created. First, somebody must see advantage in reducing the size of a 
tool when it is not in use. And second, it must be mechanically possible to reduce the size 
of that tool [6].

Collapsability per se is never the purpose function of a tool. It is always a support func-

tion. Collapsibility may never be the most important function of a tool, but it is often the 
decisive factor when the buyer makes choice [6]. As mentioned above, a genuine collaps-

ible has one-folded passive state and one or more unfolded active states. If the folded 

state is both active and passive (like a pair of scissors), then the object is not a genuine 
collapsible. Many active states and no passive state as well as no space saving define a 
quasi-collapsible [6].

Mollerup [6] defined twelve collapsibility principles. Most describe the action by which an 
object is collapsed. They include the most frequently applied methods of mechanical size 
reduction:

• stress,

• folding,

• creasing,

• bellows,

• assembling,

• hinging,

• rolling,

• sliding,

• nesting,

• inflation,

• fanning and

• concertina.

Most of the principles describe the action, while some of them (bellows and concertina) 
describe the structure. The differences between collapsibility principles are often indistinct. 
The boundary between collapsing by folding and collapsing by creasing (along pre-folded 

lines), for instance, is not always clear [6]. In some cases, the collapsibility is a result of two 
parallel principles.

Textiles for Advanced Applications58



In textiles and clothing, some principles are more common than the others. The stress and 
rolling are often applied for reducing the volume, for example, for a sleeping bag storage. 
Folding technique is used for packing clothes or for adjusting the sails surface. Creasing 
means folding along preset lines. Pleated window screens are both functional and decorative. 

Bellows collapsible racks can be used as camping equipment. Rolling is a basic principle of 
roller blinds operation. Fanning principle is named after a collapsible fan, a fashion accessory. 
Flap bags are closed by creasing, but their closing principle can be considered hinging as well; 
in this case, the boundary between the two principles is quite blurred.

From the presented examples, it can be seen that collapsibility can be achieved by many 
ways, including folding. In recent years, more and more designers of all disciplines have 
turned to folding to create a wide range of handmade and manufactured objects, both func-

tional and decorative. A little time spent looking through design and style magazines will 
reveal a significant number of folded products, from apparel to lighting and from architec-

ture to jewellery. Origami is one of the most vibrant buzzwords in contemporary design 

[7]. It is often used as a synonym for folded structures, in knitting, as well as in other textile 
techniques [8].

2.2. Self-folding structures

The science and technology associated with origami-inspired engineering are new and 

developing rapidly. It has evolved from esthetic pursuits to design folding structures 

across cultures and scales. The underlying principles of origami are very general, which 
has led to applications ranging from cardboard containers to deployable space struc-

tures which can be fabricated, assembled, stored, and morphed only through bending 
without any cutting and gluing. More recently, researchers have become interested in 
the use of active materials (i.e., those that convert various forms of energy into mechani-
cal work) to effect the desired folding behavior. When used in a suitable geometry, 
active materials allow engineers to create self-folding structures. Such structures are 

capable of performing folding and/or unfolding operations without being kinematically 

manipulated by external forces or moments. This is advantageous for many applications, 
including space systems, underwater robotics,  small-scale devices, and self-assembling 
systems [9, 10].

Self-folding in not exactly a new phenomenon. It frequently appears in nature for the effi-

cient fabrication of structures but is seldom used in engineered systems. Recently, self-folding 
structures were developed, consisting of shape memory composites that are activated with 
uniform heating in an oven or a heated bath [11].

Self-folding also occurs in textiles. At the fiber level, it is shown as self-curling. In the nature, 
the curling property of wool (WO) results from its bilateral structure, where ortho and para 
cortex are arranged in asymmetrical, side-by-side order in the cross-section of the fiber. Wool 
fibers have, because of this difference, a helical crimped configuration. There are also man-

made crimped fibers. There are two groups of spinning methods for producing bi-component 
fibers with self-crimping ability. In first group, there are methods where special equipment is 
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needed to conjugate two different components together in a side by side order. In the second 
group of methods, a non-symmetrical character across the cross-section of the filaments is 
introduced to the filament on the classical spinning devices, without any special additional 
apparatus. It is also clear that the formation of crimps is a result of the bilateral structure of 

asymmetrically cooled yarns. The consequence of the bilateral structure is the formation of 
crimps after drawing [12].

In flat knitting, some links-links structures exhibit self-folding after exiting the take-down 
zone (Figure 1). The folded state represents the relaxed, that is, the passive state.

Origami as an inspiration for hi-tech engineered products has been studied in depth from 

the practical as well as from theoretical point of view. For instance, Peraza-Hernandez et al. 
[13] noted that modeling and analysis of origami structures allow for the understanding of 

Figure 1. Self-folding of links-links structures after exiting the take-down zone.
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their behavior and the development of computational tools for their design. They presented 

a novel model analogous to that for rigid origami, for origami structures having folds of 
non-zero surface area that exhibits higher order geometric continuity (termed smooth folds). 
Modeling of origami structures with smooth folds exhibiting elastic behavior is performed 
by determining the configuration of the structure that minimizes its total potential energy 
 subject to the derived kinematic constraints. However, a generalized understanding of ori-
gami remains uncertain because of the differences between model predictions and experi-
mental confirmations [13].

Smart materials can play a significant role in the realization of self-folding origami-inspired 
structures. Researchers have demonstrated self-folding behavior in many active material sys-

tems with inducing fields that include thermal, chemical, optical, electrical, and magnetic. 
Several combinations of materials, geometry, and inducing field are feasible, yielding an 
array of design options [9].

3. Multifunctional foldable textiles

3.1. Textile folding techniques

Fashion designers have long used pleated fabrics for esthetic effect and to introduce dis-

guised fullness to women’s clothing [6]. In textiles and clothing, foldable structures are a 
fundamental element of design. Rolls, folds, ribs pleats, and bubbles make a flat structure 
three-dimensional. Redistributed volume causes changes in esthetic appearance as well as in 
functional properties like thermal insulation, sound absorption, compression and support, 
strength, stiffness, handle, etc.

Origami-inspired folding of textiles can be performed by various techniques. Woven and 
nonwoven textiles usually exhibit folded look achieved by pressing or finishing. Folded 
textiles can also be formed by sewing together parallel stripes of fabric alternately on the 

face and the rare side. On the other hand, knitted products can be designed by integrating 
folds directly into the knitted structure. Creased or folded knits can involve a wide range of 
structures from simple ribs and pleats to more complex 3D structures [8]. Knitted pleats are 
worked into the fabric by varying the tension and knitting tight and loose rows, thus creat-
ing a fold line in the fabric. Young London-based Korean designer Hanjoo Kim demonstrates 
the creativity that can be achieved with the technique of pleating, adding both structure and 
movement to the fabric [14].

Many traditional textile and clothing objects have been foldable and multifunctional at the 
same time. In continuation, some examples of folding textiles and garments are presented. 
For instance, berets are made from felt. They are folded for storage and unfolded when used 
as a headdress. They are genuine collapsibles. Berets protect from cold and wind. They often 

represent various institutions as parts of their uniforms. In some periods, a beret was a fash-

ion statement, also a revolutionary symbol.
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Surgical masks are made from nonwovens. Usually, they consist of multiple layers; a 
filter is placed between nonwoven layers to stop bacteria from entering or exiting the 

mask. Most surgical masks feature pleats or folds allowing the user to expand the mask 
and cover the lower part of the face. As the surgical masks are made for a single use 

only, they are unfolded only once in their lifetime, so they are foldable by definition, 
but they are not considered as genuine collapsibles. Surgical masks protect transmis-

sion of body fluids from and to the wearer. They can be used as dust masks. Surgical 

masks with decorative designs are popular in countries in which they are worn in public 

to protect ordinary people from infections or allergies. They can also help to conceal a 

person’s identity; pop singer Michael Jackson was often hiding behind a surgical mask 
when he appeared in public.

A fine example of capitalizing on mass-production technology can be seen in the work of 
Reiko Suno and Nuno fabrics, one of the most important textile design studios, founded in 
1984. Nuno, meaning functional textile, specializes in creating unique fabrics. One of their 
products is Nuno Circle origami pleated bag, made of polyester that can be recycled [15]. The 

bag is constructed and sewn, then folded repeatedly at sharp angles and permanently pressed 
at 200°C in a special pleating process that is patent pending [16].

Japanese artist and designer Issey Miyake is considered revolutionary for his use of materi-
als and its iconoclastic, conceptual approach to fashion. He blends traditional, historical ele-

ments of Japanese fashion, such as wrapping and folding, with cutting-edge technological 
innovation that have revolutionized fabric manufacturing. His designs demonstrate a desire 
to expand the potential for clothing outside of the purely functional. He is best known for 
the technique of pleating silk via a heat treatment, first used in his iconic collection “Pleats 
Please” in 1993 [17]. Even if Miyake is well known for his overarching esthetical-functional 
concept, in his case, the foldability is often a sophisticated visual effect rather than a (multi)
functionality effect.

3.2. Foldable textiles for various applications

Textiles are most appreciated for their softness and pleasant touch; nevertheless, they can be 
used as substrates for hardening finishes or elements of composites. With appropriate coat-
ing, their behavior is similar to that of paper or other stiff foldable materials. Cutting edge 
technology is often inspired by past inventions. The same would be true for foldable textiles.

3.2.1. Interior and exterior textiles

Interior architecture and contemporary textiles have an odd, somewhat unresolved relation-

ship. Although fabrics hold the potential to structure space, dampen sound, and emanate 
light, they are usually confined to a secondary role within the interior. Traditionally, interior 
textiles have been seen as soft furnishing and used as decorative accessories, but this is chang-

ing as materials such as glass filaments, carbon fibers, conductive wires, and metal mesh 
begin to replace architectural substrates. Although the new generation of interior fabrics are 

regarded as high-tech devices, they can be described as beautiful, too [18].
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Many modern interior textiles have creased or pleated structure but in fact, they are not genu-

ine collapsibles. For example, German architect Jürgen Mayer used pleated fabrics to create 
elliptical colons. The installation was designed for Nya Nordiska’s exhibition at a design 
trade fair in Frankfurt [18]. The purpose of the pleats was purely esthetical, not functional. 
On the other hand, modern venetian blinds are made of textile composites and are genuine 
collapsibles [6].

Now, as in the past, a tent is a house for man on the move. Carried on truck, back, or bike, 
it takes up little practical space. Tent designers must accommodate a number of conflicting 
demands for easy handling, maximum shelter, and minimum weight, and they take great 
efforts to find new spatial and technical solutions to meet these demands [6]. Tents are genu-

ine collapsibles.

3.2.2. Sport textiles

Backpackers wage a never ending struggle to minimize the weight and volume of their 

gear. One way of reducing volume is to stow a sleeping bag in a compression sack, which 
works by stress pressure. Traveler’s mattress reduces for storage when the air is pressed 
out and held out by a stopper. When the stopper is removed, the mattress automatically 
takes in air and reshapes itself. This principle is stress pressure as well [6]. The flexibility 
of textiles allows clothes to be folded and stored when not in use or when prepared for 

traveling. Anoraks, raincoats, and wet-weather jackets can often be folded and stored into 
a sewn-in pocket.

All sailing boats are equipped with sails which are folded and unfolded to meet the weather 
and wind changes. Nobody takes as much interest in folding their collapsible tool as para-

chuters. For them, sloppy folding could be fatal [6].

A balaclava is a form of a cap designed to (partly) cover the face. Usually, only the eyes, 
mouth and nose, or the front of the face are unprotected. Some versions can be folded into a 
cap to cover just the top of the head or unfolded to cover the face or being used as a warm-

ing collar. Apart from skiing, balaclavas are used today as safety garments for firefighters 
and race drivers. They are made from a flame-resistant material and can contain a breathing 
apparatus.

3.2.3. Transport textiles

In cars, foldable sunshades made from knitted mesh are used for side windows. Their form 
is similar to the photographer’s collapsible light reflector, invented in 1985 by John Riston. 
When twisted, the spring coils itself into three smaller rings, making it compact enough to 
stow away in a small bag [6].

Convertible cars can convert between an open-air mode and an enclosed one. They are 

equipped by a collapsible textile roof which is hinged to fold. The roofs of baby strollers fold 
in the same principle.
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3.2.4. Contemporary (“technical”) fashion

Nowadays, more and more non-textile materials and non-textile technologies are incor-

porated in textiles and clothing to contribute to their multifunctionality. Some examples 

of a complex integration of materials and supporting devices can also be found in history. 

Bustle was a support used to expand the fullness of the back of a woman’s dress. It was 
worn under the skirt at the back, below the waist. Collapsible wire bustles were used in 
nineteenth century to facilitate seating. They were the early representatives of the “technical  

fashion.”

Hussein Chalayan is regarded as an inventor, philosopher, and architect among fashion 
designers. He approaches his collections like conceptual artist, frequently interpreting in 
his designs socially relevant themes such as cultural identity, tradition, and migration [19]. 

He was one of the first designers to engage with technological systems, and many of his 
collections have pioneered garments that feature wireless technology, electrical circuitry 
and embedded connectors [18]. For his 2007 collection entitled “One hundred and eleven,” 
he designed a true collapsible collection of six mechanical transforming dresses, expanding 
and folding to change the shape and silhouette of the garments with the aid of electronics. 
The hemlines were raising and lowering, the skirts were expanding and contracting.

3.2.5. Fashion accessories

Fans were once an essential feminine accessory. Foldable fans could be inspired by a peacock 

tail. They came into use after 1580. They functioned as a temperature controlling device by 

inducing an airflow over the skin. They could also be used as means for concealing identity 
[6, 20, 21].

An umbrella is a manmade adaptation to the changes in the weather [6]. It protects from rain, 
while the parasols were once used as a shield against the sun [20]. The supporting structure 

of umbrellas is hinged. So too are the legs of a collapsible tripod, though they may addition-

ally expand and collapse by sliding [6]. Some umbrellas can be unfolded manually, while the 
others can spring open automatically. Umbrellas are genuine collapsibles.

The “chapeau claque” is a foldable hat. It is a genuine collapsible which folds flat for storage and 
folds out for use [6]. It could be a raw model for future clothes and accessories occupying more 

and more space in our wardrobes and inducing the need for bigger and bigger living space.

4. Foldable knitted structures

Basic interlacing loop elements of a knitted structure are loop, tuck, and float (Figure 2). 
Loops, tucks, and floats have a very different appearance on the front and back (rear) side of 
the knitted structure, respectively. Loops are made during a complete knitting process. Tucks 
are made in a tucking process when the yarn is bent but not intermeshed. Floats are made in a 

miss process when the knitting needles are out of action. Racking, that is, lateral movement of 
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the needle-beds results in inclined and/or crossed loops which leads to additional patterning 
possibilities including cable and aran patterns. Transferring loops from one needle to another 
in the same or opposing needle bed is used for shaping and for knitting complex-knitted 
structures.

Single-knitted structures are made on a single needle-bed. The front side of the structure is 
composed of front interlacing elements, while the back side of the structure is composed of 
reverse loops, tuck, and floats.

Double-knitted structures are made on two or more needle beds. There are front as well as 
reverse interlacing elements seen on both sides of the knitted structure.

The simplest double structures are ribs (Figure 3) composed of alternating wales of front 
and reverse interlacing loop elements, respectively. Each wale contains only one type of loop 
interlacing elements: front or reverse. A special arrangement of front and reverse loop wales 
results in folding into a pleated structure.

A links-links or a purl structure is made on double-bed knitting machines equipped with 
double-ended latch needles or on rib machines equipped with transfer needles which enable 
loop transfer from one needle-bed to the other, combined with needle-bed racking. Links-link 
structures are composed of front and reverse loop-interlacing elements alternating in both 

directions, along wales as well as courses.

Figure 2. Interlacing loop elements.
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The speciality of knitting technology is the possibility of producing continuous fabrics, knitted 
panels, whole garment, or seamless products as well as basic and advanced two-dimensional 
and three-dimensional compositions including composite substrates. Knitting technology 
supports and upgrades other textile and non-textile technologies. Knitted structures can be 
combined with other materials to achieve optimal performance [22].

Knitting process allows the production of a vast range of structures. Foldable weft knitted 
structures exhibit new kind of potential, geometry, and deformation mechanisms. Creased or 
folded knits can involve a wide range of structures from simple rolls, ribs, pleats, and bubbles 
(Figure 4) to more complex three-dimensional structures. Links-link knitting enables manu-

facturing of very esthetically intriguing structures which are flat-knitted but crease and fold 
after relaxation, forming various textures and spatial patterns. Among them, links-link struc-

tures with zigzag or other geometrical patterns are particularly promising as they are rather 
simple to design and produce. Foldable weft-knitted fabrics have potential applications in 
different fields, such as functional clothing, sportswear, medical care, packaging, sound and 
shock absorption, etc. [8, 23].

4.1. Rolls

Edge curlings occur in plain-knitted fabrics owing to the unbalanced yarn bending moment 
existing in the three-dimensional nature of the structure. The curlings occur at the upper and 

lower edges of a piece of fabric toward the front side and at the left and at the right edges of 

the fabric toward the back side (Figure 4). The yarn in a loop wants to adopt a straight form, 
but it is prevented from doing so by neighboring loops. Thus, curling can start at the edges 

Figure 3. Folding of ribbed structures with various rib widths made on the same number of knitting needles.
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as there is no neighboring loop on one side to prevent curling. The edge curlings can create 

problems during the plain-knitted clothing goods processing. In addition to the problems, 
there are also positive effects or advantages provided by edge curlings, such as the upper 
side edge curling being used to form the neck of pullovers [24]. The polo pullover closure 

can consist of a knitted placket band partially rolled-up to form a welt.

Formation of a curling multiplies the thickness of the knitted edge which can result in ade-

quate breaking strength increase. In the past, this led to specific regulations for the prepara-

tion of specially shaped knitted samples for the breaking strength testing.

4.2. Ribs and pleats

Knitting ribs requires two sets of needles operating in between each other so that wales of 
face stitches and wales of reverse stitches are knitted on each side of the fabric [25]. Ribbed 
structure has a vertical cord appearance because the face loop wales tend to move over and 

in front of the reverse loop wales. As the face loops show a reverse loop intermeshing on the 

other side, ribs have the appearance of the technical face of plain fabric on both sides until 
stretched to reveal the reverse loop wales in between [25].

Ribs fold by relaxing and unfold by stretching in the direction perpendicular to the fab-

ric formation. Ribbed structure is one of the basic foldable knitted structures which can be 
used for elastic beginnings and welts for knitwear like socks and pullovers. Due to its elastic 
recovery potential, ribs can be used for tight as well as compression garments. The folding 
effect depends on repeat (Figure 3), course and wale density of the structure, and material 
composition.

Knitted pleats (Figure 4) can be manufactured on double bed flat knitting machines with spe-

cial needle arrangements on both beds. As every knitted structure tends to curl or fold toward 
the reverse side along the length of the fabric, inactive needle in either needle bed creates a 
wale of single reverse loops within the double structure. The knit folds toward the fabric side 

with the wale of reverse loops. Various arrangements of inactive needles result in various 
types of pleats: knife, accordion, or rolled pleats. The width of the vertical ribs influences the 
folding effect, for example, the extent of width-wise shrinkage.

Figure 4. Foldable knitted structures: roll, pleats, bubbles.

Multifunctional Foldable Knitted Structures: Fundamentals, Advances and Applications
http://dx.doi.org/10.5772/intechopen.69292

67



4.3. Links-link knitted structures

Links-links or purl is the only structure having certain wales containing both face and reverse 

meshed loops. Although in the past structures of this type were knitted only on flat bed and 
double cylinder purl machines employing double-ended latch needles, electronically con-

trolled V-bed flat machines with rib loop transfer and racking facilities are now used [25].

The simplest links structure is 1 × 1, which consists of alternate courses of all face and all 
reverse loops and is produced by the needles knitting in one bed and then transferring over 
to the other bed to knit the next course. Its lateral stretch is equal to plain, but its length-wise 
elasticity is almost double. When relaxed, the face loop courses cover the reverse loop courses, 
making it twice as thick as plain structure [25].

By alternating multiple courses of all face and all reverse loops, horizontal links-link ribs are 
manufactured. They can fold by relaxing and unfold by stretching in the direction of fabric for-

mation. The height of the horizontal links-link ribs influences the folding effect, for example, 
the extent of length-wise shrinkage.

There are also other, patterned foldable links-links structures, composed of geometrical ele-

ments like, square, diamond, zigzag lines, etc. (Figure 5). Each geometrical element is com-

posed of the same type of loops, front, or reverse.

Figure 5. Various foldable links-links knitted structures.
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5. Characteristics and properties of links-link foldable structures

5.1. Folding effect

In weft links-links knitting, folding is based on the structural disequilibrium of face and reverse 
loops which causes the fabric to crease, contract, fold, and form into a three-dimensional structure 
after the take down and relaxation. Foldable structures shrink in both course and wale directions. 

Under applied strain in the horizontal or vertical direction, three-dimensional foldable structures 
smooth into a flat fabric, creases unfold and the structure expands in both directions [8, 26]. In 

order to establish the influence of yarn composition and structural parameters such as size of 
the repeating unit cell on the folding effect of links-link knitted fabrics, a set of experiments was 
designed by Pavko-Čuden et al. The number of the same type of loops in a course direction 
needed to initiate the structure folding effect was also investigated [8].

Two series of samples with 12 different links-link zigzag structures were knitted. The first 
series of samples (Figures 6 and 7) was produced with varying unit cell sizes both in the course 
and wale direction (from the smallest 2 × 2 to the biggest 24 × 24 loops in a unit cell). The second 
series (Figures 8 and 9) was produced with varying widths of a zigzag line in a unit cell with a 
constant number of courses (from the narrower 2 × 24 to the widest 24 × 24 loops in a unit cell). 
Both series of knitted structures were produced on the knitting machine Shima Seiki SES 122 
RT of gage12E. Two yarns of different material compositions were used: WO/PAN and CV/PA.

After relaxation, the dimensions of the samples in horizontal and vertical direction were mea-

sured. Considering the repeat sizes (number of loops in each repeat), the width/loop and the 
height/loop values were calculated to estimate the folding potential of the samples. Smaller 

value of width/loop or height/loop, respectively, means better folding of the structure.

Zigzag-knitted structures with varying repeating unit cell sizes (1st series of samples) fold in 
both the course and the wale direction. The folding effect appears in all sizes of a unit cell for 
structures produced from both yarns, except for the smallest zigzag-knitted structure with 
a 2 × 2 repeat. The result shows that these structures are more closely folded in the course 

direction rather than in the wale direction. As the width/loop and height/loop values do not 

vary substantially for different repeat sizes, it can be assumed that the folding effect of these 
structures in both directions is good.

The width/loop values of the zigzag structures with varying unit cell sizes increase with 

decreasing unit cell sizes. It signifies that knitted structures with smaller unit cell sizes are 

Figure 6. Pattern chart of zigzag knitted structures with different square repeating unit cell sizes (size of repeating unit 
cell from left to right: 4 × 4, 8 × 8, 12 × 12, 16 × 16, 20 × 20 and 24 × 24).
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less folded in the course direction. Nevertheless, even the knitted structure with the 4 × 4 unit 
cell size is well folded. The height/loop values of zigzag-knitted structures with varying unit 
cell sizes are more or less constant and do not change much with the variation in the unit cell 

size. Knitted structures made of WO/PAN fold better in the wale direction, while in the course 
direction, the folding is better for the knitted structures made of CV/PA yarn.

Figure 9. Zigzag knitted structures with different widths of zigzag line and a constant number of courses made of CV/
PA yarn (size of repeating unit cell from left to right: 8 × 24, 14 × 24, 16 × 24 and 24 × 24).

Figure 7. Zigzag knitted structures with different square repeating unit cell sizes made of WO/PAN yarn (size of 
repeating unit cell from left to right: 4 × 4, 8 × 8, 16 × 16 and 24 × 24).

Figure 8. Pattern chart of zigzag knitted structures with different widths of zigzag line (size of repeating unit cell from 
left to right: 4 × 24, 8 × 24, 12 × 24, 16 × 24, 20 × 24 and 24 × 24).
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Regarding the knitted structures with varying widths of a zigzag line and a constant number 
of courses (2nd series of samples), the differences in the width/loop values are more substan-

tial; decreasing the width of the zigzag line quickly increases the width/loop values. The 4 × 
24 knitted structure is very poorly folded. The height/loop value of structures with varying 
widths of zigzag lines does not vary considerably.

Structures made of WO/PAN evenly fold from the unit cell sizes 24 × 24 to 16 × 24, while 
structures made of CV/PA evenly fold from the unit cell size 24 × 24 to 14 × 24. Knitted 
structures with narrower zigzag lines are poorly folded. Hence, the width of zigzag lines for 
the structures with a constant number of courses substantially influences the ability to fold. 
Certain number of the same type of loops in a course direction is needed to provide sufficient 
folding effect in the relaxation process after knitting. Merely six (for the CV/PA structures), 
seven (for the WO/PAN structures), or less loops in this kind of arrangement of face and 
reverse loops do not provide sufficient folding force; thin zigzag lines are too narrow for the 
fabric to fold.

The same experimental design was used for the preparation of another two series of sam-

ples, knitted from the same yarns, but on the coarser machine Stoll CMS 502HP E 2.5.2 [23]. 

It was concluded that the yarn material composition, the size of the repeating unit cell, and the 
width of the zigzag line at the constant number of courses in the repeat significantly influence 
the folding ability of links-links knitted structure.

By experimenting, it was found that the variation of the couliering depth setting of the front 
and rear cam to different levels leads to even more intriguing foldable structure (Figure 10). 
More open areas contribute to the increased porosity and permeability, while the compact 
areas  contribute to the stiffness and therefore folding potential of the structure. Systematical 
investigation of  links-link weft knitted structures with zigzag patterns in various repeat sizes 
showed that folds of the  viscose/polyamide samples with higher repeats tend to sag. It was 

also established that  additional PA  monofilament stiffens the structure and increases the fold-

ing tendency (Figure 11). The  investigation showed that the loop density has a significant 
impact on the folding tendency of the knitted structure.

5.2. Compression resistance

Compression is one of the important fabric properties, in addition to friction, bending, 
 tension, and shear. Compression may be defined as a decrease in intrinsic thickness with an 
appropriate increase in pressure. Intrinsic thickness is the thickness of space occupied by a 

fabric subjected to barely perceptible pressure. The applied compressive force allows the yarn 

to undergo deformation non-linearly, resulting in the change of fabric thickness [27]. The 

relationship between the applied force (normal to fabric plane) per unit area and the result-
ing fabric thickness can be obtained with a simple test. The tested fabric specimen is placed 

 horizontally on a platter and subsequently loaded and unloaded with a presser foot. The fab-

ric thickness, which is the distance between the presser foot and the platter, is recorded as the 
function of applied pressure. This pressure-thickness relationship describes the compression 

characteristic of the fabric. The pressure-thickness curve of textile fabrics in lateral compres-

sion is highly non-linear [28].
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The compressibility behavior of knitted and woven fabrics depends on a number of fac-

tors, that is, fabric tightness, fabric surface irregularity, yarn hairiness, yarn compressibility, 
fiber material etc. The analyses of the pressure-thickness relationship performed by Alimaa 
et al. [29] demonstrated a very prominent effect in terms of the knit construction and yarn 
structure. It was observed that fabric compressibility primarily depended on the fiber material. 

Figure 10. Foldable links-links zigzag structure knitted with different setting of the front and rear cams (left—folded, 
right—unfolded).

Figure 11. Stiffening folded structure by interlacing additional PA filament (left—no filament, right—incorporated 
filament).
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The composition properties of knitted fabrics were also essentially due to their knit construc-

tions. Moreover, the loop length determined the compressibility of knitted fabrics to a great 
extent [29].

In order to evaluate the behavior of links-link weft knitted fabrics with a zigzag structure 
under compression, the same two series of samples as for the folding effect were examined 
(Section 5.1). The examined structures could potentially be used as a packaging and mechani-
cal damage protection material. The influence of yarn material composition and the struc-

tural parameters of foldable structures, such as repeat size, that is, width/height ratio, on the 
compression properties of foldable links-link knitted structures were examined in order to 
evaluate their adequacy for compression-resistant materials. The compression behavior of 
examined foldable structures was compared to some selected actual compression materials 

used in packaging, such as bubble foil, textured rubber foam, and woolen felt [30]. Since the 

width of zigzag lines of the second series of samples distinctively influences the folding abil-
ity, only the compression properties of fully folded knitted structures were examined.

First, the compression test was performed on a dynamometer INSTRON 5567 based on the 
Bluehill® software compression application module. The speed of the movable pressure foot 

was 0.3 mm/s. The compression load was read when the distance between the movable pres-

sure foot and the fixed flatten reached 1 mm. A circular pressure foot with 9 cm in diameter 
was used. Ten measurements of the maximum compressive load at the compressed thickness 

of the knitted structure t
compr

 = 1 mm for each sample were performed.

Then, the thickness of knitted structures was measured in a separate testing procedure where 
the speed of the movable pressure foot was adjusted to 0.1 mm/s to detect the contact of the 

movable pressure foot and the fabric surface. When the compression load was detected, the 
distance between the clamps was read from the compression curve. Five measurements for 

each sample were performed.

It can be concluded that the fiber and yarn type contribute substantially to the compression 
behavior of samples as they were all knitted on the same machine and under the same condi-
tions to eliminate the influence of the knitting process.

The maximum compression load of CV/PA foldable knitted structures exceeds the maximum 
compression load of WO/PAN structures with comparable repeats, although the knitted 
structures made from WO/PAN yarn are thicker than the comparable knitted structures made 
from CV/PA yarn. The maximum compression load and fabric thickness decrease with the 
repeat reduction.

The decrease in compressive stress was not linear with the knitted structure repeat reduc-

tion. For the CV/PA knitted structures, the decrease got more distinctive with smaller repeats, 
whereas for the WO/PAN knitted structures, the compressive stress decreased more in the 
case of bigger repeats.

The compressive stress decreased similarly for the structures with the repeat widths from 

24 loops to 18 loops. The foldable knitted structures with the repeat widths smaller than 
18 loops differed substantially; the structures with the square repeat which were all fully 
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folded (first series of samples) exhibited a gradual compressive stress decrease, while for the 
structures designed with various widths of zigzag ribs (second series of samples), an instant 
drop of compressive stress was evident. These structures did not fully fold when the rib width 

was smaller than approximately seven loops (Figure 12).

Foldable knitted structures are compressible. To compress the examined foldable knitted 
structures to the thickness of 1 mm, substantial loads are required.

5.3. Auxetic potential

Auxetic materials are different from most conventional materials in that they exhibit a nega-

tive Poisson’s ratio (NPR). They expand laterally when stretched and contract laterally when 
compressed [31]. This counterintuitive behavior gives auxetic materials various beneficial 
effects, such as enhanced shear stiffness, increased plane strain fracture toughness, increased 
indentation resistance, and improved energy absorption properties [32, 33]. As the Poisson’s 
ratio is a physical parameter that is independent of the material scales, the auxetic behavior 
can be achieved at any material level, from molecular to macroscopic [34, 35].

Flat-knitting technology can provide a simple but highly effective way of fabricating aux-

etic fabrics from conventional yarns. 3D geometry of specially developed links-link knitted 

Figure 12. Comparison of compressive stress at maximum compression load for foldable zigzag knitted structures with 
various repeats: square—same number of courses and wales in repeat; rib width—different widths of zigzag ribs and 
constant number of courses in repeat [30].
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structures enables a new deformation mechanism called “opening of the folded structure.” 

The fabrics that are more closely folded can result in a smaller opening angle and conse-

quently have higher NPR values. A negative Poisson’s ratio as low as v = −0.5 was reported 
in the scientific literature for such structures; nevertheless, the examined fabrics exhibited 
auxetic effect only in one direction [26].

Buhai et al. [36] stated that the structural parameters of the knits are influenced by two  factors: 
yarn fineness and stitch length. They concluded that the auxetic effect is influenced by the 
stitch length values; as these values are lower, the fabric is tighter and maintains its shape 
 better. The auxetic effect increases as the values of the stitch length decrease.

The purpose of the investigation of the foldable links-link knitted structures by Drol and 
Pavko-Čuden [37] was to compare auxetic properties of foldable links-link knitted fabrics 
made of different yarns, on flat knitting machines with different gages, different densities of 
knitted structure, and different repeats. Foldable zigzag-ribbed structures with auxetic poten-

tial were produced from three different conventional yarns. The yarn selection was based on 
the material composition, which affects the elasticity and stiffness of the yarn and thus the 
anticipated rigidity, stability and folding of the zigzag rib knit structure with auxetic potential. 
Due to the expected rigidity, cotton and multifilament viscose yarn were selected, while due 
to the expected extension and elastic properties of knitted fabrics, a yarn made of a wool and 
acrylic mix was selected. Different sizes of basic geometric units of knitting, that is, width and 
height of the zigzag ribs were achieved by knitting on knitting machines with different gage, 
while different compactness/stiffness of the knitted structures was achieved by knitting in dif-
ferent densities, that is, by setting different couliering depths. The samples were knitted on a 
flat-knitting machine STOLL CMS 340 TC with gage 8E and flat multigage knitting machine 
STOLL CMS 340 TC E6.2 that allows knitting with gage 6E (every second needle knitting) and 
12E (all needles knitting). Knitted samples were prepared in two densities, respectively, by 
two positions of the couliering depth for each course density. Auxetic effect of the fabrics was 
determined on the basis of measurements of the fabrics’ dimensions during extension in the 
knitted courses direction and by Poisson’s ratio calculation (Figure 13).

It was found that in most cases, the samples exhibit the highest auxetic effect at 60–90% exten-

sion. Knitting with 45° inclination of ribs exhibits the best folding tendency. Fabrics produced 
on knitting machines with finer gage exhibit higher auxetic effect. Material composition and 
knitting machine gage have a great impact on the Poisson’s ratio of foldable links-link knitted 
fabrics with zigzag ribs.

5.4. Sound insulation

During recent years, the subject of noise has received increasing amount of attention to the 
scientists, technologists, and public as a whole. For a healthy and a pleasant environment, con-

trolling the sound hazards is an important issue. There is a medical evidence that the human 

body will take sound as “pollution” if the ambient sound levels exceeds 65 dB. This sound pol-

lution leads to significant health problems including hypertension, dizziness, depression, sleep 
disturbance, hearing loss, decrease in productivity/learning ability/scholastic  performance, 
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increase in stress-related hormones, and most commonly, loss of hearing. Therefore, unwanted 
and uncontrolled noise should be reduced using noise barriers and noise absorbers. Properly 

designed textile materials may be considered as noise control elements in a wide range of 

applications, including wall cladding, acoustic barriers, and acoustic ceilings [38–40]. Sound 

absorbing materials are commonly used to soften the acoustic environment of a closed volume 

by reducing the amplitude of the reflected waves. Many natural and manmade raw materials 
have been used as sound absorbers.

Two methods for measuring acoustical properties of fabric materials have been most common: 
the impedance tube method and acoustic chamber method. The impedance tube method uses 

rather small test samples, it is faster and generally reproducible, while for the acoustic cham-

ber method, large reverberation rooms and large test samples are used.

To evaluate the sound absorbing potential of foldable link-links knitted structures, differ-

ent three-dimensional flat weft knitted fabrics made from various yarns were produced 
(Figure 14), including 100% wool and 50% wool/50% PAN as basic yarns, and 100% polyam-

ide filament which was added to basic yarns as reinforcement thread [41]. The thickness and 

the mass/unit area of the knitted samples were measured.

For the finishing of knitted fabrics, two hardening agents were used: Tubicoat A 41 (CHT, 
Bezema, Switzerland) and Beaippret liquid (CHT Bezema Switzerland). After finishing, the 
handle and esthetic look (change of color, color uniformity, dimensional stability) of the sam-

ples were evaluated by a survey. The Tubicoat finishing agent in 40% concentration exhibited 
the best handle and esthetic appearance. The results of the survey revealed that the knitted  

Figure 13. Measuring dimensional changes for evaluating auxetic potential.
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structure presented in Figure 13 was the most appropriate for sound absorbing panels. The 

sound absorption coefficient of the foldable knits was measured by the impedance tube 
(Kundt tube) method. The results were compared to the sound insulation performance of the 
commercial woolen felt.

The results showed that the selected foldable structure can be used as sound insulating mate-

rial as it exhibits good sound absorption properties. Further interesting and attractive foldable 
structures can be developed for sound insulation with similar thickness, compactness, and mass/
unit area. Woolen structure showed the best acoustic properties, followed by wool/PAN struc-

ture reinforced with poliyamide filament. 100% wool structure with added polyamide thread 
and 50% wool/50% PAN structures also exhibited good acoustic properties. Hardening agent 
significantly reduced the sound absorption coefficient. Incorporating nylon into knitted struc-

ture improved the stiffness of the structure; it decreased the sound absorption coefficient in the 
case of woolen structure and increased the sound absorption coefficient in the case of wool/PAN 
structure.

5.5. Antibacterial properties

The suitability of foldable seamless knits for the storage of bread and bakery products has 

been studied by Rant, Pavko-Cuden and Tomsic. It was assessed by testing the antibacte-

rial properties of the selected foldable knitted structures made from various raw materials 
(Tomsic B 2017, personal communication, January 23).

First, the soil burial test according to SIST EN ISO 11721-1:2001 standard was performed for 
determining the resistances of foldable knitted fabrics made from various yarns to microbio-

logical deterioration. Apart from a basic single knitted structure, a zigzag links-links knitted 

Figure 14. Presentation of foldable links-links structure as used for sound absorption test (left – 
folded, right – extended).
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Figure 15. Antibacterial properties of foldable knitted structures made from various yarns before and after treatment 
with antibacterial finishing agent.

structure with 4 × 4 square repeating unit cell was selected. The selected yarns were made 
of 100% combed cotton, 100% cotton with added polyamide filament, flax/viscose blend 
(FLAX-CV), natural bamboo/modal blend (BAMB-MOD-N), carded 100% cotton, 100% 
lyocell (LIO), 100% viscose, wool/viscose blend, lyocell/viscose blend, lyocell/cotton blend 
(LIO-BW), cashmere/polyamide/viscose (CASH-PA-CV), and 100% wool. The time of expo-

sure was 12 days. Afterward the knitted samples were carefully removed from the soil. The 
samples were rinsed in water, sterilized by soaking in 70% ethanol at room temperature for 
30 min and dried. Initially, the deterioration of samples was visually assessed. After that, 
the rate of biodegradation of the examined samples was determined by color measurement 

with a spectrophotometer SPECTRAFLASH 600 PLUS (Datacolor International, USA) using 
the CIELAB color system. ΔL* values of the buried and unburied samples were determined 

and compared.

The results of the study showed that the ΔL* values of the foldable knitted structures were 
lower than for the single-knitted structures. The visual assessment of the samples also showed 
that in most cases, the foldable knitted structures were less deteriorated than the single-knit-
ted structures. The results proved that the foldable links-links knitted structures have better 
antibacterial properties compared to the single structures.

According to the results, foldable links-links knitted samples from flax/viscose blend 
(FLAX-CV), natural bamboo/modal blend (BAMB-MOD-N), lyocell/cotton blend (LIO-BW), 
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100% lyocell (LIO), cashmere/polyamide/viscose (CASH-PA-CV), and 100% wool (WO) were 
selected for further investigation.

In order to achieve antibacterial activity, Bioshield Excalibur (Izinova Ltd., Bled) finishing 
agent was selected, which is chemically alkyl dimethyl (3-trimethoxysilylpropyl) ammonium 
chloride. Its antibacterial activity is based on bio-barrier formation mechanism. Antibacterial 

activity of the examined knitted samples was estimated by determination of bacterial reduc-

tion according to the ASTM E 2149-01 standard method. Bacterial reduction of the samples 
was evaluated against Gram-negative bacteria Escherichia coli (ATCC 25922).

The results (Figure 15) showed that the selected antibacterial finish was fully effective, 
reflecting in complete growth reduction of the tested bacteria. On the other hand, untreated 
foldable links-links knitted samples exhibited rather important differences in the reduction 
of E. coli growth. The samples made from lyocell/cotton blend exhibited 55% reduction, the 
reduction of cashmere/polyamide/viscose blend was 11%, while the reduction of the rest of 
the samples was less than 10%. Better results for the samples made from natural bamboo/
modal yarn were expected due to the original antibacterial properties of the natural bam-

boo fibers.

6. Potential multifunctional application of foldable knitted structures

Foldable weft-knitted fabrics have a big potential for applications in different fields. They can 
be used for fashionable knitwear, functional garments, and para-garments (textiles that are 
put onto the body but are not garments: for example, certain medical textiles) as well as for 
various non-clothing purposes.

They are compressible. They can be usable in functional knitwear to alleviate pressure on 

certain parts of the body. As advanced unconventional packaging material, they could pro-

tect fragile objects from mechanical damage. They could also replace or complement spacer 

knitted fabrics in padding, for example in medical cushions, seat covers for the automotive 
industry, mattresses, etc.

In interior design, they can be used as room partitions when mounted on a frame for ther-

mal insulation and protection from light. They can replace embossed rubber foam which is 

often used as sound insulating material. For that purpose, they can be designed as modular 
 elements available in various colors and textures to be fixed on walls and ceilings. Due to their 
featured texture, they can be used as interior decoration. Dimensional changes caused by 
folding and unfolding make them suitable for lampshades if made from transparent and stiff 
material or for multifunctional shading-lightening objects if LED elements are incorporated 
(Figure 16).

A combination of innovative mechanical functionalization, that is, selection of optimal raw 
materials and intriguing knitted structures, and successive high-performance chemical func-

tionalization could result in new, reusable, and recyclable household food packaging, for 
example for storage of bread and bakery products or fruit.
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The current problem with the wider use of foldable knitted structures lies in their bi-axial 
extensibility which is substantially reduced when the foldable panels are sewn together. 

If joined in the extended state, the folding ability is hindered and the esthetic appearance 
of the sewn together piece is affected. If sewn together in a relaxed state, the extensibility is 
significantly reduced. Flat knitting allows seamless production, therefore seamless foldable 
links-links knitted products can be manufactured. For that reason, seamless foldable-knitted 
structures can be used for casual and functional knitwear as well as for fashion accessories.

7. Future scope

Textiles are transcending their traditional functions and are morphing into uniquely tac-

tile interfaces through which broader sensory stimulus can be perceived. Because fibers, 
fabrics, and textile techniques are becoming seamlessly integrated with technology, tex-

tiles represent an interconnected collective that links many disciplines. Our world seams 

polarized around sensory extremes: hard and soft, protection and exposure, intransi-
gence, and tactility. As textiles embrace new types of fibers and fulfill new roles, they 
bridge these polarities better than any other material. Textiles are dramatically transform-

ing the world around us, and as they do so, they also inspire radical new visions for the 
future [18].

Figure 16. Multifunctional interior textiles: collapsible sound diffusors/shades/lights (simulation) designed by Andrej 
Vilar, Slovenia.
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Foldable knitted structures exhibit bi-polar attributes. They can be folded or extended, trans-

parent or opaque, flat or curved. They can be multifunctional. Foldable knits are very com-

plex structures, exhibiting unusual behavior; for example, auxetic behavior was proved for 
some zigzag foldable links-links structures. Therefore, in-depth research into their character-

istics, above all into the impact of material, structural and geometrical parameters, finishing, 
repeated use, textile care, etc. is anticipated.

3D printing is a rapidly emerging technology which is often claimed to be the base for a new 
industrial revolution. Integration of 3D printed elements and flat knitted structures into novel 
textile composites, including foldable composites is another area of the future research.

8. Conclusion

Foldable knitted structures are multifunctional and widely usable. They can be produced 
in a variety of structures, qualities and dimensions: in panels, fully-fashioned or seamless. 
They exhibit a supreme esthetics and have a big potential for the use in multiple areas. 

Some of the foldable knitted structures exhibit auxetic properties which have lately become 
a subject of extensive research. Foldable knitted structures, links-links knits among them, 
can be considered a promising development line of sustainable hi-tech knitting technol-
ogy and design, especially if combined with other technologies. The development of sus-

tainable, re-usable and up-cyclable, and genuine self-folding knitted collapsibles should 
be encouraged.
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