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Abstract

Forest fires are a common disturbance in many forest systems in the world and in par-
ticular in the Mediterranean region. Their origins can be either natural or anthropogenic. 
The effects in regard to the time trends, vegetation, and soil will be reflected in the species 
distribution, forest composition, and soil potential productivity. In general, it can be said 
that the larger the fire and the shorter the time between two consecutive occurrences, 
the higher the probability to originate shifts in vegetation and soil degradation. In the 
Mediterranean region, the number of fire ignitions does not reflect the burnt area due to 
the occurrence of very large fires. The latter occur in a very small proportion of the num-
ber of ignitions, but result in very large burnt areas. Also there seems to be an increasing 
trend toward larger fires in the Mediterranean region due mainly to climatic and land use 
changes. This case study highlights the importance of vegetation regrowth a short time 
after the fire to maintain both forest systems and soil conservation.

Keywords: Portugal, burnt area, number of fires, spatial dynamic, temporal dynamic, vegetation

1. Introduction

Mediterranean forest types can be characterized by their heterogeneity, whether climatic, 
edaphic, geomorphologic, floristic, biogeographic or historical, and instability and vulner-

ability, consequences of the former and due to genetic and ecological factors as well as to 
the anthropogenic actions [1]. The Mediterranean flora is composed of a wide variety of 
tree, shrub, and herbaceous species, and their distribution depends on the edaphoclimatic 
conditions and on human intervention [1, 2]. The climatic conditions that are most influential 
on the species distribution and growth are the temperature and the precipitation, as well as 
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their interactions. In the Mediterranean basin the mean annual temperatures vary between 5 
and 8°C and the mean annual precipitation ranges from 300 mm to more than 2500 mm [1] 

with a marked seasonal and annual variability. As a result, droughts are frequent and vary 
between a couple of weeks and more than six months [1, 2]. In addition, rain falls frequently 
in torrential short-duration events mainly in autumn and in winter. Thus, growth is limited 
to mainly spring and autumn, and when the moisture balance is favorable, the growth can be 
luxurious [2]. Nonurban land use in the Mediterranean basin is distributed in a mosaic pat-
tern with the three most frequent uses being forest, pasture, and agricultural cultures. This 
spatial arrangement is composed of very small areas with diffuse edges [1–3].

Fire was, and still is, a common feature in the Mediterranean landscape. Historically, fire has 
been described as having two main forces of ignition: natural, to a lesser extent, caused usually 
by summer lightning storms, not considered to be significant as frequently is followed by tor-

rential rainfall [2]; and anthropogenic, in earlier times to clear areas for pasture, hunting, graz-

ing, and/or agriculture [1, 2], though in ancient times it was also considered a war weapon [2].

Fires are common in many forest systems around the world, and in particular in the 
Mediterranean region. Forest fires can be a minor or major disturbance in forest ecosys-

tems depending on their intensity and result in stand’s species composition and structure 
changes [4, 5]. Thus the analysis of the spatial distribution and temporal frequency of forest 
fires and their relation to vegetation—trees, shrubs and herbaceous plants—is of utmost 
importance. In this chapter, a review of the origins (Section 2); of the effects of the time 
trends, on vegetation and on soil (Section 3); of the evaluation of pre- and post-fire vegeta-

tion dynamics with remote sensing (Section 4); and of the analysis of the fires, number, and 
burnt area, for the Mediterranean region and for Portugal (Section 5) is made. A case study 
is also presented to compare the vegetation prior the fire with that of regeneration after the 
fire (Section 6).

2. Origins of forest fires in the Mediterranean region

Forest fires are a driving force in the evolution, distribution, and organization of the forests 
around the world [4–6]. Fires may have a strong effect both on the vegetation and on the soil 
carbon sequestration and sinks as they may reduce regeneration and, consequently, the poten-

tial biomass accumulation [7–9], carbon stocks [10], and timber [4, 5]. Forest fires are one of the 
primordial factors affecting the Mediterranean-type ecosystems [11], causing more destruc-

tion to trees than all the other hazards, such as diseases, insects, wind throws, and frosts [12].

Humans have been using fire since ancient times [13, 14] and since 10,000 years ago have 
influenced their regime [15]. While in earlier times fire was linked to land management, 
currently other causes prevail. Since a couple of decades, an intensification in the fire occur-

rences has been observed, due to the combined effects of climate change [16–21] and altera-

tions in the land use, such as the abandonment of agricultural lands, decrease in grazing, 
urban areas increase, and the interaction between the urban and the wildland areas [11, 
22–36]. As a result, change in the vegetation structure and species composition occurred 
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[30, 36]. Forest fires in the Mediterranean ecosystems have complex effects on the ecologi-
cal processes due to the differential responses to the vegetation structures and fire regimes 
[37–39]. The post-fire evolution of vegetation community is a consequence of its resilience 
[40, 41] which can be linked to biodiversity (e.g. [30, 42]), vegetation structure (e.g. [43]), and 
ecosystem functions (e.g. [44]).

Fire damages can be evaluated by their direct impacts that are the physical changes in the 
flora and fauna of the ecosystems affected; and the indirect losses, consequence of the former 
and which relate to the impacts on the economy and environment of both the burnt and the 
neighboring areas. Noteworthy are also the tangible losses that can be expressed in monetary 
terms, and the intangible losses of difficult quantification though affecting both the environ-
ment and the economy [45].

Any fire regime can be described as the function of a suite of variables. The most commonly 
used ones to describe a fire regime are the nature, pattern (size), season, intensity (energy 
released), and recurrence. Of notice are the features regarding fire recurrence, namely fre-
quency, which is characterized by the number of fires within a life span in an area; and 
the mean fire return interval, that is the time interval between successive fires [46]. Fire 
frequency has a major role in the vegetation due to its effects on the regeneration and 
recruitment of plants, especially of trees, after a fire. In the Mediterranean basin, many 
fire regimes have a mean fire return interval of 15–20 years [36, 47], which can reduce the 
number of species because sexual maturity is not reached, and consequently no seed is 
available to enable plant regeneration and recruitment [48, 49]. Fire effects can be evaluated 
by fire intensity, fire severity, and burn severity [50, 51]. The latter is the more frequently 
used [52–55].

3. Effects of fires on the Mediterranean stands and forests

3.1. Time trends on forest fires

Most of the detected fires are small and can be seen as minor disturbances. However, large 
fires, though in a much smaller number, can be considered as major disturbances and can 
cause considerable impacts both at the landscape level with the destruction of large areas of 
vegetation and at the economic and social levels [56, 57]. According to the affected vegeta-
tion strata, fires can be classified as ground, surface, and crown fires [58]. The surface fires 
are recognized as having less impact on the vegetation communities and are sometimes used 
to control vegetation as prescribed burnings. They can be more easily controlled and extin-
guished [5]. On the contrary, when a fire evolves to a crown fire, its suppression is almost 
always impossible, causing also major impacts on the vegetation [59]. The transition from 
surface to crown fire is related to the vertical and horizontal arrangement of the vegetation. 
While a vegetation community with continuous horizontal and vertical spatial distribution 
can enhance fire spread into crowns, their discontinuity can reduce it [60–63]. The effects of 
heterogeneous vegetation structures in the fire behavior [64–68], as well as the “ladder effect” 
[69], result from the vegetation vertical and horizontal connectivity.
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The term “megafire” is often used to classify very large fires, though no definition exists. They 
are frequently derived from several large fires, resulting in very large burnt areas and high 
damage levels, both in the vegetation and at the socioeconomic level. Megafires can be classi-
fied using three criteria: (i) fire behavior, corresponding to their intensity and spread rate [70]; 

(ii) resistance to control by suppression activities [71]; and (iii) fire severity, corresponding to 
the affected area, fatalities, burn severity, and economic losses [72]. San-Miguel-Ayanz et al. 
[11] analyzed megafires in Portugal, Spain, and Greece, and refer that each megafire was a 
singular event, with a set of large fires concentrated in time and space in one fire season. These 
events seem to be linked with extreme meteorological conditions, for example very high tem-

peratures, very low humidity, and lightning storms. The same authors refer that the number 
of ignitions and the fast spread of fire (due to vegetation and topographic conditions) can be 
of major importance. The behavior of megafires makes it difficult to control their spread and 
suppress them [71, 73], and their control and extinction is only possible when they spread to 
lower fuel load vegetation or when the weather turns cooler and wetter [74].

3.2. Vegetation

Vegetation can be characterized according to their fire proneness. The typical vegetation of 
the Mediterranean regions is one of the most fire prone [14, 75]. In these vegetation types, fire 
had, and still has, a key role in its dynamics and structure. The role of fire dates back to the 
early Holocene [76] with a continuous role onward [14, 77, 78]. Fire has been recognized as 
affecting the landscape at the long term; however, its effects vary as function of the regenera-

tion patterns of the vegetation, topography, and fire history [24, 79]. Vegetation community 
resilience has been verified as a significant proportion of these communities were able to 
maintain their characteristics [24].

Several authors refer that the fire risk is expected to increase in a frame of climate change 
in the Mediterranean region, especially in the European part (e.g. [80, 81]) as a consequence 
of the increase in drought events [82]. Thus the knowledge of soils and plant communities’ 
behavior after fire is of utmost importance [78, 83–85]. Also, the foreseen longer and more 
frequent drought events along with the higher temperatures might enhance the expansion of 
plants better adapted to those climatic conditions [86, 87].

The plants’ post-fire regeneration depends on their adaptive traits, which can be divided into: 
(i) resprouters, plants that have protected buds that are able to develop after the fire; and (ii) 
seeders, which correspond to plants that are affected by fires but have seed banks either in the 
canopy and/or in the soil that are able to maintain the germination ability [4, 9]. Additionally, 
there is a suite of factors controlling the development of the post-fire vegetation develop-

ment: (i) the pre-fire plant species composition [88–92]; (ii) the severity and intensity of fire 
[6]; (iii) the season of fire occurrence [93]; (iv) the regeneration ability, by resprouting or seed 
bank in the canopy, and soil [9, 94, 95].

The post-fire dynamics of vegetation community is a very slow process that can be divided 
into three stages: initial, transition, and advanced. The initial stage is characterized by an inten-

sive regeneration of the vegetation existing prior to the fire, including trees, shrubs, climbers, 
and herbaceous plants [88–92, 96] either by resprouting or by seed germination. The growing 
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space let available by the fire is rapidly occupied, and about two years after the fire the species 
richness reaches a maximum [89, 90]. However, the spatial arrangement of the plants shows a 
high heterogeneity, characteristic of the Mediterranean ecosystems [89, 97]. This variability is 
also related to the site characteristics, with low species diversity been found in the sites where 
water is the main limiting factor [89, 98]. With time, competition for growing space increases 
gradually, limiting the regeneration of new seedlings, while some saplings tend to disappear, 
resulting in a decrease of species diversity [89]. The transition stage is the consequence of 
the increasing competition with the less-competitive plants (frequently herbaceous plants) 
disappearing while others gradually increase their frequency, such as shrubs, climbers, and 
some trees species [89]. The advanced stage is the consequence of the species characteristics 
(especially growth rate and life span) and site characteristics (especially temperature, water, 
and nutrient availability). At this stage, species with low growth rates and long life cycles are 
found (mainly trees but also some shrubs and climbers), while species of fast growth and 
shorter life spans tend to disappear [77, 89].

Short-time fire intervals may have a strong effect on the presence and abundance of species 
[36, 99–102] and may originate shifts in the predominant species in the Mediterranean eco-

systems [103, 104]. As a result, infrequent fires or fires with medium and long return intervals 
tend to promote tree plant communities, while short return interval fires originate shrub- and 
herbaceous-dominant communities and also an intensification of the fire regime [8, 9, 46, 81, 
99, 105].

3.3. Soil

The effects of fire on vegetation are easily perceived as they can be seen. However, the effects 
of fire on the soil are more difficult to recognize. Several authors [55, 106–108] refer the impacts 
of fire on the chemical, physical, and biological properties of the soils.

After a fire the soil properties can be affected by precipitation: total precipitation, intensity, 
and its temporal patterns [108]. Torrential rainfalls, characteristic to the Mediterranean region, 
are of special importance due to their negative effect on soil fertility as it increases the risk 
of runoff, erosion, and nutrient losses [32, 109–111]. As a result of the burning of the vegeta-

tion, some nutrients increase their availability immediately after the fire, such as nitrogen 
[106, 112], phosphorous [55, 106–108], and potassium [108]. Nonetheless, all three nutrients 
decrease about one year after the fire, explained, at least partially, by the losses originated by 
the rainfall. However, these effects are partially minimized under drought conditions [106]. 
Contrarily, soil carbon is partially or almost completely destroyed during the fire. As fires 
frequently occur during the hot dry months, the soil carbon after the fire will be recovered at 
a slow rate [106, 108, 113, 114], and similarly the carbon mineralization rate is also quite low 
under drought [106, 115–118].

The effect of vegetation on soil conservation is well known [119–121], and soil erosion and land 
degradation processes depend on it [122]. Also, erosive processes tend to increase after the 
occurrence of fires as soil is exposed [123], and the risk increases with the increase in the time 
needed for the vegetation to develop to a minimum ground cover threshold [122–124]. Several 
authors referred that most of the post-fire sediments are observed in the first year [123, 125, 126] 

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

309



and that the highest susceptibility to soil erosion occurs 4–6 months after the fire [125]. The pro-

tective effects of vegetation on soils [119–121] are due to both the ground cover and the improve-

ment of the hydrological properties of the soil [125]. Contrarily, repeated fires in the same area, 
due to the direct effect of the fire on soil properties and the loss of vegetation, originate higher 
risk of water erosion and consequently increase soil degradation processes [125].

Fires are frequently followed by salvage cuttings in order to attain some timber economic 
return. These cuttings have two disadvantages in the short term; one is that it might increase 
soil erosion risk [127, 128]; and the other is that the damaged wood will not decompose in situ 

and consequently does not restore or increase the soil carbon stocks [129]. In the medium and 
long terms, it may further increase the erosion hazard [130] and reduce the soil seed bank, the 
establishment of seedlings, and the belowground resprouting organs [131–133].

In studies in Pinus pinaster stands, several authors [129, 134–136] stress that in unburnt stands 
the aboveground biomass, and thus the carbon stock, is considerably higher than in those 
that have burnt one or more times. On the contrary, in the latter the most important carbon 
stocks seem to be the soil organic carbon [134, 137, 138]. These findings are important in for-

est management, as after the fire the risk of soil erosion increases [139] and considerable soil 
losses may occur [140–143].

Fire occurrence, spread, and burnt area can be minimized with management practices that 
go toward the heterogeneity of the landscape [144]. Fuel loads and vertical and horizontal 
spatial distribution of the vegetation communities can promote or reduce the fire risk. Oak-
dominated stands or forests may enhance the opportunities to reduce the burnt area [145] 

or reduce the fire risk [18]. However, the opposite is encountered in pine stands or forests 
and shrublands [146] where the vegetation structure has a higher degree of continuity [147]. 
Gutierrez and Lozano [148] state that according to their analysis carried out from 1980 to 
2010, about 35% of the damages caused by forest fires could have been avoided if appropri-
ated practices had been set out. The same authors refer also that there are significant differ-

ences between southern European countries (France, Greece, Italy, Portugal, and Spain) that 
were more efficient in controlling the fire damage in 2007 and 2009–2010 than other European 
countries (Austria, Bulgaria, Croatia, Cyprus, Estonia, and Finland).

4. Remote sensing evaluation of pre- and post-fire vegetation dynamics

Remote sensing has a primary role in the assessment [149–153] of pre- and post-fire vegeta-

tion [154] as it can be used even in the inaccessible areas or where the costs of fieldwork are 
prohibitive [155]. Time series of satellite images that can be used in monitoring the dynamics 
of vegetation are also of major importance [154, 156].

Pre- and post-fire vegetation have different spectral and spatial responses which allow their 
dynamics evaluation with remote sensing [157]. Though many methodologies and tech-

niques exist, the most frequently used are image classification, vegetation indices, and spec-

tral mixture analysis. Image classification enables the transformation of remotely sensed 
data into land cover/use classes, using either supervised or unsupervised techniques [154]. 
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Vegetation indices have a strong relation with biomass and leaf area index, thus suitable for 
vegetation evaluation both prior and after fire events, whether spatially or temporally [52, 
154, 158–166]. One of the most frequently used indices is Normalized Difference Vegetation 
Index (NDVI) [52, 167–169]. Other vegetation indices are also widely used, such as Soil 
Advanced Vegetation Index (SAVI) and Transformed Soil Advanced Vegetation Index 
(TSAVI) [52, 154, 157, 170]. Spectral mixture analysis enables the discrimination of the differ-
ent fraction in each pixel. It is especially important in low and medium spatial resolution sat-
ellite images where each pixel is almost always composed of vegetation, soil, or other land 
cover/use. Thus it is suited for the post-fire analysis of the vegetation regrowth as instead of 
one spectral signature, it detects the cover fraction within each pixel [49, 158, 171]

5. Dynamics of fire

5.1. Mediterranean region

The statistics of forest fires in the Mediterranean basin countries had started in 1980s for 
France, Greece, Italy, Portugal, and Spain, while for Croatia, Morocco, and Turkey, the first 
data are from the 1990s; for Cyprus and Slovenia, from the 2000s; and for Algeria and the for-
mer Yugoslav republic of Macedonia around 2010s. Lebanon data are available for two years 
(2012 and 2015) and no data are available for Albania, Egypt, Israel, Libya, Montenegro, Syria, 
and Tunisia [172]. The larger number of fires per year is found in Portugal and Spain, more 
than 10,000 per year, followed by Italy, between 5,000 and 10,000 (Figure 1, top). These three 
countries have more than 100,000 ha of burnt area annually (Figure 1, center). There seems 
to be a trend toward larger number of fires and burnt area for the Iberian Peninsula. When 
analyzing the mean burnt area per fire and per country (Figure 1, bottom), it can be seen that 
for Slovenia, France, Turkey, Portugal, and Morocco, areas are smaller than 10 ha; in Algeria, 
Spain, Italy, and Cyprus, the mean burnt area per fire between 11 ha and 15 ha is found, while 
for former Yugoslav republic of Macedonia, it is 23 ha, for Greece, 31 ha, and for Croatia, 47 
ha. These results point to the rather large number of small fires and a small number of fire 
events with very large burnt areas or megafires, as referred in other studies (e.g. [11, 74]). 
Another study [23] refers that for many European countries the more frequently affected areas 
are the wildland-urban interface, though regional variability is observed.

The temporal analysis of the number of fires and burnt area per country will be focused on 
the five European Mediterranean countries which have data available from 1980 onward. For 
this evaluation, from 1980 to 2015, four classes of five-year period and one of six-year period 
were considered. There seems to be a different trend for the number of fires and for the burnt 
area. France and Greece have the lowest number of fires with a rather small annual fluctua-
tion values while Portugal and Spain have the highest values and an increasing trend up to 
1995–1999 with a decreasing trend onward. Italy has an increasing trend up to 1990–1994 
and decreasing afterward (Figure 2). The burnt area variability per country is larger than 
that of the number of fires. Similar to the number of fires, France and Greece have the lowest 
values of burnt area, but the variability between all time periods is larger, with an ascending 
trend during the 1980s, decreasing in the 1990s onward, except during 2000–2004 for France 
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and irregular for Greece. Italy has predominantly descending trend in the burnt area values, 
especially noticeable from 1990–1994 onward. Portugal has an increasing trend of burnt area 
values up to 2000–2004, where the highest value was attained, and a rather constant value in 
the next two time periods. Spain has burnt area value increases from the first to the second 
time periods and a decreasing trend in the following two time periods and a rather constant 
trend afterward. The highest aforementioned values seem to be linked to the occurrence of 
megafires, namely in Italy in 1989; in Spain in 1989, 1994, and 2006; in Portugal in 2003 and 
2005; and in Greece in 2007 [11, 74]. Furthermore, the changes in land use, in particular the 
decrease in or abandonment of agricultural, pastoral, and forestry activities, seem to have 
promoted the increase in the number of fires and burnt area [11, 22–30, 33, 34]

Figure 1. Average number of fires (top), average area of fires (center) and mean dimension of burnt area per fire per year 
(bottom), per country, in the period 1980–2015.
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5.2. Portugal

A more detailed analysis for the dynamics of forest fires for Portugal for the time series data of 
1980–2015 [173] was done, aggregating the burnt area per fire in the classes: <1, 1–25, 25–100, 
100–500, and >500 ha. Most fires (66.5%) have burnt areas of less than 1 ha, corresponding to 
the lowest proportion of the total burnt area (3%). Contrarily, fires with burnt areas of more 
than 500 ha have the smallest number of events (0.5%), but have the largest proportion of 
burnt area (50%). The observed relation for the remaining classes is the following: the smaller 
the number of fires, the larger the burnt area (29.3, 2.5, 1.2% and 14, 12, 22%, respectively for 
burnt areas of 1–25, 25–100, and 100–500 ha). Other research describes similar trends [11, 174].

When the number of fires and burnt area is analyzed per NUT3 territorial units, it can be 
seen that the highest values are in northern and central Portugal (Figure 3). Though with 
different methodologies, several authors attained similar results [22, 174, 175]. In addition, 
a similar trend of inverse proportionality between the number of fires and burnt area is 
observed for all 23 NUT3 regions, with some variability for the five aforementioned classes 
of burnt area. Yet, variability is also observed within each of the NUT3 regions, if a smaller 
territorial unit is considered, for example the municipality (Figure 4). There seems to be 
more homogeneity in the municipalities of the northeastern and central eastern Portugal 
and more heterogeneity for those of coastal Portugal. This variability can be related to the 
occurrence of large fires, such as those referred by Fernandes et al. [73] and Tedim et al. [74]. 
And also with land use, especially the composition, structure and fuel loads of the forest 
systems [22, 174, 175]. The lower number of fires and burnt area corresponds to the agrofor-
estry systems, which are characterized frequently by a tree cover of evergreen oaks (Quercus 

suber and Quercus rotundifolia), and pasture with extensive grazing [176, 177] thus with a 
horizontal and vertical discontinuity [174, 178, 179]. At the other edge are the forest systems 

Figure 2. Number of fires (a) and burnt area (b) per country per five-year periods.
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composed mainly of maritime pine (Pinus pinaster) and/or Tasmanian blue gum (Eucalyptus 

globulus), especially those with a well-developed shrub layer [178] corresponding to sys-
tems with higher horizontal and vertical continuity, and larger fuel loads, where the higher 
number of fires and larger burnt area occurs [22, 174, 175]. A similar trend was described 
for Pinus halepensis in Spain [60]. The temporal dynamics of the burnt area presents a rather 
large variability, increasing from the smallest to the largest class of burnt area (Figure 5), 
showing a similar trend to the observed by San-Miguel-Ayanz et al. [11]. There seems to 
be an inverse relation between the burnt area of the fires larger than 500 ha and that of the 
remaining classes, that is smallest burnt areas per year for the class larger than 500 ha cor-
respond to the highest burnt areas per year in the other five classes (Figure 5). Noteworthy 
are the peaks of 2003 and 2005, as already referred, which are linked with the occurrence of 
megafires [11, 74].

It seems that the temporal and spatial patterns of fires are linked with the vegetation commu-
nity structure both in density of ignitions [22] and burnt area [22, 175] with a positive trend for 
the former in Portugal since the 1980s [106, 174, 180]. The shrublands are among the vegeta-
tion communities mostly affected by fire due to the high rate of spread and low firefighting 
priority [27, 28, 181–185].

Figure 3. Average number of fires (left) and burnt area (right) per NUT3 region of Portugal in the period 1980–2015.
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Figure 4. Average number of fires (left) and burnt area (right) per municipality region of Portugal in the period 1980–2015.

Figure 5. Burnt area per class of burnt area and per year.
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6. Case study

6.1. Study area and remote sensing data

Mapped burnt areas in 2013 by the Portuguese Forest Services were used to study the vegeta-
tion recovery, which also encompass the affected main land cover/use types. The analyses of 
the vegetation recovery for large fire scars were carried out, using the vegetation index NDVI 
calculated with Landsat 8 images for the four years: 2013, 2014, 2015, and 2016.

The study area is located in northern central Portugal (Figure 6), one of the most affected 
regions by forest fires (cf. Figures 3 and 4) in the summer during dry season (June to 
September). The climate is Mediterranean, with a mean precipitation per month of 120 mm 
in the rainy season (December and May), decreasing in summer to 30 mm per month [186]. 
According to the land use map of Portugal (COS06), the studied areas are mainly composed of 
Pinus pinaster (37%), pastures (20%), Eucalyptus globulus (19%), annual crops (20%), oak (5%), 
and other broadleaved species (6%).

Figure 6. Study areas location (a) and false color composite Landsat image (RGB—SWIR, NIR, Red) (b).
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Remote sensing data was available from Landsat 8 satellite images (Table 1) obtained from 
the United States Geological Survey (USGS), Glovis Visualization Viewer (GLOVIS) platform. 
A temporal time series of four years, of 2013 (fires’ occurrence year), 2014, 2015, and 2016, was 
used (Table 2). The images were selected considering a similar acquisition date, to minimize 
cloud cover and phenological stage effects. Four fires were considered. The image of 2013 
(6 july, 2013), covering Fire1, Fire2, and Fire4, corresponds to pre-fire image, and the other 
images to the post-fire, one, two, and three after the fire. As to Fire3 that occurred at the 
beginning of June of 2013 all images are post-fire. Thus, the time series enables the temporal 
vegetation analyses for a time frame of three years after the fire event. The satellite images 
were geometrically adjusted, image to image, considering that of 2013 as reference, to ensure 
a minimum geometric pixel deviation.

Landsat 8 OLI and TIR bands

Bands (μm) Spatial resolution (m)

b1 Coastal 0.433–0.453 30

b2 Blue 0.450–0.515 30

b3 Green 0.525–0.600 30

b4 Red 0.630–0.680 30

b5 Near Infrared (NIR) 0.845–0.885 30

b6 Short Wave Infrared (SWIR1) 1.560–1.660 30

b10 Thermal Infrared I (TIR1) 10.6–11.19 100

b11 Thermal Infrared II (TIR2) 11.5–12.51 100

b7 Cirrus 0.500–0.680 30

b8 Short Wave Infrared (SWIR2) 2.100–2.300 30

b9 Pan 0.503–0.676 15

Table 1. Band characterization of the Landsat 8 Operational Land Imager (OLI) satellite.

Satellite/sensor Acquisition date Fire Month of fire event Area (ha)

Landsat 8 OLI 06/07/2013 Fire1 July 6391

Fire2 August 1496

Fire3 June 123

Fire4 August 1348

09/07/2014

26/06/2015

28/06/2016

Table 2. Date of Landsat 8 images acquisition (WRS-2 204/32) and burnt area of the four fires.

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

317



6.2. Methodology

For this study four burnt areas were extracted using the fire perimeter provided by the 
Portuguese Forest Services [173]. Figure 7 shows the fire scars with false-color composite 
images for the four years and an image with two active fires (Fire2 and Fire4).

The vegetation indices based on red (RED) and near infrared (NIR) bands are directly related 
to the vegetation photosynthetic activity [187], which is highly reflective in the NIR region 
and strongly absorbing in the RED [188]. As already referred, one of the mostly used indices 
to evaluate the vegetation changes, especially after fire, is NDVI [188]. It is particularly used to 
assess vegetation regeneration after the fire [52, 157, 170, 189]. This index is rather sensitive to 
vegetation activity presenting a strong decrease after fire due to the partial or total destruction 
of the vegetation, thus it is indicative of the fire damage [52].

Figure 7. False-color composite Landsat 8 images (RGB—SWIR, NIR, Red) for 2013 (a), 2014 (b), 2015 (c), and 2016 (d) 
and an image with active Fire2 and Fire4 (e), including the burnt area perimeter (black line).
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In this study, the NDVI was used to calculate on the basis of the normalized difference 
between NIR and RED bands (NDVI = ((NIR−RED)/(NIR+RED)). It was calculated both for 
pre- (NDVIpre) and post-fire (NDVIpost) periods, as the mean value of NDVI before and after 
(for the 2014, 2015, and 2016 images) the fire event. The dates of satellite image acquisition 
were deliberately chosen to be a few days prior to the fire event and afterward annually in 
approximately the same dates, to eliminate the possible variations originated by the different 
vegetation phenological stage. The mean NDVI was obtained with the pixels located inside 
the selected burnt areas. The temporal vegetation variation was analyzed with the difference 
between the NDVI pre- and post-fire.

6.3. Post-fire analysis

In Figure 7, a strong decrease in NIR (green color tones) and increase in Red (rose color tones) 
reflectance within the fire perimeter from pre-fire image (Figure 7a) and the one acquired one 
year later (Figure 7b) for Fire1, Fire2, and Fire4 can be observed. For the two following years, 
2015 (Figure 7c) and 2016 (Figure 7d), the fire scars are less evident. These changes are con-

firmed by the NDVI values (Figure 8), with the highest values of NDVI in the pre-fire image 
(2013) indicating the presence of dense vegetation and a relevant decrease in these values in 
the post-fire image (2014), where the fire scar is present. In the following two years, 2015 and 
2016, an increase in the NDVI values can be observed, demonstrating a gradual recovery of 
vegetation, and even more accentuated in 2016. For Fire3 there is no pre-fire image, Figure 8 

shows a low NDVI value for 2013 (image acquired a few days after the fire event) and a gradual 

Figure 8. Evolution of mean NDVI values of the fire events from 2013 to 2016.
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increase for next years in analysis. The increasing values of NDVI are indicative of the vegeta-
tion regeneration either by seed or by sprouts [4, 9, 94, 95], shortly after the fire [88–92, 96]. 
Nevertheless, for these fires, more than three years are necessary to achieve the pre-fire NDVI 
values, values, depending on several factors such as the pre-fire plant species composition 
[89–92], season of fire occurrence [93], and severity and intensity of fire [6]. The vegetation 
recovery will have also the advantage of reducing substantially the erosion risk [119–121, 125].

The interannual difference of the NDVI (Figure 9), the pre- and post-fire, shows also a gradual 
vegetation recovery, in the affected areas, by different land cover vegetation types. For all 
different land cover types the vegetation regeneration is similar. Differences of mean NDVI 
are between 0.2 and 0.25 for Fire1 and Fire2, and between 0.1 and 0.15 for Fire4. Lower mean 
NDVI points to lower severity, that is the maintenance of some vegetation or some live tree 
crowns after the fire event, which enables seed regeneration [9, 94, 95]. Therefore small posi-
tive differences were encountered for the Pinus pinaster and Eucalyptus globulus (Fire1), where 
the fire scar is accentuated one year after the fire event, as can be observed in Figure 7. The 
regeneration of these species is not sufficiently fast to increase the NDVI values.

7. Conclusions

Forest fires are a frequent feature in forest ecosystems. In the Mediterranean and, in particular in 
Portugal, they occur on regular annual basis. Nonetheless a wide range of variability, whether 
spatial or temporal, exists, partially explained by the type of forest system and the climate, 

Figure 9. Difference of mean NDVI values per vegetation type (MP – Maritime pine, UP – Umbrella pine, EC – Tasmanian 
blue gum, OB – Other broadleaf species, Oak, NP – Natural pastures, AC – Annual culture).
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especially in relation to the high temperatures and low humidity. The most affected systems 
are those with high spatial, both vertical and horizontal continuity, and large fuel loads. In 
Portugal the most affected areas are those covered by Pinus pinaster and Eucalyptus globulus, 
which are also areas with larger burnt areas. The species characteristics, high flammability, 
as well as the large continuous areas when compared to other species, high stand density 
of trees and shrubs can explain, at least partially, the fire propagation. The spatial analysis 
detected regional differences. In northern and central Portugal, the number of fires and the 
burnt area as well as the frequency of fires were much larger than those in southern Portugal. 
This seems to be linked with vegetation type. While the forest areas of northern and central 
Portugal are predominantly of Pinus pinaster and Eucalyptus globulus, in the southern Portugal 
the evergreen oaks (Quercus suber and Quercus rotundifolia) dominate the forest landscape. 
The NDVI based on a time series Landsat 8 satellite images allows the monitoring and evalu-
ation of post-fire vegetation regeneration. The interannual difference of NDVI enables better 
understanding of the temporal variability of the recovery vegetation after the fire event, and 
a reduction of the potential soil erosion risk in the Mediterranean ecosystems. The differences 
between fires and land cover types can be an indicator of the fire severity.

Acknowledgements

This work is funded by National Funds through FCT—Foundation for Science and Technology 
under the Project UID/AGR/00115/2013.

Author details

Ana Cristina Gonçalves* and Adélia M.O. Sousa

*Address all correspondence to: acag@uevora.pt

Department of Rural Engineering, School of Sciences and Technology, Institute of Mediterranean 
Agricultural and Environmental Sciences (ICAAM), Institute of Research and Advanced 
Information (IIFA), University of Évora, Évora, Portugal

References

[1] Quezel P, Tomaselli R, Morandini R. Mediterranean forests and maquis: ecology, con-
servation and management. MAB Technical notes 2. Paris: UNESCO; 1977. p. 94

[2] Thirgood VC. Man and the Mediterranean Forest: A History of Resource Depletion. 
London: Academic Press; 1981. p. 194

[3] Massada AB, Kent R, Blank L, Perevolotsky A, Hadar L, Carmel Y. Automated segmen-
tation of vegetation structure units in a Mediterranean landscape. International Journal 
of Remote Sensing. 2012;33(2):346-364

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

321



[4] Oliver CD, Larson BC, editors. Forest Stand Dynamics. Update ed. New York: John 
Wiley & Sons, Inc; 1996. p. 544

[5] O’Hara KL. Multiaged Silviculture Managing for Complex Forest Stand Structures. 
Oxford: Oxford University Press; 2014. p. 213

[6] Keeley J, Bond W, Bradstock R, Pausas J, Rundel P. Fire in Mediterranean Ecosystems: 
Ecology, Evolution and Management. Cambridge: Cambridge University Press; 2012. 
p. 515

[7] Alday JG, Santana VM, Lee H, Allen KA, Marrs RH. Aboveground biomass accumulation 
patterns in moorlands after prescribed burning and low-intensity grazing. Perspectives 
in Plant Ecology, Evolution and Systematics. 2015;17:388-396

[8] Odion DC, Moritz MA, DellaSala DA. Alternative community states maintained by fire 
in the Klamath Mountains, USA. Journal of Ecology. 2010;98:96-105

[9] Santana VM, Baeza MJ, Marrs RH, Vallejo VR. Old-field secondary succession in SE 
Spain: Can fire divert it? Plant Ecology. 2010;211:337-349

[10] Bowman DM, Murphy BP, Boer MM, Bradstock RA, Cary GJ, Cochrane MA, Fensham 
RJ, Krawchuk MA, Price OF, Williams RJ. Forest fire management, climate change, 
and the risk of catastrophic carbon losses. Frontiers in Ecology and the Environment. 
2013;11:66-67

[11] San-Miguel-Ayanz J, Moreno JM, Camia A. Analysis of large fires in European Mediter-
ranean landscapes: Lessons learned and perspectives. Forest Ecology and Management. 
2013;294:11-22

[12] Alexandrian D, Esnault F, Calabri G. Forest fires in the Mediterranean area. Unasylva. 
2000;197(50):35-41

[13] Guiomar N, Godinho S, Fernandes PM, Machado R, Neves N, Fernandes JP. Wildfire 
patterns and landscape changes in Mediterranean oak woodlands. Science of the Total 
Environment. 2005;536:338-352

[14] Naveh Z. The evolutionary significance of fire in the Mediterranean region. Vegetatio. 
1975;21:199-208

[15] Daniau AL, d’Errico F, Goni MFS. Testing the hypothesis of fire use for ecosystem man-
agement by Neanderthal and upper Palaeolithic modern human populations. PLoS One. 
2010;5(2):e9157. DOI: 10.1371/journal.pone.0009157

[16] Amatulli G, Camia A, San-Miguel-Ayanz J. Estimating future burned areas under 
changing climate in the EU-Mediterranean countries. Science of the Total Environment. 
2013;450-451:209-222

[17] Bedia J, Herrera S, Gutiérrez JM, Zavala G, Urbieta IR, Moreno JM. Sensitivity of fire 
weather index to different reanalysis products in the Iberian Peninsula. Natural Hazards 
and Earth System Sciences. 2012;12:699-708

Mediterranean Identities — Environment, Society, Culture322



[18] Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J. Potential 
impact of climate change on fire risk in the Mediterranean area. Clinical Research. 
2006;31:85-95

[19] Pausas JP. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean 
Basin). Climate Change. 2004;63:337-350. DOI: 10.1023/B:CLIM.0000018508.94901.9c

[20] Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ. 
Climate change and forest disturbances. Bioscience. 2001;51(9):723-734

[21] Torn MS, Fried JS. Predicting the impacts of global warming on wildland fire. Climate 
Change. 1992;21:257-274. DOI: 10.1007/BF00139726

[22] Nunes AN, Lourenco L, Meira ACM. Exploring spatial patterns and drivers of forest 
fires in Portugal (1980-2014). Science of the Total Environment. 2016;573:1190-1202

[23] Modugno S, Balzter H, Cole B, Borrelli P. Mapping regional patterns of large forest fires 
in Wildland–Urban Interface areas in Europe. Journal of Environmental Management. 
2016;172:112-126

[24] Stamou Z, Xystrakis F, Koutsias N. The role of fire as a long-term landscape modifier: 
Evidence from long-term fire observations (1922-2000) in Greece. Applied Geography. 
2016;74:47-55

[25] Pausas JG, Keeley J. Abrupt climate-independent fire regime changes. Ecosystems. 
2014;17:1109-1120

[26] Pausas JG, Keeley J. Evolutionary ecology of resprouting and seeding in fireprone eco-
systems. New Phytologist. 2014;204(1):55-65

[27] Ganteaume A, Camia A, Jappiot M, San-Miguel-Ayanz J, Long-Founel M, Corinne L. 
A review of the main driving factors of forest fire ignition over Europe. Environmental 
Management. 2013;51:651-662

[28] Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. Modeling spatial pat-
terns of fire occurrence in Mediterranean Europe using multiple regression and random 
forest. Forest Ecology and Management. 2012;275:117-129

[29] Pausas JG, Fernández-Muñoz S. Fire regime changes in the Western Mediterranean Basin: 
From fuel-limited to drought-driven fire regime. Climatic Change. 2012;110:215-222

[30] Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, 
Vaz P, Xanthopoulos G, Mouillot F. Landscape-wildfire interactions in Southern Europe: 
Implications for landscape management. Journal of Environmental Management. 
2011;92:2389-2402

[31] Catry FX, Rego F, Moreira F, Fernandes PM, Pausas JG. Post-fire tree mortality in mixed 
forests of Central Portugal. Forest Ecology and Management. 2010;260:1184-1192

[32] Wittenberg L, Malkinson D. Spatio-temporal perspectives of forest fires regimes in a 
maturing Mediterranean mixed pine landscape. European Journal of Forest Research. 
2009;128:297-304

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

323



[33] Badia A, Saur D, Cerdan R, Llurdes JC. Causality and management of forest fires in 
Mediterranean environments: An example from Catalonia. Environmental Hazards. 
2002;4(1):23-32

[34] Giovannini G, Vallejo R, Lucchesi S, Bautista S, Ciompi S, Llovet J. Effects of land use 
and eventual fire on soil erodibility in dry Mediterranean conditions. Forest Ecology and 
Management. 2001;147:15-23

[35] Pausas JG, Vallejo VR. The role of fire in European Mediterranean ecosystems. In: 
Chuvieco E, editor. Remote Sensing of Large Wildfires in the European Mediterranean 
Basin. Berlin: Springer; 1999. pp. 3-16

[36] Eugenio Gosalbo M, Lloret F. Fire recurrence effects on the structure and composition of 
Mediterranean Pinus halepensis communities in Catalonia (Northeast Iberian Peninsula). 
Ecoscience. 2004;11(4):446-454

[37] Ne'eman G, Lahav H, Izhaki I. Recovery of vegetation in a natural East Mediterranean 
pine forest on Mount Carmel, Israel as affected by management strategies. Forest 
Ecology and Management. 1995;75:17-26

[38] Naveh Z. Fire in the Mediterranean region. A landscape ecological perspective. In: 
Goldammer JG, Jenkins MJ, editors. Fire in Ecosystem Dynamics: Mediterranean and 
Northern Perspectives. The Hague: SPB Academic Publishing; 1990. pp. 1-20

[39] Naveh Z. Effects of fire in the Mediterranean region. In: Kozlowski TT, Ahlgren CE, 
editors. Fire and Ecosystems. Physiological Ecology: A Series of Monographs Texts and 
Treatises. New York: Academic Press; 1974. p. 423

[40] Díaz-Delgado R, Lloret F, Pons X, Terradas J. Satellite evidence of decreasing resilience in 
Mediterranean plant communities after recurrent wildfires. Ecology. 2002;83:2293-2303

[41] Sá-Torres JPC. Patterns and drivers of wildfire occurrence and post-fire vegetation resil-
ience across scales in Portugal [thesis]. Porto: University of Porto; 2013

[42] Kazanis D, Arianoutsou M. Long-term post-fire vegetation dynamics in Pinus halepensis 

forests of Central Greece: A functional group approach. Plant Ecology. 2004;171:101-121

[43] Lee SW, Lee MB, Lee YG, Won MS, Kim JJ, Hong S. Relationship between landscape 
structure and burn severity at the landscape and class levels in Samchuck, South Korea. 
Forest Ecology and Management. 2009;258:1594-1604

[44] Silva JS, Vaz P, Moreira F, Catry F, Rego FC. Wildfires as a major driver of landscape dynam-

ics in three fire-prone areas of Portugal. Landscape and Urban Planning. 2011;101:349-358

[45] Handmer J, Proudley B. The economics of interface wildfires. USDA Forest Service, 
Pacific Southwest Research Station, General Technical Report PSWGTR-208. Albany: 
USDA; 2008. pp. 627-637

[46] Schaffhauser A, Curt T, Tatoni T. Fire-vegetation interplay in amosaic structure of Quercus 

suber woodlands and Mediterranean maquis under recurrent fires. Forest Ecology and 
Management. 2011;262:730-738

Mediterranean Identities — Environment, Society, Culture324



[47] Baeza MJ, De Luis M, Raventos J, Escarré A. Factors influencing fire behaviour in shrub-

lands of different stand ages and the implications for using prescribed burning to reduce 
wildfire risk. Journal of Environmental Management. 2002;65:199-208

[48] Curt T, Adra W, Borgniet L. Fire-driven oak regeneration in French Mediterranean eco-

systems. Forest Ecology and Management. 2009;258:2127-2135

[49] Pausas GJ, Carbo E, Caturla RN, Gil JM, Vallejo R. Post fire revegetation patterns in the 
Eastern Iberian Peninsula. Acta Oecologica. 1999;20(5):499-508

[50] Jain T, Pilliod D, Graham R. Tongue-tied. Wildfire. 2004;4:22-26

[51] Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, 
Gessler PE, Benson NC. Remote sensing techniques to assess active fire characteristics 
and post-fire effects. International Journal of Wildland Fire. 2006;15:319-345

[52] Bastos A, Gouveia CM, DaCamara CC, Trigo RM. Modelling post-fire vegetation recov-

ery in Portugal. Biogeosciences. 2011;8:3593-3607

[53] Röder A, Hill J, Duguy B, Alloza JA, Vallejo R. Using long time series of Landsat data 
to monitor fire events and post-fire dynamics and identify driving factors. A case study 
in the Ayora region (Eastern Spain). Remote Sensing of Environment. 2008;112:259-273

[54] Smithwick EAH, Turner MG, Mack MC, Chapin FS. Postfire soil N cycling in Northern 
conifer forests affected by severe, stand-replacing wildfires. Ecosystems. 2005;8:163-181

[55] Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. Fire effects on belowground sustain-

ability: A review and synthesis. Forest Ecology and Management. 1999;122:51-71

[56] Strauss D, Bednar L, Mees R. Do one percent of the forest fires cause ninety-nine percent 
of the damage? Forest Science. 1989;35:319-328

[57] Beverly J, Martell D. Characterizing extreme fire and weather events in the Boreal Shield 
Ecozone of Ontario. Agricultural and Forest Meteorology. 2005;133:5-16

[58] Pyne SJ, Andrews PL, Laven RD. Introduction to Wildland Fire Science. New York: 
Wiley; 1996. p. 769

[59] Alexander ME. Help with making crown fire hazard assessments. In: Fischer WC, Arno 
SF, editors. Protecting people and homes from wildfire in the interior west. Proceedings 
of the symposium and workshop, October 6-8, 1988; Missoula, USA. USDA Forest 
Service, Intermountain Research Station, General Technical Report INT-251. Missoula: 
USDA Forest Service; 1988. pp. 147-156

[60] Alvarez A, Gracia M, RetanaJ. Fuel types and crown fire potential in Pinus halepensis 

forests. European Journal of Forest Research. 2012;131:463-474

[61] Raymond CL, Peterson DL. Fuel treatments alter the effects of wildfire in a mixed-ever-

green forest, Oregon, USA. Canadian Journal of Forest Research. 2005;35:2981-2995

[62] Cruz MG, Alexander ME, Wakimoto RH. Modeling the likelihood of crown fire occur-

rence in conifer forest stands. Forest Science. 2004;50:640-658

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

325



[63] van Wagner CE. Conditions of the start and spread of crown fires. Canadian Journal of 
Forest Research. 1977;7:23-34

[64] Duguy B, Vallejo R. Land-use and fire history effects on post-fire vegetation dynamics in 
Eastern Spain. Journal of Vegetation Science. 2008;19:97-108

[65] Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D. Evaluation of FARSITE simu-
lator in Mediterranean maquis. International Journal of Wildland Fire. 2007;16:563-572

[66] Sandberg DV, Riccardi CL, Schaaf MD. Fire potential rating for wildland fuelbeds 
using the fuel characteristic classification system. Canadian Journal of Forest Research. 
2007;37:2456-2463

[67] Keeley J, Fotheringham CJ, Baer-Keeley M. Determinants of postfire recovery and suc-
cession in Mediterranean-climate shrublands of California. Ecological Applications. 
2005;15:1515-1534

[68] Hély C, Bergeron Y, Flannigan MD. Effects of stand composition on fire hazard in mixed-
wood Canadian boreal forest. Journal of Vegetation Science. 2000;11:813-824

[69] Fernandes PM, Rigolot E. The fire ecology and management of maritime pine (Pinus 

pinaster Ait.). Forest Ecology and Management. 2007;241:1-13

[70] McRae R, Sharples J. A conceptual framework for assessing the risk posed by extreme 
bushfires. The Australian Journal of Emergency Management. 2011;26(2):47-53

[71] Williams J, Hamilton L. The Mega-Fire Phenomenon: Toward a More Effective 
Management Model. A Concept Paper. Washington: The Brookings Institution Center for 
Public Policy Education; 2005. Available from: http://www.wildfirelessons.net [Accessed: 
1 February 2017]

[72] Turner MG, Romme WH, Gardner RH. Pre-fire heterogeneity, fire severity, and early 
post-fire plant reestablishment in subalpine forests of Yellowstone National Park, 
Wyoming. International Journal of Wildland Fire. 1999;9:21-36

[73] Fernandes PM, Pacheco AP, Almeida R, Claro J. The role of fire-suppression force in 
limiting the spread of extremely large forest fires in Portugal. European Journal of Forest 
Research. 2016;135:253-262. DOI: 10.1007/s10342-015-0933-8

[74] Tedim F, Remelgado R, Borges C, Carvalho S, Martins J. Exploring the occurrence of 
mega-fires in Portugal. Forest Ecology and Management. 2013;294:86-96

[75] Bond WJ, Keeley JE. Fire as a global “herbivore”: The ecology and evolution of flam-

mable ecosystems. Trends in Ecology & Evolution. 2005;20:387-394

[76] Carríon JS, van Geel B. Fine-resolution Upper Weichselian and Holocene palynological 
record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean 
forest succession. Review of Palaeobotany and Palynology. 1999;106:209-236

Mediterranean Identities — Environment, Society, Culture326



[77] Baeza MJ, Valdecantos A, Aloloza JA, Vallejo VR. Human disturbance and environmen-

tal factors as drivers of long-term post-fire regeneration patterns in Mediterranean for-

ests. Journal of Vegetation Science. 2007;18:243-252

[78] Retana J, Espelta JM, Habrouk A, Ordonez JL, de Sola-Morales F. Regeneration patterns 
of three Mediterranean pines and forest changes after a large wildfire in Northeastern 
Spain. Ecoscience. 2002;9:89-97

[79] Bradstock RA, Hammill KA, Collins L, Price O. Effects of weather, fuel and terrain on 
fire severity in topographically diverse landscapes of Southeastern Australia. Landscape 
Ecology. 2010;25(4):607-619

[80] Lloret F, Marí G. A comparison of medieval and the current fire regimes in managed 
pine forests of Catalonia (NE Spain). Forest Ecology and Management. 2001;141:155-163

[81] Mouillot F, Rambal S, Joffre R. Simulating climate change impacts on fire frequency 
and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology. 
2002;8:423-437

[82] Pal JS, Giorgi F, Bi X. Consistency of recent European summer precipitation trends 
and extremes with future regional climate projections. Geophysical Research Letters. 
2004;31:L13202

[83] Maracchi G, Sirotenko O, Bindi M. Impacts of present and future climate variabil-
ity on agriculture and forestry in the temperate regions: Europe. Climatic Change. 
2005;70:117-135

[84] Rodrigo A, Retana J, Pico FX. Direct regeneration is not the only response of Mediterranean 
forests to large fires. Ecology. 2004;85:716-729

[85] Lavorel S, Canadell J, Rambal S, Terradas J. Mediterranean terrestrial ecosystems: 
Research priorities on global change effects. Global Ecology & Biogeography Letters. 
1998;7:157-166

[86] Chauchard S, Carcaillet C, Guibal F. Patterns of land-use abandonment control tree-
recruitment and forest dynamics in Mediterranean mountains. Ecosystems. 2007;10: 
936-948

[87] Cheddadi R, Guiot J, Jolly D. The Mediterranean vegetation: What if the atmospheric 
CO

2
 increased? Landscape Ecology. 2001;16:667-675

[88] González-De Vega S, De Las Heras J, Moya D. Resilience of Mediterranean terrestrial 
ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the 
short, mid and long term. Science of the Total Environment. 2016;573:1171-1177

[89] Capitanio R, Carcaillet C. Post-fire Mediterranean vegetation dynamics and diversity: 
A discussion of succession models. Forest Ecology and Management. 2008;255:431-439

[90] Guo Q. Early post-fire succession in California chaparral: Changes in diversity, density, 
cover and biomass. Ecological Research. 2001;16:471-485

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

327



[91] Herranz JM, Martínez-Sánchez JJ, Marín A, Ferrandis P. Post-fire regeneration of 
Pinus halepensis Miller in a semi-arid area in Albacete province (South-Eastern Spain). 
Ecoscience. 1997;4:86-90

[92] Thanos CA, Daskakakou EN, Nikolaidou S. Early post-fire regeneration of a Pinus 

halepensis forest on Mount Parnis, Greece. Journal of Vegetation Science. 1996;7:273-280

[93] Moore PF. Forest landscape restoration after fires. In: Stephanie M, Vallauri D, Dudley 
N, editors. Forest Restoration in Landscapes, Beyond Planting Trees. Cidade: Springer; 
2005. p. 427

[94] Santana VM, Alday JG, Baeza MJ. Effects of fire regime shift in Mediterranean Basin 
ecosystems: Changes in soil seed bank composition among functional types. Plant 
Ecology. 2014;215:555-566

[95] De Las Heras J, Martínez-Sánchez JJ, González-Ochoa AI, Ferrandis P, Herranz JM. 
Establishment of Pinus halepensis Mill. saplings following fire: Effects of competition 
with shrub species. Acta Oecologica. 2002;23:91-97

[96] Wittenberg L, Malkinson D, Beeri O, Halutzy A, Tessler N. Spatial and temporal pat-
terns of vegetation recovery following sequences of forest fire in a Mediterranean land-
scape Mt. Carmel, Israel. Catena. 2007;71:76-83. DOI: 10.1016/j.catena.2006.10.007

[97] Saïd S. Floristic and life form diversity in post-pasture succession on a Mediterranean 
island (Corsica). Plant Ecology. 2001;162:67-76

[98] Gracia M, Retana J, Roig P. Mid-term successional patterns after fire of mixed pine-oak 
forests in NE Spain. Acta Oecologica. 2002;23:405-411

[99] Tessler N, Wittenberg L, Greenbaum N. Vegetation cover and species richness after 
recurrent forest fires in the Eastern Mediterranean ecosystem of Mount Carmel, Israel. 
Science of the Total Environment. 2016;572:1395-1402

[100] Tessler N, Sapir Y, Wittenberg L, Greenbaum N. Recovery of Mediterranean vegetation 
after recurrent forest fires: Insight from the 2010 forest fire on Mount Carmel, Israel. 
Land Degradation & Development. 2015;27:1424-1431. DOI: 10.1002/ldr.2419

[101] Lloret F, Pausas J, Vila M. Responses of Mediterranean plant species to different fire 
frequency in Garraf Natural Park (Catalonia, Spain): Field observations and model-
ing predictions. Plant Ecology. 2003;167:223-235. Available from: http://www.jstor.org/
stable/20146446

[102] Zedler PH, Gautier CR, McMaster GS. Vegetation change in response to extreme 
events: The effect of a short interval between fires in California chaparral and coastal 
scrub. Ecology. 1983;64:809-818. Available from: https://www.jstor.org/stable/1937204? 
seq=9#page_scan_tab_contents

[103] Eugenio Gosalbo M, Lloret F, Alcañiz JM. Regional patterns of fire recurrence effects 
on calcareous soils of Mediterranean Pinus halepensis communities. Forest Ecology and 
Management. 2006;221:313-318

Mediterranean Identities — Environment, Society, Culture328



[104] Pausas JG. Simulating Mediterranean landscape pattern and vegetation dynamics 
under different fire regimes. Plant Ecology. 2006;187:249-259

[105] Vilà-Cabrera A, Saura-Mas S, Lloret F. Effects of fire frequency on species composition 
in a Mediterranean shrubland. Ecoscience. 2008;15:519-528

[106] Hinojosa MB, Parra A, Laudicina VA, Moreno JM. Post-fire functionality and microbial 
community structure in a Mediterranean shrubland subjected to experimental drought. 
Science of the Total Environment. 2016;573:1178-1189

[107] Caon L, Vallejo VR, Coen RJ, Geissen V. Effects of wildfire on soil nutrients in 
Mediterranean ecosystems. Earth-Science Reviews. 2014;139:47-58

[108] Certini G. Effects of fire on properties of forest soils: A review. Oecologia. 2005;143:1-10

[109] Lane PN, Sheridan GJ, Noske PJ, Sherwin CB. Phosphorus and nitrogen exports from 
SE Australian forests following wildfire. Journal of Hydrology. 2008;361:186-198

[110] Shakesby RA, Doerr SH. Wildfire as a hydrological and geomorphological agent. Earth-
Science Reviews. 2006;74:269-307

[111] Thomas AD, Walsh RP, Shakesby RA. Nutrient losses in eroded sediment after fire 
in eucalyptus and pine forests in the wet Mediterranean environment of Northern 
Portugal. Catena. 1999;36:283-302

[112] Karhu K, Dannenmann M, Kitzler B, Díaz-Pinés E, Tejedor J, Ramírez DA, Parra 
A, Resco V, Moreno JM, Rubio A, Guiaraes-Povoas L, Zechmeister-Boltenstern S, 
Butterbach-Bahl K, Ambus P. Fire increases the risk of higher soil N

2
O emissions from 

Mediterranean macchia ecosystems. Soil Biology & Biochemistry. 2015;82:44-51

[113] Parra A, Ramírez DA, Resco V, Velasco A, Moreno JM. Modifying rainfall patterns in a 
Mediterranean shrubland: System design, plant responses and experimental burning. 
International Journal of Biometeorology. 2012;56:1033-1043

[114] González-Pérez JA, González-Vila FJ, Almendros G, Knicker H. The effect of fire on soil 
organic matter—a review. Environment International. 2004;30:855-870

[115] Hedo J, Lucas-Borja ME, Wic C, Andrés-Abellán M, De Las Heras J. Soil microbiological 
properties and enzymatic activities of long-term post-fire recovery in dry and semiarid 
Aleppo pine (Pinus halepensis M.) forest stands. Solid Earth. 2015;6:243-252

[116] Goberna M, Garcia C, Insam H, Hernández MT, Verdú M. Burning fire-prone 
Mediterranean shrublands: Immediate changes in soil microbial community structure 
and ecosystem functions. Microbial Ecology. 2012;64:242-255

[117] Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF, Natvig DO, Friggens MT. 
Precipitation variability and fire influence the temporal dynamics of soil CO

2
 efflux in 

an arid grassland. Global Change Biology. 2012;18:1401-1411

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

329



[118] Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its 
implications for ecosystem function. Ecology. 2007;88:1386-1394

[119] Schoenholtz SH, Miegroet H, Burger JA. A review of chemical and physical properties 
as indicators of forest soil quality: Challenges and opportunities. Forest Ecology and 
Management. 2000;138:335-356

[120] Jenny H. The Soil Resource. Origin and Behaviour. Ecological Studies. Vol. 37. Berlin: 
Springer-Verlag; 1983. p. 377

[121] Kohnke H, Bertrand AR. Soil Conservation. New York: McGraw-Hill Book Company; 
1959. p. 298

[122] Shakesby RA, Coelho COA, Ferreira AD, Terry JP, Walsh RPD. Wildfire impacts on soil 
erosion and hydrology in wet Mediterranean forest, Portugal. International Journal of 
Wildland Fire. 1993;3:95-110

[123] Inbar M, Tamir M, Wittenberg L. Runoff and erosion processes after a forest fire in 
Mount Carmel, a Mediterranean area. Geomorphology. 1998;24(1):17-33

[124] Cerda A. Changes in overland flow and infiltration after a rangeland fire in a 
Mediterranean scrubland. Hydrological Processes. 1998;12:1031-1042

[125] Campo J, Andreu V, Gimeno-Garcia E, Gonzalez O, Rubio JL. Occurrence of soil erosion 
after repeated experimental fires in a Mediterranean environment. Geomorphology. 
2006;82:376-387

[126] Cerda A, Doerr SH. The influence of vegetation recovery on soil hydrology and erod-
ibility following fire: An eleven year investigation. International Journal of Wildland 
Fire. 2005;14(4):423-437

[127] Malvar MC, Martins MA, Nunes JP, Robichaud PR, Keizer JJ. Assessing the role of pre-
fire ground preparation operations and soil water repellency in post-fire runoff and 
inter-rill erosion by repeated rainfall simulation experiments in Portuguese eucalypt 
plantations. Catena. 2013;108:69-83

[128] Fernández C, Veja JA, Fonturbel T, Pérez-Gorostiaga P, Jiménez E, Madrigal J. Effects of 
wildfire salvage logging and slash treatments on soil degradation. Land Degradation & 
Development. 2007;18:591-607

[129] Gonzalez M, Augusto L, Gallet-Budynek A, Xue J, Yauschew-Raguenes N, Guyon D, 
Trichet P, Delerue F, Niollet S, Andreasson F, Achat DL, Bakker MR. Contribution of 
understory species to total ecosystem aboveground and belowground biomass in tem-

perate Pinus pinaster Ait. forests. Forest Ecology and Management. 2013;289:38-47

[130] Wagenbrenner JW, MacDonald LH, Coats RN, Robichaud PR, Brown RE. Effects of 
post-fire salvage logging and a skid trail treatment on ground cover, soils, and sediment 
production in the interior Western United States. Forest Ecology and Management. 
2015;335:176-193

Mediterranean Identities — Environment, Society, Culture330



[131] Boucher D, Gauthier S, Noël J, Greene DF, Bergeron Y. Salvage logging affects early 
post-fire tree composition in Canadian boreal forest. Forest Ecology and Management. 
2014;325:118-127

[132] Maia P, Pausas JG, Vasques A, Keizer JJ. Fire severity as a key factor in post-fire regenera-
tion of Pinus pinaster (Ait.) in Central Portugal. Annals of Forest Science. 2012;69:489-498

[133] Fernández C, Vega JA, Fonturbel T, Jiménez E, Pérez-Gorostiaga P. Effects of wildfire, 
salvage logging and slash manipulation on Pinus pinaster Ait. recruitment in Orense 
(NW Spain). Forest Ecology and Management. 2008;255:1294-1304

[134] Santana VM, González-Pelayo O, Maia PAA, Varela ME, Valdecantos A, Vallejo VR, 
Keizer JJ. Effects of fire recurrence and different salvage logging techniques on carbon 
storage in Pinus pinaster forests from Northern Portugal. European Journal of Forest 
Research. 2016;135:1107-1117

[135] Nunes L, Lopes D, Rego FC, Gower ST. Aboveground biomass and net primary pro-
duction of pine, oak and mixed pine–oak forests on the Vila Real district, Portugal. 
Forest Ecology and Management. 2013;305:38-47

[136] Porté A, Trichet P, Bert D, Loustau D. Allometric relationships for branch and tree 
woody biomass of maritime pine (Pinus pinaster Ait.). Forest Ecology and Management. 
2002;158:71-83

[137] Martí-Roura M, Casals P, Romanyà J. Temporal changes in soil organic C under 
Mediterranean shrublands and grasslands: Impact of fire and drought. Plant Soil. 
2011;338:289-300

[138] Kaipainen T, Liski J, Pussinen A, Karjalainen T. Managing carbon sinks by changing 
rotation length in European forests. Environmental Science & Policy. 2004;7:205-219

[139] Shakesby RA. Post-wildfire soil erosion in the Mediterranean: Review and future 
research directions. Earth-Science Review. 2011;105:71-100

[140] Hosseini M, Keizer JJ, González-Pelayo O, Prats SA, Ritsema C, Geissen V. Effect of fire 
frequency on runoff, soil erosion, and loss of organic matter at the micro-plot scale in 
North-Central Portugal. Geoderma. 2016;269:126-137

[141] Martins MA, Machado AI, Serpa D, Prats SA, Faria SR, Varela ME, González-Pelayo 
O, Keizer JJ. Runoff and inter-rill erosion in a maritime pine and a eucalypt plantation 
following wildfire and terracing in North-Central Portugal. Journal of Hydrology and 
Hydromechanics. 2013;61:261-268

[142] Prats SA, Malvar MC, Vieira DCS, MacDonald L, Keizer JJ. Effectiveness of hydro-
mulching to reduce runoff and erosion in a recently burnt pine plantation in Central 
Portugal. Land Degradation & Development. 2013;27:1319-1333

[143] Prats SA, MacDonald LH, Monteiro M, Ferreira AJ, Coelho CO, Keizer JJ. Effectiveness 
of forest residue mulching in reducing post-fire runoff and erosion in a pine and a euca-
lypt plantation in North-Central Portugal. Geoderma. 2012;191:115-124

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

331



[144] Loepfe L, Martinez-Vilalta J, Piñol J. Management alternatives to offset climate change 
effects on Mediterranean fire regimes in NE Spain. Climate Change. 2012;115:693-707

[145] Regos A, Aquilué N, Retana J, Cáceres M, Brotons L. Using unplanned fires to help sup-
pressing future large fires in Mediterranean forests. PLoS One. 2014;9(4):e94906. DOI: 
10.1371/journal.pone.0094906

[146] Barros AMG, Pereira JMC. Wildfire selectivity for land cover type: Does size matter? 
PLoS One. 2014;9(1):e84760. DOI: 10.1371/journal.pone.008476

[147] Fernandes P. Combining forest structure data and fuel modelling to classify fire hazard 
in Portugal. Annals of Forest Science. 2009;66:1-9

[148] Gutiérrez E, Lozano S. Avoidable damage assessment of forest fires in European coun-
tries: An efficient frontier approach. European Journal of Forest Research. 2013;132:9-21

[149] Tansey K, Grégoire J-M, Stroppiana D, Sousa A, Silva J, Pereira JMC, Boschetti L, Maggi M, 
Brivio PA, Fraser R, Flasse S, Ershov D, Binaghi E, Graetz D, Peduzzi P. Vegetation burning 
in the year 2000: Global burned area estimates from SPOT VEGETATION data. Journal of 
Geophysical Research Atmospheres. 2003;109:D14S03. DOI: 10.1029/2003JD003598

[150] Tansey K, Grégoire J-M, Binaghi E, Boschetti L, Brivio PA, Ershov D, Flasse S, Fraser R, 
Graetz D, Maggi M, Peduzzi P, Pereira JMC, Silva J, Sousa A, Stroppiana D. A global 
inventory of burned areas at 1 km resolution for the year 2000 derived from Spot 
Vegetation data. Climate Change. 2004;67(2):345-377

[151] Sousa AMO, Pereira JMC, Silva JMN. Evaluating the performance of multitempo-
ral image compositing algorithms for burned area analysis. International Journal of 
Remote Sensing. 2003;24(6):1219-1236

[152] Pereira JMC, Sá ACL, Sousa AMO, Silva JMN, Santos TN, Carreiras JMB. Spectral char-
acterisation and discrimination of burnt areas. In: Chuvieco E, editor. Remote Sensing 
of Large Wildfires in the European Mediterranean Basin. Berlin: Springer-Verlag; 1999. 
pp. 123-138

[153] Pereira JMC, Sousa AMO, Sá ACL. Regional-scale burnt area mapping in Southern 
Europe using NOAA-AVHRR 1km data. In: Chuvieco E, editor. Remote Sensing of Large 
Wildfires in the European Mediterranean Basin. Berlin: Springer-Verlag; 1999. pp. 139-155

[154] Gitas I, Mitri G, Veraverbeke S, Polychronaki A: Advances in remote sensing of post-
fire vegetation recovery monitoring – A review. In: Fatoyinbo, L, editor. Remote sens-
ing of biomass – principles and applications. Rijeka: InTech; 2012. pp. 144-170

[155] McRoberts R, Tomppo E, Naesset E. Advanced and emerging issues on national forest 
inventories. Scandinavian Journal of Forest Research. 2010;25:368-381

[156] Bolton DK, Coops NC, Wulder MA. Characterizing residual structure and forest recov-
ery following high-severity fire in the western boreal of Canada using Landsat time-
series and airborne lidar data. Remote Sensing of Environment. 2015;163:48-60

Mediterranean Identities — Environment, Society, Culture332



[157] Vila G, Barbosa P. Post-fire vegetation regrowth detection in the Deiva Marina region 
(Liguria-Italy) using Landsat TM and ETM+ data. Ecological Modelling. 2010;221:75-84

[158] Fernandez-Manso A, Quintano C, Roberts DA. Burn severity influence on post-
fire vegetation cover resilience from Landsat MESMA fraction images time series in 
Mediterranean forest ecosystems. Remote Sensing of Environment. 2016;184:112-123

[159] Dubovyk O, Landmann T, Erasmus BFN, Tewes A, Schellberg J. Monitoring veg-
etation dynamics with medium resolution MODIS-EVI time series at sub-regional 
scale in southern Africa. International Journal of Applied Earth Observation and 
Geoinformation. 2015;8:175-183

[160] Meng R, Dennison PE, Huang C, Moritz MA, D’Antonio C. Effects of fire severity and 
post-fire climate on short-term vegetation recovery of mixed-conifer and red fir for-
ests in the Sierra Nevada Mountains of California. Remote Sensing of Environment. 
2015;171:311-325

[161] Chen W, Moriya K, Sakai T, Koyama L, Cao C. Monitoring of post-fire forest recovery 
under different restoration modes based on time series Landsat data. European Journal 
of Remote Sensing. 2014;47:153-168

[162] Chu T, Guo X. Remote sensing techniques in monitoring post-fire effects and patterns 
of forest recovery in boreal forest regions: A review. Remote Sensing. 2014;6:470-520

[163] Di Mauro B, Fava F, Busetto L, Crosta GF, Colombo R. Post-fire resilience in the Alpine 
region estimated from MODIS satellite multispectral data. International Journal of 
Applied Earth Observation and Geoinformation. 2014;32:163-172

[164] Lanorte A, Lasaponara R, Lovallo M, Telesca L. Fisher–Shannon information plane 
analysis of SPOT/VEGETATION normalized difference vegetation index (NDVI) time 
series to characterize vegetation recovery after fire disturbance. International Journal of 
Applied Earth Observation and Geoinformation. 2014;26:441-446

[165] Goetz SJ, Fiske GJ, Bunn AG. Using satellite time-series data sets to analyze fire dis-
turbance and forest recovery across Canada. Remote Sensing of Environment. 
2006;101:352-365

[166] Riaño D, Chuvieco E, Ustin S, Zomer R, Dennison P, Roberts D, Salas J. Assessment of 
vegetation regeneration after fire through multitemporal analysis of AVIRIS images in 
the Santa Monica Mountains. Remote Sensing of Environment. 2002;79:60-71

[167] Ireland G, Petropoulos GP. Exploring the relationships between post-fire vegetation 
regeneration dynamics, topography and burn severity: A case study from the Montane 
Cordillera Ecozones of Western Canada. Applied Geography. 2015;56:232-248

[168] Petropoulos GP, Griffiths HM, Kalivas DP. Quantifying spatial and temporal vegeta-
tion recovery dynamics following a wildfire event in a Mediterranean landscape using 
EO data and GIS. Applied Geography. 2014;50:120-131

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

333



[169] Sever L, Leach J, Bren L. Remote sensing of post-fire vegetation recovery; a study using 
Landsat 5 TM imagery and NDVI in North-East Victoria. Journal of Spatial Science. 
2012;57:75-191

[170] White J, Ryan K, Key C, Running S. Remote sensing of forest fire severity and vegeta-
tion recovery. International Journal of Wildland Fire. 1996;6:125-136

[171] Quintano C, Fernández-Manso A, Shimabukuro YE, Pereira G. Spectral unmixing: A 
review. International Journal of Remote Sensing. 2012;33:5307-5340

[172] EFFIS. European Forest Fire Information System. 2017. Available from: http://forest.jrc.
ec.europa.eu/effis/applications/data-and-services/ [Accessed: 3 January 2017]

[173] ICNF. Defesa da Floresta Contra Incêndios [Defense of Forest Against Fires]. Instituto 
da Conservação da Natureza e das Florestas [in Portuguese]. 2017. Available from: 
http://www.icnf.pt/portal/florestas/dfci [Accessed: 3 January 2017]

[174] Marques S, Borges JG, Garcia-Gonzalo J, Moreira F, Carreiras JMB, Oliveira MM, 
Cantarinha A, Botequim B, Pereira JMC. Characterization of wildfires in Portugal. 
European Journal of Forest Research. 2011;130:775-784

[175] Parente J, Pereira MG, Tonini M. Space-time clustering analysis of wildfires: The influ-
ence of dataset characteristics, fire prevention policy decisions, weather and climate. 
Science of the Total Environment. 2016;559:151-165

[176] Eichhorn MP, Paris P, Herzog F, Incoll LD, Liagre F, Mantzanas K, Mayus M, Moreno 
G, Papanastasis VP, Pilbeam DJ, Pisanelli A, Dupraz C. Silvoarable systems in Europe—
past, present and future prospects. Agroforestry Systems. 2006;67:29-50

[177] Jose S, Gillespie AR, Pallardy SG. Interspecific interactions in temperate agroforestry. 
Agroforestry Systems. 2004;61:237-255

[178] Godinho-Ferreira P, Azevedo A, Rego F. Carta da Tipologia Florestal de Portugal 
Continental [Map of the forest typology of continental Portugal]. Silva Lusitana. 
2005;13(1):1-34 [in Portuguese]

[179] Gonçalves AC, Dias SS, Ferreira AG, Ribeiro NA: Landscape diversity patterns in Alentejo 
forest area. In: Schnabel S, Ferreira AG, editors. Sustainability of Agrosilvopastoral 
Systems. Advances in GeoEcology. Reiskirchen: Catena Verlag; 2004; Vol. 37. 2004. pp. 
255-261

[180] Rodrigues M, San Miguel J, Oliveira S, Moreira F, Camia A. An insight into spatial–tem-

poral trends of fire ignitions and burned areas in the European Mediterranean coun-
tries. Journal of Earth Science and Engineering. 2013;3:497-505

[181] Nunes AN. Regional variability and driving forces behind forest fires in Portugal: An 
overview of the last three decades (1980-2009). Applied Geography. 2012;34:576-586

[182] Carmo M, Moreira F, Casimiro P, Vaz P. Land use and topography influences on wild-
fire occurrence in Northern Portugal. Landscape and Urban Planning. 2001;100:169-176. 
DOI: 10.1016/j.landurbplan.2010.11.017

Mediterranean Identities — Environment, Society, Culture334



[183] Bajocco S, Ricotta C. Evidence of selective burning in Sardinia (Italy): Which land cover 
classes do wildfires prefer? Landscape Ecology. 2008;23:241-248

[184] Sebastián-López A, Salvador-Civil R, Gonzalo-Jiménez J, San Miguel-Ayanz J. Integration 
of socio-economic and environmental variables for modelling long-term fire danger in 
Southern Europe. European Journal of Forest Research. 2008;127:149-163

[185] Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, Rego FC. Land 
cover type and fire in Portugal: Do fires burn land cover selectively? Landscape Ecology. 
2005;20:661-673

[186] IPMA. Normais Climatológicas [Climate Normals]. Instituto Português do Mar e da 
atmosfera [in Portuguese]. 2017. Available from: http://www.ipma.pt/pt/oclima/nor-
mais.clima/ [Accessed: 24 March 2017]

[187] Mutanga O, Adam E, Cho MA. High density biomass estimation for wetland vegeta-
tion using WorldView-2 imagery and random forest regression algorithm. International 
Journal of Applied Earth Observation and Geoinformation. 2012;18:399-406

[188] Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the 
Great Plains with ERTS. In: 3rd ERTS Symposium, NASA SP-351. Vol. I. Washington 
DC: NASA; 1973. pp. 309-317

[189] van Leeuwen W. Monitoring the effects of forest restoration treatments on post-fire 
vegetation recovery with MODIS multitemporal data. Sensors. 2008;8:2017-2042

The Fire in the Mediterranean Region: A Case Study of Forest Fires in Portugal
http://dx.doi.org/10.5772/intechopen.69410

335




