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Abstract

Blood coagulation and thrombin generation are primarily a function of platelets, 
 coagulation factors, and endothelial cells. Red blood cells (RBCs) have generally been 
viewed as innocent bystanders in the clotting process. However, there has been a steadily 
growing clinical data revealing the active roles of erythrocytes in hemostasis. RBCs may 
contribute to thrombosis in several ways. In polycythemia, RBCs increase blood viscosity 
and marginate platelets toward the endothelium. The increased incidence of thrombosis 
is also associated with hemolytic anemia, especially with sickle cell disease and parox‐
ysmal nocturnal hemoglobinuria. RBCs express phosphatidylserine and microparticles, 
supporting thrombin generation. They interact with platelets, endothelial cells, and 
fibrinogen, and these interactions lead their incorporation into the thrombi. The presence 
of RBCs in clots suppresses plasmin generation and reduces clot dissolution. Decreasing 
thrombus RBC content would accelerate thrombus resolution. In conclusion, RBCs are 
important complements of the complex reactions of clot formation.

Keywords: thrombin, red blood cells, blood coagulation, thrombophilia

1. Introduction

Generation of thrombin is a dynamic process that begins with endothelial injury. Endothelial 

cells, factors in coagulation cascade, platelets, antithrombotic control mechanisms, and 

 fibrinolytic enzymes play major role in this hemostatic process. In addition, various  mechanical 
factors, including blood flow and intercellular molecular bridges, are also involved in the regu‐

lation of primary thrombus formation [1]. Red blood cells (RBCs) are the most abundant blood 

cells, compromising 35–45% of the blood volume. Their plasma membrane has a unique dis‐

coid shape, which provides biological and mechanical properties to RBCs necessary to perform 

their functions [2]. While the major function of RBCs is hemoglobin‐mediated oxygen transport 

through the body, they also actively participate in both arterial and venous thrombosis.
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2. Evidences and mechanisms for erythrocyte participation in thrombus 

formation

There has been a steadily growing clinical data revealing the active roles of RBCs in  hemostasis. 

First clinical observation about the role of RBCs in coagulation was published in 1910. In this 

article, Duke noted that thrombocytopenic patients showed an improvement in bleeding 

times after transfusion, even though their platelet counts remained low [3]. Fifty years later, 

Hellem et al. reported decrease in bleeding time upon transfusion of washed RBCs in anemic 

patients with bleeding defects [4]. The causal factor was again assumed to be the erythrocyte. 

Ho et al. showed the improved bleeding times after RBC transfusions in patients with anemia 

and thrombocytopenia [5]. Ho et al. also reported the shortening bleeding time in patients 

with iron deficiency anemia as their hematocrit increases after iron administration [6]. Anemia 

increases the risk of bleeding, whereas erythrocytosis increases the risk of thrombosis. When 

the hematocrit reduced, platelets travel closer to center of the vascular lumen and are thus less 

likely to interact with the subendothelium [7, 8]. Hemoglobin also scavenges nitric oxide (NO) 
and therefore a reduced hematocrit would be associated with enhanced NO activity and pro‐

moting platelet inhibition and vasodilatation [8]. In addition, red blood cells release adenosine 

diphosphate (ADP) and thromboxane A2 (TXA2) which enhances platelet aggregation [8]. 

Weiss et al. corrected a platelet adhesion defect present in patients with a platelet storage pool 

deficiency by RBC transfusion and concluded about the possible role of ADP [9].

In contrast to patients with low hematocrits, abnormally high RBC counts as in  polycythemia 

vera patients predispose to thrombotic disease [10, 11]. An increase in hematocrit is also 

 associated with cerebral infarction and internal carotid atherosclerosis [12, 13]. In addi‐

tion, diseases which secondarily alter RBC membrane properties can lead to thrombosis; an 

increase in RBC aggregation has been associated with thrombosis in retinal venous occlu‐

sion, leg vein thrombosis, and coronary heart disease [10, 14–16]. In these disorders, throm‐

bus formation was associated with RBC aggregation that blocks microvascular blood flow. 
An increase in hematocrit leads to an increase in blood viscosity, an increase in RBC aggre‐

gation, and/or a decrease in RBC deformability [10, 17]. Increasing hematocrit promotes 

the transport of platelets and coagulation factors toward the vessel wall, thereby increasing 

collisions of platelets with the activated endothelium and with themselves (Figure 1) [10, 

18, 19]. A decrease in RBC deformability may encourage thrombosis by rendering the eryth‐

rocyte less capable of squeezing through narrow apertures [10, 17, 20]. In addition, RBCs 

have been shown to release adenosine triphosphate (ATP) addition to ADP in response to 

mechanical deformation, as well [21, 22]. Sickle cell disease (SCD) is a well‐known hemoglo‐

binopathy in which the deformability of RBCs decreased, thrombin generation and platelet 

activation increased. Arterial‐venous thrombosis can occur during the vaso‐occlusive crisis 

of SCD. RBC membrane proteins can also promote thrombotic episodes and again SCD is a 

good example for this; microparticles (MPs) are small membrane vesicles that play impor‐

tant roles on coagulation. RBC and platelet‐derived MPs can initiate thrombin generation 

through factor XIIa, presumably via a phosphatidylserine‐mediated process (Figure 1) [23]. 

And sickled RBCs not only shed MPs but also there is an abnormal phosphatidylserine (PS) 

exposure on RBCs as a result of repeated sickling and unsickling processes [24]. An increase 
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in RBC aggregation and abnormal PS exposure on RBCs have been implicated as possible 

causative factors of thrombotic complications in beta‐thalassemia major cases, as well [10, 

25–27]. In addition, under conditions of low pO
2
 and low pH, which can occur in diseases 

like hemoglobinopathies, again ATP is secreted by RBCs [28].

Activated platelets express PS on their surfaces which localize the coagulation complexes (intrin‐

sic factor tenase and prothrombinase) to the site of vascular injury and have been viewed as the 

primary surfaces upon which coagulation occurs [2, 29]. However, normally, a subfraction of 
RBCs (0.5%) also express PS on their surfaces. With an average RBC count of ~4 × 109 mL−1, 

this corresponds to approximately 2.5 × 107 mL−1of PS‐expressing RBCs, which is 20% of the 

average platelet count [2]. So, even a small proportion of PS‐positive RBCs could significantly 
affect thrombin generation and promote fibrin deposition during venous thrombosis [2, 30, 31]. 

Kawakami et al. identified RBCs as having the most active membrane surface among blood cells 
and endothelial cells in catalyzing the coagulation process in their in vitro study, as well [32].

Horne MK et al. also explored the effect of RBC on thrombin generation in clotting whole 
blood [33]. They not only found that thrombin concentrations increased as the hematocrit 

increased from 10 to 40% but also found that maximal thrombin concentration increased 

when red cell lysate mixed with intact red cells or with platelet. The latter effect was lost by 
filtering the lysate. The authors concluded that it was due to MPs derived from RBCs, and the 
effect of intact red cells and MPs derived from RBCs on thrombin generation is probably due 
to the presence of exposed PS on their membranes [33].

Thrombosis is a well‐known complication of paroxysmal nocturnal hemoglobinuria (PNH) 
and has been suggested due to several pathophysiological sates: a suppressed fibrinolytic 

Figure 1. In normal conditions, erythrocytes travel in the center of blood flow and platelets travel closer to the endothelial 
cells. When the hematocrit reduced, platelets travel closer to center of the vascular lumen and are thus less likely to 

interact with the subendothelium. MPs are small membrane vesicles, which play important roles on coagulation. 

RBC and platelet‐derived MPs can initiate thrombin generation. After formation of the fibrin plaque, RBCs become 
intertwined within the thrombus to stabilize and strengthen its structure (RBC: red blood cell, MP: microparticle).
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system, increased leucocyte‐derived tissue factor, complement‐mediated damage to platelets 

and endothelia, and increased platelet derived MPs [34]. Hemolytic attack is often accompa‐

nied by thrombosis in PNH and the increased levels of circulating procoagulant MPs derived 
from hemolyzed RBCs can also contribute thrombophilia by providing the catalytic surface 
necessary for the assembly of procoagulant, prothrombinase, and tenase enzyme complexes 
[34]. NO plays an important role in normal platelet functions through the downregulation of 
platelet aggregation and adhesion. Therefore, NO reduction due to intravascular hemolysis 
also contributes to thrombogenesis in PNH [34, 35].

Besides all these data about the roles of PS and MPs in thrombogenesis, the erythrocytes 

do not normally present PS in their outer membrane [10, 36]. For this reason, phospholipid 

scramblase is required to move the specific aminophospholipids (PS) to an external location. 
An ATP‐requiring mechanism is responsible for this translocation [37] and an increase of the 

intracellular Ca++ concentration in RBC is known to activate the scrambling of membrane 

phospholipids [37–39]. Phospholipid scrambling plays a stimulatory role in MP generation, 

as well [40]. Protein kinase C in RBCs mediates the phosphorylation of cytoskeletal proteins 

and also plays role in Ca++ entry into RBCs and subsequent PS exposure on RBC [34, 41, 42].

During clot formation, erythrocytes communicate with platelets as well, and erythrocytes 

enhance the aggregation of platelets. In the presence of RBCs, greater quantities of free fatty 
acids and eicosanoid metabolites were generated during platelet activation, rather than in the 

absence of RBCs [43, 44]. Addition of erythrocytes also enhances platelet degranulation (ADP, 

serotonin, and beta‐thromboglobulin) and aggregation during collagen or thrombin stimula‐

tion of platelet‐rich plasma [43–48].

RBCs are also incorporated into thrombi via specific interactions during thrombogenesis. 
RBCs interact with activated endothelial cells (Figure 2) and this interaction is demon‐

strated in a study of arterial thrombosis in which RBCs were the first cells to adhere to a 
FeCl

3
‐treated intact endothelium, prior to arrival of platelets, and mediate platelet adhesion 

to the intact endothelial surface [49]. Integrin‐mediated interactions between RBCs and leu‐

kocytes and platelets may also lead erythrocyte incorporation into thrombi [50]. RBCs bind 

to platelet αIIbβ3 receptor with their intracellular adhesion molecule‐4 (ICAM‐4) ligand (LW 

[Landsteiner and Wiener] blood group antigen) and this interaction depends on the platelet 

activation state [51]. RBC ICAM‐4 also interacts with leucocyte β1 and β2 integrins [52]. RBCs 

and fibrinogen also directly interact specifically with each other. Two potential receptors on 
RBCs have been implicated in fibrinogen‐RBC interactions: β3 or a β3‐like molecule and the 
integrin‐associated protein CD47 [53, 54]. Fibrinogen‐mediated transport of factor XIIIa to 

the clot is necessary for RBC retention in thrombi, as well [55, 56]. Compared to wild‐type 

mice, mice with reduced or delayed factor XIIIa activation produce smaller venous thrombi 

with reduced RBC content [55]. RBCs affect the structural and mechanical properties of fibrin 
clots [57]. The interaction of RBCs with fibrin clots (red thrombi) was revealed to be associ‐
ated with lytic resistance of thrombi due to an increased mechanical strength as compared to 

clots constituted to plasma only (white thrombi) [58, 59]. In an experimental cerebral ischemia 

study, it was shown that RBCs within a thrombus transformed from normal discoid shape to 

form projections which allowed them to interact both with each other and with fibrin fibers. 
And the authors concluded that through the extension projections, RBCs become intertwined 

within a thrombus to stabilize and strengthen its structure (Figure 1) [57].
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In summary, RBCs contribute thrombosis by their viscosity effects and by margination of 
platelets to the vessel wall. However, in addition to these simple viscosity effects of RBC 
participation in platelet aggregation, RBCs also express PS and MPs, supporting thrombin 

generation. RBCs interact with platelets, endothelial cells, and fibrinogen, as well and these 
interactions lead their incorporation into the thrombi. Intertwined RBCs within a thrombus 

stabilize and strengthens its structure and decrease fibrinolysis. In conclusion, RBCs are 
important complements of the complex reactions of clot formation.

Abbreviations

Figure 2. Transmission electron microscope of a capillary with a biconcave disk‐shaped red blood cell interacting with 

an endothelial cell (×12,000). By Courtesy of Histology and Embryology Department, Mersin University Medical Faculty.
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