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Abstract

Accumulating evidence indicates that exposure to air pollution is associated with increased 
mortality from respiratory disease. Exposure to ambient pollutants, such as ozone, par-
ticulate matter, sulfur dioxide, nitrogen dioxide, and other agents has been associated with 
decrease in lung function and immunity, and with increased rates of hospitalization for 
lung disease, including pneumonia. Furthermore, sex differences in frequency and sever-
ity of pulmonary disease and infection have been reported, suggesting a role of sex hor-
mones in mediating these differences. Pneumonia, which is commonly caused by bacterial 
infection and subsequent lung inflammation leading to hospitalization and death, occurs 
at different rates in men and women. In this context, male and female hormones can have 
direct effects on the immunity system by binding to receptors in immune cells, and these 
responses can be modulated by environmental exposures. This chapter summarizes clini-
cal, animal, and epidemiological studies linking exposure to air pollution and pneumonia 
in both males and females. Understanding sex-specific mechanisms in pneumonia patho-
genesis and environmental responses can help in the development of more effective thera-
peutics and treatment options to reduce negative health outcomes in men and women.

Keywords: sex differences, ozone, particulate matter, air pollution, sex hormones, 
community-acquired pneumonia, environmental exposures

1. Introduction

Regulation of the lung inflammatory response is critical to the successful resolution of pneumo-

nia. Exposure to air pollutants has been linked to negative lung health outcomes, and both male 
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and female sex hormones have been shown to control the lung immune response [1, 2]. This 

chapter combines evidence of three areas: pneumonia infection, air pollution, and hormonal 

control of sex-specific immune responses. We will discuss common pathogens responsible for 
pneumonia and associations with environmental exposures, and lessons learned from animal 

models of infection and exposure to various air pollutants. Together, this information could 

help better explain the differences observed in susceptibility to pneumonia between men and 
women, and help in the development of better treatment options for male and female patients.

2. Pneumonia in the clinic: classification, comorbidities, and  
pathogenesis

2.1. Classification

Pneumonia is classified according to the patient population affected as: (a) community-
acquired pneumonia (CAP), (b) hospital-acquired pneumonia (HAP), (c) ventilator-associ-
ated pneumonia (VAP), and (d) nursing home-associated pneumonia (NHAP) [3]. Of these 

classifications, CAP is the most frequently found, predominantly affecting young children 
because of the immaturity of their immune system, and older adults due to their immunose-

nescence and comorbidities of aging [4].

Community-acquired pneumonia is a common infection that affects the lower respiratory tract 
and it is acquired outside of the hospital or within 48 h of admission, and it is primarily associ-
ated with the presence of a new infiltrate on the chest radiograph [2, 3]. Community-acquired 
pneumonia is often caused by pathogens of the not multidrug-resistant type (MDR), which 
is an important distinction from the other types of pneumonia. However, some patients with 
recent antibiotic therapy could also present infection with MDR organisms [3, 5]. Furthermore, 

most patients are presented with common clinical symptoms, such as fever, cough, pleuritic 

chest pain, and breathing difficulty, although these symptoms can be absent in elderly patients. 
Elderly patients, on the other hand, can also have delirium, abdominal pain, or acute cardiac 

disorders as part of their clinical presentation [4].

2.2. Incidence and risk factors

Despite newer antimicrobial therapy and treatment guidelines, CAP continues to be a sig-

nificant problem associated with high mortality, morbidity, and cost. In the United States 
alone, CAP affects approximately 5.6 million patients annually, and it is the sixth cause 
of death in individuals older than 65 years of age [6, 7]. According to the National Vital 
Statistics Report of the Centers for Disease Control, pneumonia and influenza were listed as 
the eighth leading causes of death in the United States in 2011 [8]. As a result, the economic 

burden of CAP remains significantly high, at more than $17 billion dollars annually in the 
United States [9].

Several risk factors have been associated with CAP, including age and comorbid diseases [10]. 

Furthermore, exposure to air pollution and circulating levels of sex hormones also seem to play 

Contemporary Topics of Pneumonia4



an important role in the predisposition of some respiratory infections [11, 12]. Although some 

studies in animals have shown that females are more resistant than males to some bacterial infec-

tions [13, 14], others have shown that these patterns are reversed if animals are pre-exposed to 
environmental pollutants, such as ozone [15–20]. Incidentally, some clinical studies have reported 
that men are more susceptible to developing CAP and receive more intensive care than women, 
and show increased risk to die from pneumonia [21]. Moreover, exposure to air pollution has 
been associated with an increased risk for respiratory disorders due to its negative effects on lung 
function and immunity [22]. In this regard, long-term exposures to air pollutants, such as ozone, 
nitric oxide, and particulate matter in older adults have been linked with increased hospitaliza-

tion rates for CAP [11, 21, 23, 24]. In addition, exposure to diverse environmental agents has 
been linked to negative lung health outcomes in children and adults (Table 1). The mechanisms 
associated with these clinical outcomes will be discussed in the following sections.

Children Adults

Environmental 

exposure

Health outcome Sex differences Environmental 

exposure

Health outcome Sex differences

Secondhand 
smoke

Pneumonia 
(incidence and 
severity)

N/A Particulate matter 
(PM10)

Chronic 
laryngitis

Higher in males

Air pollution Pneumonia, 
Bronchitis

N/A House biomass 
fuel use

Various 
communicable 

respiratory 

disease

Higher in women

Household air 
quality

Pneumonia Higher in males Secondhand 
smoke

Community-
acquired 
pneumonia 

(elderly)

N/A

Air pollution Outpatient visits 

for respiratory 

disease

Higher in females Air pollution Outpatient visits 

for respiratory 

disease

Higher in males

Solid fuel Pneummonia, 
Mortality

Higher in females Air pollution 

(PM
2.5

, SO
2
, NO

2
)

Pneumonia Higher in males 
(smokers)
Higher in females 
(never smokers)

Environmental 

tobacco smoking

Pneumonia 
Chronic 
bronchitis

N/A UV radiation, 
sulfur oxides

Invasive 
pneumococcal 

disease

N/A

Indoor air 
pollution (solid 
fuel cooking, 

keeping large 

animals)

Severe 
pneumonia

N/A Tobacco smoke Sinusitis, middle 
ear infections

Flight attendants

SO
2
, total 

suspended 

particles

Pneumonia N/A

Table 1. Effects of the environment on respiratory tract health in children and adults and observed sex differences.
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2.3. Pathogenesis of pneumonia

Pneumonia is characterized by a severe inflammation of the peripheral alveolar compartment 
and abnormal filling with fluid consolidation and exudation caused by infection with viruses, 
bacteria, and/or pathogen-related molecules. The most common cause of CAP is bacterial infec-

tion, but the disease can also be triggered by viral agents (Table 2) [6, 25, 26]. Pneumonia-causing 
microorganisms are classified as typical, atypical (zoonotic and non-zoonotic), Gram-negative, 
and viruses. Streptococcus pneumoniae is the most common cause of pneumonia in adults in the 

United States. Nevertheless, other typical organisms are also included with some important asso-

ciations. For example, Haemophilus influenzae is found particularly in patients who smoke or have 

chronic obstructive pulmonary disease (COPD), Moraxella catarrhalis and Staphylococcus aureus are 

often found in pneumonia following influenza infection, and in the form of methicillin-resistant 
Staphylococcus aureus (MRSA) [6]. In addition, atypical pneumonia could be produced by zoo-

notic pathogens, such as Chlamydia psittaci, Francisella tularensis, Coxiella burnetii (also known as 
Q fever) and by non-zoonotic pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae, and 

Legionella pneumophila. Furthermore, patients with these atypical infections have a more frequent 
presentation of a mild or ambulatory CAP, and also present extrapulmonary manifestations not 
found in CAP caused by typical pathogens [26]. S. pneumoniae colonize the human nasopharynx 

and can be transmitted from animals in captivity to humans [27]. Differences in strains of S. pneu-

moniae are responsible for differences in virulence and the presence of antigens [27].

Community-acquired pneumonia can also be caused by a variety of viral infections. The most 
frequent viruses associated with CAP are influenza A and B, and parainfluenza. Less frequently, 
respiratory syncytial virus (RSV), severe acute respiratory syndrome virus, varicella, hantavirus, 
and adenovirus, are also responsible for CAP. Furthermore, most of these viral infections pres-

ent in combination with multiple bacterial pathogens including S. pneumoniae and C. pneumoniae. 

However, patients with congestive heart failure (CHF) are at increased risk of acquiring CAP 
caused by pure viral infections [6, 25]. Gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella 

pneumoniae, Escherichia coli, Enterobacter spp., and Serratia spp.) are common in patients with CAP 
who have had recent contact with health care environments, such as previous hospitalization, 

probable aspiration, antimicrobial treatment, and pulmonary comorbidities [28]. Table 2 sum-

marizes common associations of pathogens with clinical factors, history, and environmental 

 factors in patients with CAP [4–6, 25, 26].

Typical

Streptococcus pneumoniae, Haemophilus influenza, Moraxella catarrhalis, Staphylococcus aureus

Atypical

Zoonotic: Chlamydia psittaci, Francisella tularensis, Coxiella burnetii

Non-zoonotic: Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila

Gram-negative

Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp.

Viruses

Parainfluenza virus, Influenza virus A and B

Less frequently: Respiratory syncytial virus (RSV), severe acute respiratory syndrome virus, varicella, hantavirus, 
and adenovirus

Table 2. Common pathogens in community-acquired pneumonia.
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The main mechanism of infection in CAP is micro-aspiration from a previously colonized oro-

pharynx, but inhalation of suspended aerosolized microorganism is the route of infection for 

viruses and bacterial agents, such as L. pneumophila and Mycobacterium tuberculosis. However, 
other factors related to the host immune response, the virulence of the infecting organism, 

and the size of the inoculum also define the development of the disease [29]. Furthermore, the 

presence of medical comorbidities, such as chronic respiratory and cardiovascular diseases, 

cerebrovascular diseases, Parkinson’s disease, epilepsy, dementia, dysphagia, HIV infection, 
and chronic renal, or liver disease can also lead to a defective cough, abnormal mucociliary 

clearance, and impaired humoral and local immunity that can influence the pathogenesis 
of pneumonia [30–32]. In addition, lifestyle and social factors including smoking and alco-

hol consumption, contact with pets, households with more than 10 people, interventions of 
upper airways, and poor dental health have also been associated with an increased predis-

position for the development of CAP [10] (Table 3). Smoking affects the respiratory epithe-

lium and the clearance of bacteria from the respiratory tract, increasing the susceptibility to 

respiratory infections, even in passive smokers [33–35]. Alcoholism has also been linked to 

alterations in innate and adaptive immunity [36]. Moreover, nutritional deficiencies appear 
to affect mechanisms of innate immunity, and are associated with the increased risk of CAP 
development and mortality [37–39].

2.4. Gender differences in community-acquired pneumonia

Increasing evidence suggests that sex hormones play a role in the expression of genes 
involved in the regulation of the immune system, which in turn can impact the individ-

ual susceptibility to infectious agents, and incidence of autoimmune diseases [13, 14]. In 
this regard, patients suffering from systemic autoimmune diseases (including systemic 
lupus erythematosus, rheumatoid arthritis, systemic sclerosis, polymyositis/dermato-

myositis, Sjögren’s syndrome, and others) are at increased risk of developing pulmonary 
infection, aspiration pneumonia, and bronchiolitis obliterans organizing pneumonia [40]. 

Furthermore, studies have shown that androgens in males can affect the immune system 
leading to an increased susceptibility to infection and disease caused by parasites, fungi, 

bacteria, and viruses. On the contrary, estrogen leads to an increase of cell-mediated and 

humoral immune responses in females, making them more resistant to some infectious 

diseases [41]. However, the role of estrogen in modulating the immune response remains 
controversial [42, 43].

Remarkably, physiological changes in male and female sex hormone levels (estradiol, tes-

tosterone) play important roles in human lung development, and differences in suscepti-
bility to pulmonary infection are also present at an early age [44–47]. Gender disparities 
are also displayed in expression of surfactant production that appears earlier in female 

than male during lung development, and in the incidence of neonatal conditions of pre-

maturity, such as respiratory distress syndrome and bronchopulmonary dysplasia [48, 49]. 

The earlier presence of surfactant in female neonatal lungs helps open the small airways 

and may contribute to their higher airflow rate observed [50]. Evidence from human stud-

ies suggests that male infants are more susceptible to lung infection, with greater associ-

ated morbidity and mortality than female infants, but the reverse is applied in children 

and adolescents [47, 51, 52]. Regarding respiratory tract infections (RTIs), women are more 

Understanding the Intersection of Environmental Pollution, Pneumonia, and Inflammation: Does...
http://dx.doi.org/10.5772/intechopen.69627

7



commonly affected by upper RTIs, such as sinusitis, tonsillitis, and otitis externa. On the 
other hand, men are at higher risk of developing otitis media, croup, and lower RTIs, 
including CAP [11]. Furthermore, these infections are more severe and show poorer out-

comes and more complications in male than female individuals, leading to increased mor-

tality, especially in CAP [21]. To date, the specific contributions of sex hormones or other 
factors, such as exposure to air pollution, socioeconomic, racial, and/or behavioral fac-

tors, obesity, and other comorbidities have only been explored in small studies [24, 53–56]. 

Several other factors including anatomic differences of the respiratory tract, behavioral, 
socioeconomic, and lifestyle factors have also been related with differences in incidence 
and severity of respiratory infections between genders [11, 41]. Table 1 summarizes epide-

miological data on associations of sex and environmental exposures on various lung health 

outcomes including pneumonia in children and adults [10, 27, 57–72].

CAP pathogens Environmental associations/comorbidities

Streptococcus pneumoniae, Gram-negative bacilli, Anaerobes, 

Haemophilus influenzae, Staphylococcus aureus (including 
methicillin-resistant forms), Chlamydophila pneumoniae, 

Mycobacterium tuberculosis

Nursing home resident

Streptococcus pneumoniae (including drug-resistant S. 

pneumoniae), Anaerobes, Gram-negative bacilli
Alcoholism

Streptococcus pneumoniae, Haemophilus influenzae, 

Salmonella, Cytomegalovirus, Cryptococcus, Pneumocystis 

jirovecii, Anaerobes, Mycobacterium tuberculosis

HIV infection

Streptococcus pneumoniae, Haemophilus influenzae, 

Moraxella catarrhalis, Legionella

Chronic obstructive lung disease

Anaerobes, Gram-negative bacilli Aspiration, enteric chemical pneumonitis

Anaerobes Poor dental hygiene

Pseudomonas aeruginosa, Pseudomonas cepacia, 

Staphylococcus aureus

Structural disease of the lung: (bronchiectasis, cystic 
fibrosis)

Streptococcus pneumoniae, Staphylococcus aureus, 

Haemophilus influenzae
Recent influenza infection

Drug-resistant pneumococcus, Pseudomonas aeruginosa, 

Gram-negative bacilli
Recent antibiotic therapy

Chlamydophila psittaci, Cryptococcus neoformans, 

Histoplasma capsulatum

Exposure to birds

Coxiella burnetii (Q fever) Contact with farm animals or parturient cats
Exposure to rabbits

Coccidioides immitis Travel to southwest USA

Histoplasma capsulatum Exposure to bats

Parainfluenza virus, Influenza virus A and B, Respiratory 
syncytial virus (RSV)

Congestive heart failure, mixed infections

Table 3. Common pathogens in community-acquired pneumonia and environmental associations.

Contemporary Topics of Pneumonia8



3. Pneumonia in the laboratory: animal models and mechanisms of 

infection

3.1. Animal models of pneumonia

Wide-ranging research is required to understand the mechanisms underlying pulmonary dis-

eases, such as pneumonia. Studies of human populations, in vitro experiments, and explor-

atory infections of species are needed to advance in the development of new treatments for 

this condition. Animal models have been widely used in the field and have often provided 
insight into the physiological processes associated with the disease.

A variety of species have been used as animal models of pneumonia. Even though some spe-

cies, such as Danio rerio (zebrafish) and Caenorhabditis elegans (roundworm) do not use lungs 
to acquire oxygen, and do not have similar sexual characteristics when compared to humans, 
they can be useful models to provide valuable information about host-pathogen interactions 

in lung disease [73]. Researchers utilize zebrafish as an alternative vertebrate model to study 
the pathogen’s ability to infect the host [74]. Because zebrafish embryos and 3-week old larvae 
look transparent, it is feasible to follow the evolution of lung infection in real time [74–76]. In 
addition, zebrafish have a developed adaptive immune system and a high rate of conserved 
gene orthologs in humans [77, 78]. On the other hand, C. elegans is used as a non-vertebrate 

model for studying lung bacterial agents. Interestingly, the immune system of C. elegans and 

humans has similar signaling cascades in response to infection [79]. Despite anatomical differ-

ences, it is possible to recognize pathogen-specific virulence factors in epithelial surfaces of C. 

elegans, making this model ideal for the study of host defense mechanisms. Likewise, insects, 
such as Drosophila melanogaster (fruit fly) are valuable models of infection for the analysis 
of bacterial pathogenesis and genetic contributions. Insects have an advanced antimicrobial 
defense mechanism and a complex and conserved immune system [80]. In addition, a large 
number of genes that encode for proteins in the immune system are found on the X chro-

mosome, which promote a higher activation of toll and immune deficiency signaling in D. 

melanogaster females than males [81]. Together, all these species possess advantages, such as 

low cost of maintenance, short life span, small size, fast development, and rapid reproduction 

making them feasible models for the study of infectious diseases. However, most pneumonia 
studies performed in animals are conducted in mammals because of their anatomical, genetic, 

and morphological similarities with humans.

Larger mammalian species, such as rabbits, piglets, and primates are ideal for specialized 
experiments when physiological monitoring and therapies are evaluated [82]. Currently, pri-
mates are the only species able to assess primate-specific infectious agents, but due to ethical 
concerns, piglets are the most frequently used model to study ventilator-associated pneumonia 
(VAP). Even though large mammalian animals are phylogenetically close to the human species, 
the disadvantages associated with their use as models is that they are only useful for a limited 

number of studies, and they are expensive to house and feed, slow to breed, and genetically 

diverse. For this reason, infections in the lung have primarily been studied in small mamma-

lian species, predominantly rodents. Rodents are small, inexpensive, and highly reproductive. 
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Inbred strains are preferred to investigate genetically identical groups by facilitating the use of 
molecular approaches to understand the mechanisms of diseases. Since studies in mice have 
become popular in scientific research, the creation of new studies benefit from the extensive 
literature available regarding genetic engineering, immunological responses to pathogens and 

host defenses.

3.2. Strain differences and associated mechanisms

Knowledge of differences among strains of animals in disease models can provide ideal tools 
for the discovery of mechanisms of disease development [83]. A strain is defined as a group of 
genetically identical animals. Laboratory mice are often very diverse in behavior and physiol-
ogy due to a large variety of inbred, outbred, and transgenic strains produced. In laboratory 
mice, this is developed through inbreeding. Different mouse strains show different responses 
to lung infection and environmental exposures, and these can also be affected by sex and age 
[84]. The most common mice strains used for the study of human pneumonia are BALB/c, 
C57BL/6, DBA/2, 129/Sy, CBA/Ca, C3H, SJL, and A/J. In addition, a recently developed strain, 
collaborative cross (CC) is derived from an eight-way cross using several founder strains [85].

A study comparing susceptibility to lung infection in mice reported that, after inducing pneu-

mococcus infection in the respiratory track of various strains, BALB/c mice, which have the 
ability to produce monoclonal antibodies, show no bacteremia and no lethality. Contrarily, 
C57BL/6 and DBA/2 mice, which are widely used inbred strains with opposite genetic suscep-

tibility, showed 50% lethality and an intermediate response to bacteremia. Moreover, strains, 
such as CBA/Ca, C3H, and SJL which are highly susceptible to infection, developed acute bac-

teremia with 100% lethality [86]. In a similar experiment, following pulmonary Klebsiella sp. 

infection, C57BL/6 strain exhibited more susceptibility to bacterial dissemination and lethality 
than 129/Sy mice, a strain widely used in the production of targeted mutations [87]. When 
exposed to Yersinia pestis, BALB/c and C57BL/6 mice succumbed to disease, whereas C3H 
mice were significantly more resistant with 80% survival [88]. Other studies of Pneumocystis 

carinii-induced pneumonia revealed severe effects in C3H mice; moderate effects in BALB/c, 
C57BL/6, B1O.A(2R), AKR/J, and Swiss Webster mice; and mild effects in DBA/2 and DBA/IJ 
mice [89]. Furthermore, most strains were unable to get infected by L. pneumophila. Finally, it 

was discovered that A/J mice are susceptible to L. pneumophila-induced lung infection because 

of the lack of cells specific to the adaptive immune system in these mice [90, 91].

In all these species, innate immune mechanisms defend the airways from a wide array of 
infections that enter the lungs and cause pneumonia. Inbred laboratory mouse strains highly 
differ in their immune response patterns as a result of mutations and polymorphisms. As 
an overall rule, toll-like receptor 4 (TLR4) mutant mice, such as C3H/HeJ are more sus-

ceptible to Gram-negative infections (e.g. K. pneumoniae) than other strains [92]. Moreover, 
some strains including A/J, DBA/2, DBA/1, FVB/NJ, and SWR are more prevalent to develop 
pneumonia after infection with microorganisms, such as Bacillus anthracis, Aspergillus fumig-

atus, and Candida albicans. The latter is due to a mutation in the complement component 5 
(C5), which plays a role in the pathogenesis of autoimmune diseases [93, 94]. However, 
AKR/J mice, which also carry a C5 mutation, are less susceptible to C. albicans infection due 
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to the C. albicans resistance loci that modifies host responses in these mice. In addition, stud-

ies of the Klra natural killer (NK) receptors have demonstrated that Klra15 is expressed in 

129/J mice, and Klra12 is expressed in CBA/J and C3H/He mice. None of these, however, are 
expressed in C57BL/6 mice [95].

Following infection, both human and mouse lungs produce immune mediators, such as 

cytokines, chemokines, and other components of the immune system. A regulator of IL-1β 
that is also highly expressed in mouse and human lungs after infection is prostaglandin E 

(PGE
2
), and its precursor enzyme cyclooxygenase-2 (COX2) [52]. Studies using depletion of 

alveolar macrophages have demonstrated that these contribute largely to the stimulation 

of pro-inflammatory cytokines, such as IL-6 and TNFα [48]. Moreover, interleukin-1β (IL-
1β) is induced only by strains containing the cholesterol-dependent cytolysin, pneumolysin 
(PLY), a major virulence factor of pneumococci infection [51]. In addition, the levels of toll-
like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) increase after S. pneumoniae infection 

in the Crl:CD1 mouse strain [96]. Both BALB/c mice and human lungs liberate hydrogen 
peroxide leading to DNA damage and apoptosis in lung cells [50, 97].

Viruses can also lead to pneumonia. Influenza A and B viruses are the most common causes 
of pneumonia in adults, but other viruses can contribute to the disease development. The sus-

ceptibility of mice models to influenza viruses depends on the strain of virus used. The most 
commonly used strains in research are A/Puerto Rico/8/1934 (H1N1, PR8) or A/WSN/1933 
(H1N1, HSN). Researchers also use several pandemic viruses, such as the 1918 H1N1 pan-

demic strain, highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype, certain 
H7 subtype viruses, a subset of low pathogenic avian influenza viruses, and the 2009 H1N1 
pandemic strains. After viral infection in mice, several immunomodulatory mediators are 

released including IL-1β, IL-6, IL-8, MCP-1, MIP-1α/β, interferon-gamma inducible protein 
(IP-10) and interferon-beta (IFN-β) in a somewhat strain-specific manner [98–100].

Animal research in viral pneumonia employs either BALB/c or C57BL/6 mice [68]. The major-

ity of laboratory mice are vulnerable to disease and death after infection, whereas, wild mice 

are resistant to exposure. This is due to the lack of the antiviral factor Mx1 protein in inbred 
strains [72]. On the other hand, it is possible for researchers to adapt strains to mouse models. 

DBA/2J and A/J mice are more susceptible to diseases, even with viral isolates that were not 
adapted to mice, than the more frequently used BALB/C and C57BL/6 strains. Even though 
mouse-adapted strains are important to model seasonal H1N1 and H3N2 virus infections, 
certain influenza viruses cause disease in mice without prior adaptation [101]. Therefore, 

the interpretation of research outcomes in a particular strain may not be applicable in other 

strains and molecular pathways in pneumonic mouse lungs may differ.

Typically, Th1 cells are important in the clearance of intracellular pathogens, whereas Th2 

cells are associated with responses to parasites. C57BL/6 mice display a typical Th1-type bias 
to pathogens, whereas other strains, such as BALB/c, A/J, and DBA/2 mice, tend toward a 
Th2 response [102]. These variations may also be reflected in the M1 and M2 macrophage 
responses to antigen stimulation. In addition, the region D7Mit341 to D7Mit247 on mouse 

chromosome 7 has been reported to be a survival trait against illness associated with S. pneu-

moniae. Susceptibility to experimental pneumococcal infection is strain dependent. In this 
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regard, strains from least to most sensitive include BALB/c, DBA/2, C57BL/6, NIH, AKR, 
FVB/N, CSH/He, SJL, and CBA/Ca [103]. The majority of inbred mouse strains are resistant 
to infection with L. pneumophila, however, A/J mice carry the Lgn1-s allele, making them sus-

ceptible to infection [104].

Currently, researchers are taking advantage of the phenotypic and genetic variations avail-
able in CC mice. The CC combines the genomes of eight genetically diverse founder strains, 
such as A/J, C57BL/6 J, 129S1/SvImJ, NOD/LtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/
EiJ [85]. This genetic combination is a significant element for the study on human-host sus-

ceptibility to major diseases, including infections, such as pneumonia [105]. In a recent study, 
scientists used the CC mouse model to determine whether the host genetic background could 
impact the risk of morbidity and mortality to pneumonia caused by infection with P. aeru-

ginosa. In this study, the CC strain reproduced the responses of disease severity commonly 
observed in humans during infection, suggesting that variations in morbidity and mortality 

are highly affected by host genetic factors [105]. Whereas no significant gender differences on 
disease phenotypes were observed, it is important to note the sample size was small. Similar 
variations in morbidity and mortality were found in another study where scientists used CC 
animals to perform a quantitative trait locus mapping of host susceptibility to Klebsiella sp. 

infection in a study where females were found to be less susceptible to infection than males 

[106]. In summary, animal models with high genetic diversity, and large size and number 
of independent recombination are emerging as a powerful tool for genomic studies, helping 

scientists better understand and develop more effective therapies for pneumonia [107].

3.3. Sex differences in pneumonia models

It has been known for several years that sex is a contributing factor in the prevalence and 
development of a number of pulmonary diseases, such as pneumonia [11, 108]. Animal studies 

also suggest that there is a sexual dimorphism after puberty in innate and adaptive immune 

response genes in C57BL/6 mice, with innate immune response genes being highly upregu-

lated in postpubertal male mice but not in female mice. In contrast, postpubertal female mice 
express high levels of adaptive immune response genes, and expression of these genes occurs 

at lower levels in postpubertal male mice [60].

Several studies in animals have reported that increase in circulating levels of estrogens may 
lead to reduced innate immunity, as measured by natural killer cell and macrophage activ-

ity, and a decrease of cytokine release [109–111]. Animal models of infection are the sim-

plest tool available to study sex differences due to high availability of castrated animals and 
hormonal replacement therapies. Multiple studies have demonstrated that susceptibility to 
invasive viral, bacterial, fungal, and parasitic diseases is higher in males than in females in 

all age groups [57, 61, 112, 113]. The concept that males are more susceptible to lung infection 

is further sustained by data from mouse models of bacterial infection, such as Pneumococcal 

pneumonia and Mycobacterium marinum, where female mice display longer survival than male 

mice when exposed to severe sepsis [62, 114]. Infection of C57BL/6 mice with K. pneumoniae 

demonstrated a severe effect in male mice, but not in female mice [19]. In contrast, after infec-

tion with P. aeruginosa, C57BL/6 female mice showed greater weight loss, bacterial load, and 
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higher levels of inflammatory molecules than male mice. In this context, IL-10-deficient male 
mice exhibited elevated levels of bacteria when compared to C57BL/6 male mice. These results 
confirm that both C57BL/6 and IL-10-deficient male mice are more resistant to P. aeruginosa 

infection than female mice [115]. Moreover, external administration of estrogen to adult male 
mice infected with P. aeruginosa resulted in an extreme progression of inflammation and fluid 
infiltration in lung tissue [116].

3.4. Sex-specific mechanisms of infection and immunity

Currently, there is limited understanding of the molecular processes that lead to either 
immune-suppression or stimulation during pneumonia pathogenesis in males and females. 

In general, females display strong humoral immune responses after infection or vaccination 
when compared to males [114]. This is partially due to high levels of CD4+ T cells and varia-

tions in regulatory T cells (Treg) that regulate immune responses during the menstrual cycle 
in women [117]. It is known that estrogen influences transcription of specific genes that alter 
host immunity and promotes the proliferation of Treg during the follicular phase of the ovar-

ian cycle [89, 118]. Because estrogen regulates CD4+ T cell subsets, there is a direct effect on 
Th1/Th2 equilibrium known to be crucial against bacterial and viral infections. On the other 
hand, studies indicate that negative outcomes from infectious pulmonary diseases in males 

is associated with testosterone-induced immunosuppression causing a decrease in T and B 

cell proliferation, and immunoglobulin and cytokine production after puberty [14]. These 

alterations in the adaptive immune system could help explain why men are more susceptible 

than women to some pulmonary diseases caused by infectious agents. However, treatments 
for pneumonia are standardized for both men and women indicating a general lack of under-

standing of sex-based differences.

4. Sex hormones and lung immunity

4.1. Sex hormones and mechanisms of action

Sex and gender differences in clinical disorders are mostly driven by genetics and sex hor-

mones. In order to understand hormonal effects not only in lung diseases, but also in other 
health conditions, it is essential to recognize their mechanisms of action, signaling pathways, 

and active metabolites. The major sex steroid hormones, such as estrogen, progesterone, and 
testosterone are derived from a common lipid precursor, cholesterol, by a complex series 

of reactions catalyzed by multiple enzymes [119]. In brief, cholesterol is converted to preg-

nenolone by the cytochrome P450 enzyme. Pregnenolone, which is a precursor and metabolic 
intermediate in the biosynthesis of the steroid hormones, can be transformed either to pro-

gesterone by the action of 3β-hydroxysteroid dehydrogenase (3β-HSD), or alternatively be 
converted to dehydroepiandrosterone (DHEA) via cytochrome P450c17 action. DHEA can 
turn into androstenedione via 3β-HSD and consequently testosterone or estrone via 17β-HSD 
and aromatase, respectively. Estrone may be further converted to estradiol via 17β-HSD. 
Testosterone can be also transformed into estradiol via aromatase.
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Sex steroids are primarily produced by the gonads (ovaries and testes). Significant evidence 
suggest that production of sex steroids is also found in peripheral tissues of non-reproduc-

tive organs, such as the adrenal gland, heart, breast, and lung implying a dependency 

on the enzymes present in the organs [120, 121]. It is thought that the source of hormone 
production can affect the metabolism, circulation, regulation, and concentration of local 
steroid versus that of circulation, which can play a role in the paradoxical effects observed 
for some sex hormones [43, 122, 123]. One example is the “estrogen paradox”, observed 

in women with pulmonary hypertension. A large number of animal studies have found 

estrogen to be protective in the coronary circulation with better outcomes in female mice, 
and exasperation after ovariectomy. Contrarily, there is a higher prevalence of pulmo-

nary hypertension in women. While some studies in humans have suggested that estrogen 
may increase the risk of portopulmonary hypertension, others have shown that estrogen 

enhances pulmonary vascular remodeling [124].

Circulating levels of testosterone range from 2 to 15 ng/ml or 6 to 50 nM in males, and less 
than 1.5 ng/ml or 5 nM in females throughout life. Even though men produce both estrogen 
and progesterone, the levels of these hormones are significantly higher in women, fluctuating 
from 20 pg/ml estrogen and 0.3 ng/ml progesterone in the follicular phase in non-pregnant 
and postmenopausal women, to 40 ng/ml estradiol and 300 ng/ml progesterone in pregnant 
women [43]. The significance of the oscillations of hormonal levels consists in their contribu-

tion to the local level of any sex steroids. For example, the estrogen produced in tissues may 

become more prominent in postmenopausal women, while the effect of progesterone may 
decline. At present, there is not much information available on this issue relevant to the lung.

4.2. Effect of sex hormones in immune responses and lung development

Currently, there is an increasing evidence for sex differences in incidence, morbidity, and 
mortality of lung diseases. Whether sex steroids play a role in modulating these differences is 
currently under investigation.

Estradiol levels in the fetus emerge in week 20 during the canalicular phase of lung devel-
opment, and rise throughout birth [125]. Differences in estrogen levels have been observed 
in lung maturation, preservation, and regeneration, alveoli development and surfactant syn-

thesis suggesting an active role of estrogen in sexual dimorphism [126–131]. Moreover, it is 
known that estrogen plays a complicated immunomodulatory role in humans and in animal 

models, suppressing inflammation in some states while enhancing it in others [116]. In ani-
mal models, estrogen blocks both B and T cell development, increases thymic atrophy, and 

decreases all developing T cell populations, while it enhances B cell survival in response to 

antigen [132–134]. In humans, hormone replacement therapy reduced the amount of T cells, 
while B cells were unaltered or upregulated in postmenopausal women, increasing the risk 

of developing B cell-dependent autoimmune diseases [123, 135]. Other studies propose that 

estrogen enriches the accumulation of Th1 CD4+ T cells in response to antigen in female 
mice [136]. It was also stated that estrogen inhibits the induction of Th1 pro-inflammatory 
cytokines (IL-12, IFNγ, and TNFα), while it enhances Th2 anti-inflammatory cytokines (IL-4, 
IL-10, and TGFβ) in female mice [137]. However, little is known about how puberty affects 
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lung diseases later in life and how the changes in estrogen levels contribute to the patho-

physiology of pulmonary diseases. This is important because estrogen can cause effects on the 
immune system by binding to estrogen receptors (ER) expressed by immune cells, such as B 
cells, T cells, and macrophages [138]. Variations in the expression of ER in the bronchial and 
alveolar epithelium suggest a role in estrogen signaling, which can contribute to the gender 

dimorphism seen in males and females [130, 131, 139, 140]. In addition, estrogen has the abil-
ity to indirectly stimulate airway and parenchymal responses by acting on airway and alveo-

lar epithelial cells, which are structural cells [141]. In the case of infection with P. aeruginosa, 

researchers found that female mice were more susceptible than males [115]. Furthermore, in 

a study where chronic infection of cystic fibrosis (CF) airway by P. aeruginosa was studied, 

researchers found that estrogen increased the severity of pneumonia in adult CF male mice, 
and proposed two potential mechanisms: enrichment of Th17-regulated inflammation and 
suppression of innate antibacterial defenses [116]. On the contrary, fetal levels of testosterone 

are found on week 9 of gestation during the pseudoglandular phase [125]. In this context, 
elevated levels of androgens, which are any hormones that primarily influence the growth 
and development of the male reproductive system, are found associated with slow fetal lung 

development [142–144]. In this context, studies have shown that anti-androgen flutamide can 
produce high levels of surfactant phospholipid in the male fetal lung, however, androgen 

dihydrotestosterone (DHT) blocks the synthesis of surfactant phospholipid in the female fetal 
lung [1, 145]. The development of male fetal lungs depends on the expression of the androgen 

receptors (AR) [46]. Whether testosterone, and/or its receptors, play a role in modulating sex 
differences in lung diseases, such as pneumonia remains unknown.

5. Pneumonia and air pollution: epidemiological and experimental data

5.1. Outdoor air pollution and lung health

In the last several decades, an accumulative body of epidemiological, toxicological, and 
experimental evidence, including various exposure agents, times, doses, and combinations of 

pollutants, have linked exposure of air pollution to negative cardiovascular and pulmonary 

health effects [146], and infection rates (Table 1). These include increased inflammation, exac-

erbation of pre-existing inflammatory lung disease (e.g. asthma, wheezing, and COPD) and 
allergies, altered lung function and immunity, and increased susceptibility to infection and 

pneumonia. Extensive epidemiological evidence demonstrated inter-individual differences in 
the susceptibility to environmental exposures, with age, gender, and genetic polymorphisms 

significantly contributing to its negative health effects [12]. A summary of the most frequently 
found pollutants and their health effects is summarized in Table 4.

Air pollutants are generally present in the environment as a mixture of several gases and 

particles that are products of combustion of fossil fuels, diesel traffic, wood smoke, and other 
industrial processes. Some sources of domestic energy used around the world, especially in 
developing countries, are the result of combustion of fuels, such as wood, dung, and char-

coal but also result in the generation of large amounts of indoor pollutants including small 
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particulates (PM10), nitrogen dioxide (NO
2
), carbon monoxide (CO), sulfur dioxide (SO

2
), and 

various hydrocarbons [147]. In this context, individuals who spent time at home, such as 
mothers and their children are at higher risk of developing respiratory infections [148–150]. 

In addition, particulate air pollution released by burning plantations has also been associated 
with pneumonia. For example, in Brazil (one of the main sugar cane producers), the incidence 
of pneumonia-related emergency department visits has found significant increase during 
sugar cane burning periods [151]. Air pollution in countries with high industry factory activ-

ity, such as Taiwan has also been associated with respiratory diseases, with some differences 
in age and gender of the patients affected. In these studies, NO and NO

2
 were two of the main 

air pollutants related to respiratory diseases, followed by PM10, PM
2.5,

 O
3,
 CO, and SO

2
. Young 

patients (0–15 years of age) were the most affected by air pollution and meteorology factors, 
followed by elder patients (age ≥66 years), and aged 16–65. A closer look at gender differences 
revealed that women were more affected than men in the young age group and in the eldest 
group, but men were more sensitive between ages 16 and 65 groups [152–155]. Other studies 

have also reported both women and elderly people to be more susceptible to die from air pol-

lution than other population groups [153, 156, 157].

One of the reasons that could explain the increased mortality in women is their high vul-

nerability to autoimmune disorders, some of which are associated with air pollution [158]. 

Moreover, anatomic and physiologic differences between men and women also seem to play 
a role in this disparity. In general, men have higher lean body mass and water content than 
women, which results in an increased distribution volume of soluble substances. On the 

contrary, women have more relative fat mass than men, which gives them a larger distri-

bution volume for fat-soluble substances, and most of the chemical particles in the envi-

ronment are highly lipophilic. Furthermore, important sex differences in the metabolism 
of such substances also exist. For example, most of the CYP enzymes are regulated by sex 

Pollutant Health effects

Ozone Decreased lung function
Increased airway reactivity
Increased lung inflammation
Increased hospital visits for lung disease
Increased mortality

Particulate matter Decreased lung function
Increased respiratory symptoms
Increased mortality

Nitrogen dioxide Increased airway reactivity
Reduced lung function

Bronchitis (children)

Carbon monoxide

Sulfur dioxide Increased respiratory mortality
Increased hospital visits for lung disease
Aggravation of lung disease

Increased lung inflammation

Table 4. Common air pollutants and health effects.
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steroids. As a result, some substances are metabolized faster in women liver cells than men, 

and sometimes the end products are more toxic than the original substance, causing a higher 

toxicity for women due to increased internal exposure [158].

Accumulating epidemiological, clinical, and experimental evidence suggests that exposure 

to air pollutants can have serious effects in metabolic and endocrine function, particularly in 
glucose metabolism [159, 160]. Air pollution, especially traffic-related exposures, NO

2
, tobacco 

smoke, and particulate matter, have been associated with obesity, type 2 diabetes, and meta-

bolic syndrome with women showing higher susceptibility than men, and children being espe-

cially susceptible [161–164]. Studies conducted in several countries, such as Europe, America, 
and Asia reported strong associations among exposure to air pollutants, insulin resistance, 

obesity, and diabetes with women overrepresented in the affected groups [165–170]. These 

findings have also been recapitulated in animal models, where exposure to particulate matter 
resulted in increased insulin resistance followed by a high-fat diet [171–173], and these effects 
were associated with inflammation triggered by mechanisms involving pulmonary oxidative 
stress [174].

5.2. Metabolic effects of air pollution and their relationship with pneumonia

The relationship between diabetes, obesity, and susceptibility to lung infection and pneu-

monia has also been evaluated in several studies [175]. In these, an increased incidence and 
mortality from pneumococcal pneumonia, influenza, and tuberculosis was strongly associ-
ated with diabetes and obesity [176]. In this context, it is important to mention that obesity 
affects more women than men globally, and that a high body mass index has been directly 
associated with CAP risk in women [177, 178]. Animal models of bacterial infection using the 

leptin-deficient obese mouse have also shown higher susceptibility to pneumonia [179, 180]. 

Finally, an “obesity paradox” in CAP has also been reported extensively, in which obesity is 
associated with a higher incidence of bacterial pneumonia, but increased body mass index 

was associated with increased survival in patients hospitalized with CAP [181].

5.3. Genetic contributions to pneumonia risk and severity

We mentioned earlier studies reporting gender, racial, and population variability in both 
pneumonia incidence and outcome. Therefore, it is highly likely that these differences are the 
result of a complex interplay between both host and pathogen genetic backgrounds together 

with nongenetic factors, such as those discussed above [182]. With the recent development 
of fast and affordable high-throughput sequencing techniques, more studies have begun to 
explore the contributions of host genetics in the context of pneumonia [183–186]. The major-

ity of these have focused on innate immune molecules, such as toll-like receptors and pro-

inflammatory cytokines. Several associations of pneumonia susceptibility and severity with 
single nucleotide polymorphisms in the interleukin-6, interleukin-10, toll-like receptors 
TLR2, TLR4, and TLR9, C-reactive protein (CRP), and nitric oxide synthase 3 (NOS3) genes 
were reported [187–191]. We have summarized these in Table 5. Interestingly, most polymor-

phisms found in the cytokine genes are located in regulatory and promoter regions, where 

they may be affecting binding of transcription factors, such as GATA1-3, SOX, and heat shock 
proteins [183].
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5.4. Pollution models of infection and pneumonia

Air pollution has been shown to exacerbate respiratory diseases, such as pneumonia. Air pol-

lutants that reach the respiratory tract are currently responsible for its genesis, especially par-

ticulate matter having an aerodynamic diameter equal to or less than 10 μm, sulfur dioxide 
(SO

2
), ground level ozone (O

3
), nitrogen dioxide (NO

2
), and carbon monoxide (CO) [192, 193]. 

However, these pollutants may also increase the risk for pneumonia by altering the function 
of alveolar macrophages, epithelial cells, mucociliary clearance mechanisms, particle trans-

port, and local immunity in the lungs [194]. Because of methodological difficulties and ethical 
issues, there are a limited number of studies on the effects of controlled pollutant exposure 
and infection in humans. It has now been almost 50 years since the “infectivity model” has 
been created. This model is based on the study of the effects of pollutants on pulmonary activ-

ity after pollutant exposure with disease and mortality as end-points in animals, particularly 

rodents [147].

The infectivity model is used by researchers to determine the amount and concentration of 

pollutants at which the immune system is compromised and disease is developed. This is 

accomplished by challenging animals with virulent agents either before or after exposure 

to different concentrations of the pollutant. Exposure to NO
2
 before and after infectious 

challenge in mice show significantly higher death rates [195]. Moreover, mice infected with 
S. aureus and then challenged with NO

2
 displayed a reduction in lung bactericidal capac-

ity [196]. Exposure to varying concentrations of NO
2
 affects respiratory tract susceptibil-

ity, macrophage viability, systemic cell-mediated and humoral responses to viral infection 

in CD-1 mice inoculated intratracheally with murine cytomegalovirus [197]. Moreover, the 
number of viral particles capable of generating infection is lower in animals challenged with 

NO
2
 than in animals exposed to filtered air. In addition, the risk of reinfection is higher in 

mice after NO
2
 exposure indicating damage in the development of virus-specific immunity 

following a primary infection [198].

Gene SNPs

C-reactive protein rs1205

Interleukin-1 beta rs16944

Interleukin-6 rs1800797, rs1800795

Interleukin-8 rs4073

Interleukin-10 rs1800896, rs1800871, rs1800872, rs5743629

Nitric oxide synthase 3 rs1799983

Toll-like receptor 2 rs5743708

Toll-like receptor 4 rs4986790, rs4986791

Toll-like receptor 9 rs5743836

Table 5. Single nucleotide polymorphisms associated with pneumonia.
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There are several pollution models of pneumonia infection combined with particulate matter 
[199], SO

2
 [200], CO [201], and other common air pollutants. These models generally involve 

a higher concentration of pollutants than would be normally found in the atmosphere. This 

is often necessary because a higher dose of most pollutants is required for rodents versus 
humans to reach comparable concentrations in the distal lung and generating comparable 

effects on lung function and immunity.

Ozone exposure can impair breathing, induce coughing, reduce lung function, and trigger 

lung diseases, such as pneumonia. The effect of ozone exposure has been associated with 
damage of the entire respiratory epithelia and lung immunity [202]. A study showed that 

mice infected with K. pneumoniae following exposure to 2 ppm of O
3
 decreased the ability of 

mice to clear bacteria from the lungs, and that ozone-exposed females were more affected 
and showed higher mortality rates than males [17, 18]. Contrarily, in the absence of ozone-
induced oxidative stress, males were more prompted to have a higher level of propagation of 

infection compared to females. These mechanisms appear to be mediated by surfactant biol-

ogy and surfactant protein expression [19].

6. Conclusion

Regulation of the lung inflammatory response is critical to the successful outcome of pneu-

monia. Exposure to air pollutants has been linked to negative lung health outcomes, and sex 

hormones have been shown to mediate the lung immune response, especially during lung 

infection. The negative impact of air pollution on lung health, both in the short and long term, 

is now well accepted, and air quality indexes or scales are available to alert individuals when 
the air quality is at harmful levels. In this chapter, we have discussed experimental and epide-

miological evidence on pneumonia infection incidence in different populations, influences of 
air pollution and environmental exposures, and sex-specific mechanisms involving male and 
female hormones in the context of lung immunity. This information could help researchers 

better explain the differences observed in pneumonia susceptibility and lung health outcomes 
in men versus women. Understanding the biological basis of these differences is critical for 
the development of more effective prevention and management strategies for pneumonia in 
men and women, and could help in the development of better treatment options for these 
patients.
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