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Abstract

It is now known that 5-HT regulates several neurobehavioral systems such as mood, 
appetite, sleep, learning, and memory. It also plays critical roles in the physiological func-
tions of peripheral organs involved in stress, growth, and reproduction in the animal 
kingdom. 5-HT content has seen to be higher in the nervous system of bivalves than those 
of other examined invertebrates and vertebrates. Thus, bivalves have been considered 
as an excellent model to investigate 5-HT functions in neurological and peripheral sys-
tems. The present study reviews knowledge on 5-HT signaling mediated through 5-HT 
receptor and its physiological contribution to regulate reproduction in bivalves. Two 
G-protein-coupled 5-HT

1
-like receptors have been cloned in bivalve species. However, 

binding affinities of the 5-HT agonists and antagonists to the isolated plasma mem-
brane proteins and their effects on spawning in bivalves suggest the presence of a single 
or mixed 5-HT

1
-, 5-HT

2
-, and 5-HT

3
-like receptors. It has suggested that the 5-HT-like 

receptors in bivalves are distinct from those of mammalian 5-HT receptors due to phar-
macological properties. The present review pays a special attention to future research 
perspectives to better understand 5-HT regulation of reproduction in bivalves, which can 
provide us with satisfactory knowledge to elucidate reproductive disorders associated 
with dysfunctions of the neurotransmitter system.

Keywords: gonad, nervous system, oocyte, serotonin biosynthesis, serotonin 
metabolism and reuptake, serotonin receptor, sperm
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1. Introduction

5-hydroxytryptamine called serotonin (5-HT) is a transmitter substance of the nervous sys-

tem in animal kingdom. 5-HT has also been identified in bivalves from the period of its first 
discovery and earlier studies on these animals have led to convince the neurobiologist that it 

acts as a neurotransmitter.

A brief bibliography of discovery for 5-HT receptor and its physiological functions is pro-

vided in Table 1. Gaddum and Picarelli [6] were the first who demonstrated that 5-HT acts 
through a receptor-mediated pathway. Further studies have then directed toward pharma-

cological characterization of the 5-HT receptors in the nervous system and peripheral organs 

using radiolabelled ligands [7, 8] until the first molecular identity of the 5-HT receptor [9]. 

In 1960–1980s, 5-HT neurons have localized in the nervous system and peripheral organs 

(including gonad) of bivalves. Then, Sugamori et al. [10] and Tanabe et al. [11] cloned the 

5-HT receptors in the nervous system and reproductive system of pond snail (Lymnaea stag-

nalis) and Yesso scallop (Patinopecten yessoensis), respectively. Taken together, bivalves and 

mammals become model organisms to investigate receptor-mediated mechanism of 5-HT 

physiological function because of small size, a simple nervous system and a high content of 

5-HT in the nervous system.

Year Scientists Contribution to discovery of identification, localization, 
and characterization of 5-HT

References

1957 Gaddum and Picarelli Suggestion of two types of 5-HT receptors (5-HT
M

 and 

5-HT
D
) in the guinea-pig ileum

[6]

1978 Fillion et al. Identification of 5-HT receptors in the bovine brain using 
radiolabelled ligands: [3H]-5-hydroxytryptamine and 

[3H]-lysergic acid diethylamide

[7]

1979 Peroutka and Snyder Evidence for the presence of two distinct 5-HT (5-HT
1
 

and 5-HT
2
) in the rat brain derived from their selective 

recognition by radiolabelled ligands

[8]

1982 Matsutani and Nomura Serotonin stimulates spawning in Yesso scallop (Bivalvia, 

Mollusca)

[18]

1984 Hirai and Koide 5-HT stimulates oocyte maturation in surf clam [27]

1985 Osanai 5-HT regulation of the oocyte signaling required to 

undergo germinal vesicle breakdown

[28]

1988 Fargin et al. Molecular identity of 5-HT
1A

 receptor [9]

1991 Bandivdekar and Koide Pharmacological identification of serotonin receptor in 
surf clam

[29]

1993 Sugamori and Van Tol Molecular identity of 5-HT receptor in pond snail 

(Gastropoda, Mollusca)

[10]

2010 Tanabe and Osada Molecular identity of 5-HT receptor in Yesso scallop [11]

Species: pond snail, Lymnaea stagnalis; surf clam, Spisula solidissima; Yesso scallop, Patinopecten yessoensis.

Table 1. Bibliography of 5-hydroxytryptamine (serotonin, 5-HT) receptor: from discovery to physiological characterization.
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Serotonin regulates various neurobehavioral systems (such as mood, appetite, sleep, learning, 

and memory). However, studies have revealed that it also plays critical roles in physiological 

functions of peripheral organs such as stress and growth [1–3]. One of the major system that 5-HT 

contributes to its regulation is reproduction. In both mammals and bivalves, it has observed that 

5-HT regulates reproductive endocrine system, oocyte maturation, and sperm motility [12–23].

Although 5-HT biosynthesis and its receptor structure have been reviewed in bivalves [24–

26], however, there is a gap of review on physiological signaling of 5-HT in these animals. The 

present study reviews the biology of 5-HT in bivalves, particularly, its contribution to repro-

duction. Particular attention has then paid to pharmacological characteristics of the 5-HT 
receptor and 5-HT-stimulated spawning through a receptor-mediated mechanism. This study 

provides future perspectives that await investigation to better understand 5-HT network and 
signaling in bivalve reproduction.

2. Molecular identity and pharmacological characteristics of the 5-HT 
receptors

Since the time Gaddum and Picarelli [6] suggested the presence of two kinds of tryptamine 

receptor, further studies have been conducted to identify and localize the 5-HT receptors 

to elucidate serotonergic signaling in biological systems. Fargin et al. [9] were the first who 
reported that the protein product of an orphan receptor (G21) encoding a G-protein-coupled 

receptor (GPCR) transiently expressed in monkey kidney cells possesses all the typical 

ligand-binding characteristics of the 5-HT
1A

 receptor. Molecular identity of 5-HT receptors 

has revealed that there are, so far, a total of 14 structurally and pharmacologically distinct 

mammalian 5-HT receptors which are classified into seven groups. Except of the 5-HT
3
 recep-

tor that is a ligand-gated ion channel [35, 36], the 5-HT
1
, 5-HT

2
, 5-HT

4
, 5-HT

5
, 5-HT

6
, and 5-HT

7
 

belong to GPCR superfamily [4, 5, 37–41]. In invertebrates, pharmacological properties of the 

5-HT receptors do not allow us to classify them in mammalian categories, although some 

signal transduction characteristics are similar [26].

2.1. Pharmacological characteristics of 5-HT receptors in bivalves

In bivalves, primary studies have used pharmacological 5-HT agonists and antagonists to 

investigate their binding affinities onto isolated membrane proteins of the oocytes and sperm 
using radiolabelled [3H]5-HT [29, 42–45]. The results showed that only 5-HT and its analogs 

are capable of inhibiting [3H]5-HT-specific binding to the isolated plasma membrane proteins 
of the oocytes in surf clam, whereas other monoamines (such as acetylcholine, haloperidol, 

carbachol, pyrilamine, and so on) are without effects [43, 44].

In surf clam, 1 μM ICS 205930, 5-HT, 5-CT, mianserin, methysergide, 8-OH-DPAT, 2-methyl-

5-HT, BMY 7378, α-methyl-5-HT, ketanserin, quipazine, and PBG inhibit [3H]5-HT binding 

to the isolated proteins of the oocyte plasma membrane by 49, 46, 40, 40, 37, 35, 33, 28, 26, 

25, 22, and 11%, respectively [29]. The authors suggested that 5-HT receptors in the oocyte of 
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surf clam possess sites that interact with the 5-HT
1
 and 5-HT

3
 receptor analogs, because of the 

binding affinity of the 5-HT
1
 receptor (5-CT, mianserin, methysergide, and 8-OH-DPAT) and 

the 5-HT
3
 receptor (ICS 205930 and 2-methyl-5-HT) analogs. However, current pharmaco-

logical characterization of 5-HT receptor analogs reveals that 5-CT is a non-selective agonist, 

and mianserin and methysergide are particularly selective antagonists of the 5-HT
2
 recep-

tor (Table 2). These may suggest that the 5-HT
2
 receptor also exist on the membrane of the 

oocytes in surf clam, in addition to the 5-HT
1
 and 5-HT

3
 receptors [29, 46].

Krantic et al. [43, 44] studied dose-dependent effects of the 5-HT analogs and observed that 
5-HT, 8-OH-DPAT, metoclopramide, MDL 72222, mianserin, ICS 205930, ritanserin, imipra-

mine, propranolol, and TFMPP inhibit specific [3H]5-HT binding to the isolated membrane 

Receptor Agonists Reference Antagonist Reference

5-HT
1

8-OH-DPAT (5-HT
1A

) [47] Propranolol (5-HT
1B

) [49, 50]

TFMPP (5-HT
1A, 1B, 1D

 ) [48] NAN-190 (5-HT
1A

)

BMY 7378 [61, 62]

5-HT
2

TFMPP (5-HT
2A, 2C

) [49] Ketanserin (5-HT
2A

) [50]

mCPP (5-HT
2B, 2C

) [50] Spiperone (5-HT
2A

) [50]

PBG [51] 1-NP (5-HT
2A, 2B, 2C

) [63, 64]

Cyproheptadine (5-HT
2A, 2B

)

Mianserin (5-HT
2A, 2B, 2C

) [50]

Ritanserin (5-HT
2A, 2B, 2C

) [65]

Methysergide (5-HT
2B, 2C

) [66]

5HT
3

1-m-c-b (mCPBG) [52] Metoclopramide [67, 68]

2-methyl-5-HT [53] ICS 205-930 (Tropisetron) [53, 69–71]

Quipazine [54] LY-278584 [72, 73]

MDL-72222 (Bemesetron) [69, 74]

Ondansetron

Non-selective α-Methyl-5-HT (5-HT
1, 2

) [55] Methiothepin (5-HT
1A, 1B, 1D, 5A

) [75]

5-CT (5-HT
1A, 1B, 1D, 5A, 7

) [56–60]

α-methyl-5-HT, α-methyl-5-hydroxytryptamine; 1-m-c-b, 1-methyl-chlorophenyl biguanide; 2-methyl-5-HT, 
2-methyl-5-hydroxytryptamine; 1-NP, 1-(1-naphthyl)piperazine; 5-CT, 5-carboxamidotryptamine; 8-OH-DPAT, 

7-(dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol; mCPP, meta-chlorophenylpiperazine; MDL-72222 (Bemesetron) 

PBG, 1-phenylbiguanide; and TFMPP, 3-trifluoromethylphenylpiperazine.
8-OH-DPAT also acts as a 5-HT

7
 receptor agonist [76] and possesses serotonin reuptake blocking property [77]. TFMPP 

binds to SERT and evokes 5-HT release [78]. mCPP acts as 5-HT reuptake inhibitor/releasing agent [79]. Unlike mCPP, 

TFMPP has insignificant affinity for the 5-HT
3
 receptor [80]. BMY-7378 is a weak partial 5-HTlA agonist compared 

to 8-OH-DPAT that is a full 5-HT1A agonist [81, 82] and is a selective antagonist of α
1D

-adrenoceptors [83]. PBG and 

mCPBG have dopamine releasing properties [84]. Methysergide also acts as a 5-HT
1A, 1B, 1D

 receptors’ partial agonist. 5-HT 

and methysergide appear not to compete for the same site, whereas ketanserin and methysergide do appear to compete 

for the same site [56, 66, 85]. Quipazine also acts via 5-HT
2
 receptor as an agonist [86, 87] or antagonist of 5-HT

3
 receptor 

[88, 89]. Metoclopramide acts as antagonist of dopamine D
2
 receptors [90] and as a 5-HT

4
 receptor agonist [91].

Table 2. Pharmacological agonists and antagonists of the 5-hydroxytryptamine (serotonin, 5-HT) receptors.
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proteins of the oocytes in surf clam by 100, 67, 63, 61, 57, 57, 55, 49, 47, and 12% with IC
50

 of 0.52, 

0.05, 0.06, 0.13, 0.45, 3.05, 0.42, 4.2, 1.32, and >100 μM, respectively. Hence, these results show-

ing affinities of the 5-HT analogs to the 5-HT
1
, 5-HT

2
, and 5-HT

3
 receptors in the oocyte of surf 

clam; however, the receptor possesses distinct 5-HT binding sites from 5-HT
1
, 5-HT

2
, 5-HT

3
, 

and 5-HT
4
 receptors in mammals and Drosophila. For instance, the 5-HT

1A
 receptor is more sen-

sitive to 8-OH-DPAT than 5-HT, insensitive to ritanserin, and relatively sensitive to TFMPP in 

mammals. 8-OH-DPAT is a weak agonist on the Drosophila 5-HT receptors. Ritanserin, but not 

TFMPP, inhibits [3H]5-HT binding to the isolated membrane protein of the oocyte in surf clam, 

although isolated 5-HT receptor is highly sensitive to 8-OH-DPAT more than that of 5-HT. 

The 5-HT receptor in the oocyte of surf clam does not possess pharmacological 5-HT
2
 recep-

tor characteristics in mammals, as it is not equally sensitive to TFMPP and 8-OH-DPAT. The 

pharmacological characteristics of the isolated 5-HT receptor also differ from the 5-HT
3
 recep-

tor. In mammals, the 5-HT
3
 receptor is at least 100-fold more sensitive to 8-OH-DPAT than to 

metoclopramide; however, 8-OH-DPAT and metoclopramide are equipotent in inhibition of 

[3H]5-HT binding to the 5-HT receptor in the surf clam. Based on these different responses of 
the isolated membrane protein of the surf clam oocytes to the 5-HT analogs, the authors sug-

gested the presence of a novel 5-HT receptor in the plasma membrane of the surf clam oocytes.

In Yesso scallop, Osada et al. [45] observed that [3H]5-HT binding to the oocyte plasma mem-

brane is inhibited to 93, 83, 70, 44, 41, and 36% in the presence of 100 μM metoclopramide, 

8-OH-DPAT, 5-HT, ritanserin, α-methyl-5-HT, and methiothepin, respectively. In the Pacific 
oyster, [3H]5-HT binding to the oocyte plasma membrane is inhibited to 96, 83, 58, 49, 21, and 

16% in the presence of 100 μM metoclopramide, 8-OH-DPAT, 5-HT, α-methyl-5-HT, ritanserin, 
and methiothepin respectively [45]. Ritanserin-, α-methyl-5-HT-, and methiothepin-inhibited 
[3H]5-HT binding to the 5-HT receptor isolated from the oocyte of Yesso scallop suggest that 

mixed 5-HT
1
 and 5-HT

2
 receptors function in this species. However, the authors suggested 

that a single 5-HT
1
 receptor functions in the Pacific oyster as methiothepin acts mainly as a 

5-HT
1
 antagonist (Table 2). In addition, this study shows that metoclopramide does not influ-

ence [3H]5-HT binding to 5-HT receptor isolated from the oocyte of Yesso scallop and the 

Pacific oyster and 8-OH-DPAT is also a weak agonist, suggesting that 5-HT signaling is not 
mediated by 5-HT

3
 receptor and is distinct from mammalian 5-HT

1A
 receptors in these species.

Pharmacological characteristics of the 5-HT receptor in sperm have only studied in surf clam 

[42]. The results have shown that 1 μM ICS 205930, 2-methyl-5-HT, 8-OH-DPAT, BMY 7378, 

5-HT, 5-CT, mianserin, methysergide, α-methyl-5-HT, PBG, and ketanserin inhibit 45, 43, 37, 
32, 31, 31, 30, 26, 13, 4, and 1% of [3H]5-HT binding to the sperm plasma membrane, respec-

tively. Considering current pharmacological characterization of 5-HT receptors, analogs of 

5-HT
3
, 5-HT

1
, and 5-HT

2
 receptors are more potent to compete with 5-HT to inhibit [3H]5-HT 

binding to the sperm plasma membrane.

2.2. Molecular identity and cellular localization of 5-HT receptors in bivalves

In mollusks, the 5-HT
Lym

 and 5-HT
2Lym

 are first identified in the central nervous system of the 
pond snail (L. stagnalis). They display some pharmacological characteristics of the 5-HT

1
 and 

5-HT
2
 receptors in mammals, and thus are currently considered as the 5-HT

1
-like receptor and 

the 5-HT
2
-like receptor, respectively [10, 92]. The Ap5-HT

B1
 and Ap5-HT

B2
 [93], 5-HT

1AP
[94], 
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and 5-HT
2AP

 [95] are identified in California sea slug (Aplysia californica). The Ap5-HT
B1

 and 

Ap5-HT
B2

 (79.5% homologous to each other) are expressed in the reproductive system and 

the nervous system, respectively; however, they are not classified into any 5-HT receptor 
subtypes in mammals due to differences in their amino acid sequences [93]. The 5-HT

1AP
 is 

distributed in most organs, including the nervous system, kidney, gills, and heart, and its 

amino acid sequence and pharmacological profiles suggest that it is a 5-HT
1
 receptor subfam-

ily [94]. The 5-HT
2AP

 shares 68 and 34% of its amino acid sequence identity with the 5-HT
Lym

 

and 5-HT
1
 receptor in mammals, its pharmacological characteristics is very similar to those of 

the 5-HT
Lym

 receptor, and it is only expressed in the nervous system [95].

In bivalves, the 5-HT receptors are cloned in the ovary of the Yesso Scallop [11], and Pearl 

oyster, Pinctada fucata [96] (Figure 1). Molecular identity of the 5-HT receptor is also predicted 

for the Pacific oyster (5-HT
cg

) [97]. In the Yesso scallop, an 1818 bp cDNA encodes a putative 

5-HT
py

 receptor that includes a 232-bp 5′-untranslated region (UTR), a 1362-bp open reading 
frame (ORF) encoding a putative protein of 454 amino acids, and a 224-bp 3′-UTR. In the Pearl 
oyster, a 2541 bp cDNA encodes a putative 5-HT

pf
 receptor that includes a 296-bp 5′-UTR, 

a 1416-bp ORF encoding a putative protein of 471 amino acids, and an 829-bp 3′-UTR. The 
5-HT

pf
 is calculated to have a molecular weight of 53.55 kDa. The hydrophobicity analysis of 

the deduced amino acid sequence revealed seven putative transmembrane domains, which 

are highly conserved between 5-HT
py

, 5-HT
pf

, and other 5-HT
1
 receptors coupled with G

i/o
. The 

5-HT
py

 contains two potential sites for N-linked glycosylation in the extracellular N-terminal 

region and the third intracellular domain. The 5-HT
pf

 receptor contains five potential sites 
for N-linked glycosylation in the extracellular N-terminal region. There are 12 and 8 sites for 

phosphorylation by protein kinase A or C in the Yesso scallop and Pearl oyster, respectively, 

among which 7 sites are located in the third cytoplasmic loop. A relatively long third cytoplas-

mic loop and a short fourth inner terminal domain (C-terminal tail) are present in the 5-HT
py

 

and 5-HT
pf

 sequence.

An amino acid sequence alignment of 5-HT receptor homologs from different species reveals 
that a relatively high level of amino acid sequence identity exists between 5-HT

py
 and 5-HT

pf
 

(52%) and between 5-HT
py

 and 5-HT
cg

 (48%). The amino acid sequence identity is between 

5-HT
pf

 and 5-HT
cg

 (71%). There are conserved amino acid regions when the 5-HT
py

 and 5-HT
pf

 

are aligned to 5-HT
1
 subtypes in human (Figure 1). The 5-HT

py
 amino acid sequence is 40, 

40, 37, 38, and 38% identical to the human 5-HT
1A

, 5-HT
1B

, 5-HT
1D

, 5-HT
1E

, and 5-HT
1F

 recep-

tor, respectively. The 5-HT
pf

 amino acid sequence is 42, 39, 39, 40, and 40% identical to the 

human 5-HT
1A

, 5-HT
1B

, 5-HT
1D

, 5-HT
1E

, and 5-HT
1F

 receptor, respectively. The 5-HT
cg

 was not 

considered in alignment analysis as it is a predicted sequence. The amino acid sequence iden-

tity is higher within the transmembrane domains, compared to those of the intracellular and 

extracellular region. However, lower amino acid sequence identity exists between the 5-HT 

receptors in bivalves with the other 5-HT receptors (5-HT
2
, 5-HT

5
, 5-HT

6
, and 5-HT

7
) in ver-

tebrates. The phylogenetic analysis of the 5-HT receptors in invertebrates suggests that the 

5-HT receptors of bivalves resemble the 5-HT receptors in the California sea slug (A. califor-

nica), pond snail (L. stagnalis), and air-breathing snail (Planorbella trivolvis), which are known 

to be as 5-HT
1
-like receptor (Figure 2). These known 5-HT receptors are differentiated into a 

major branch, compared to the other known invertebrate 5-HT receptors. Four 5-HT receptors 

Serotonin - A Chemical Messenger Between All Types of Living Cells12



Figure 1. A schematic representation of the G-protein-coupled 5-hydroxytryptamine (serotonin, 5-HT) receptor showing 

seven transmembrane domains (A). (B) Multiple alignment of deduced amino acid sequence of 5-HT receptors of the 

Yesso scallop (Patinopecten yessoensis, py5-HT) and pearl oyster (Pinctada fucata, pf5-HT) with the 5-HT
1A-F

 receptors 

in human. The marked amino acids indicate seven transmembrane regions. Sequences are aligned with MUSCLE 

configured for highest accuracy (www.phylogeny.fr).
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Figure 2. Phylogenetic analysis of the 5-hydroxytryptamine (serotonin, 5-HT) receptor known from invertebrates (A) 

and from invertebrates and vertebrates (B). Filled circles indicate bivalve species. Open circles or dark background 

indicate mollusk species. Note that the 5-HT
3
 receptors are excluded in this analysis, as they are ligand-gated ion 

channel. Phylogeny trees are constructed using the maximum likelihood method implemented in the PhyML program. 

The amino acid sequences of the 5-HT receptors are aligned with MUSCLE configured for highest accuracy (MUSCLE 
with default settings). After alignment, ambiguous regions (i.e. containing gaps and/or poorly aligned) are removed 
(www.phylogeny.fr). Accession numbers of applied 5-HT receptors are as follows: invertebrates dm5-HT (AAA28305, 

5HT-dro), dm5-HT2 (CAA57429, 5-HT2-dro), dm5HT-2A (CAA77570, 5HT-dro2A), dm5-HT2B (CAA77571, 5HT-dro2B), 

ae5-HT7 (AAG49292), am5-HT (NP-001164579), px5-HT (BAD72868), rm5-HT (AAQ89933), bm5-HT (CAA64862), 

hv5-HT (CAA64863), dj5-HT1 (BAA22404), dj5-HT4 (BAA22403), 1ce5-HT (AAC15827), 2ce5-HT (NP-491954), 3ce5-HT 

(NP-497452), as5-HT (AAC78396), hc5-HT (AAO45883), ac5-HTB1 (Q16950, Ap5HTB1), ac5-HTB2 (Q16951, Ap5HTB2), 

ac5-HT2 (AAM46088, Ap5-HT2), ac5-HT (AAC28786, Ap5-HT), ls5-HT2 (AAC16969, Lym5-HT2), ls5-HT (AAA29290, 

Lym5-HT), pt5-HT1 (AAQ95277), pt5-HT7 (AAQ84306), py5-HT (BAE72141), pf5-HT (AIW04132), cg5-HT (EKC38511), 

pi5-HT2 (AAS57919, 5-HT type 2), me5-HT (AAS05316), aa5-HT (BAA12013), and vertebrates tr5-HT1Aa (CAA65175, 

5-HT1Aalpha), tr5-HT1Ab (CAA65176, 5-HT1Abeta), om5-HT1A (AAP83427), xl5-HT1A (CAA69208), gg5-HT1A (NP-

001163999), rn5-HT1A (NP-036717), mm5-HT1A (NP-032334), hs5-HT1A (NP-000515), gg5-HT1B (NP-001166252), rn5-

HT1B (NP-071561), mm5-HT1B (NP-034612), hs5-HT1B (AAH69065), tr5-HT1D (CAA58745), om5-HT1D (AAP83428), 

rn5-HT1D (NP-036984), mm5-HT1D (NP-032335), hs5-HT1D (NP-000855), hs5-HT1E (NP-000856), rn5-HT1F (NP-

068629), mm5-HT1F (NP-032336), hs5-HT1F (NP-000857), rn5-HT2A (NP-058950), mm5-HT2A (NP-766400), hs5-HT2A 

(NP-000612), tf5-HT2B (CAC85912), xl5-HT2B (CAD71264), rn5-HT2B (NP-058946), mm5-HT2B (NP-032337), hs5-

HT2B (NP-000858), rn5-HT2C (NP-036897), mm5-HT2C (NP-032338), hs5-HT2C (NP-000859), rn5-HT4 (NP-036985), 

mm5-HT4 (CAA70775), hs5-HT4 (CAC22248), rn5-HT5A (NP-037280), mm5-HT5A (NP-032340), hs5-HT5A (NP-

076917), rn5-HT5B (NP-077371), mm5-HT5B (NP-034613), rn5-HT6 (NP-077341), mm5-HT6 (NP-067333), hs5-HT6 (NP-

000862), gg5-HT7 (NP-001165240), rn5-HT7 (NP-075227), mm5-HT7 (NP-032341), hs5-HT7 (NP-000863). First letters of 
the genus and species are used to construct the phylogenetic analysis; fruit fly (Drosophila melanogaster, dm); mosquito 

(Aedes aegypti, ae); honey bee (Apis mellifera, am); butterfly (Papilio xuthus, px); tick (Rhipicephalus microplus, rm); silkworm 

(Bombyx mori, bm); moth (Heliothis virescens, hv); planarian flatworm (Dugesia japonica, dj); nematode roundworm 

(Caenorhabditis elegans, ce); nematode roundworm (Ascaris suum, as); nematode (Haemonchus contortus, hc); California 

sea slug (Aplysia californica, ac); pond snail (Lymnaea stagnalis, ls); air-breathing snail (Planorbella trivolvis, pt); scallop 

(Mizuhopecten yessoensis, py); Pearl oyster (Pinctada fucata, pf); Pacific oyster (Crassostrea gigas, cg); lobster (Panulirus 

interruptus, pi); shrimp (Metapenaeus ensis, me); barnacle (Amphibalanus amphitrite, aa); pufferfish (Takifugu rubripes, tr); 

pufferfish (Tetraodon fluviatilis, tf); Tilapia (Oreochromis mossambicus, om); frog (Xenopus laevis, xl); chicken (Gallus gallus, 

gg); rat (Rattus norvegicus, rn); mouse (Mus musculus, mm); and human (Homo sapiens, hs).
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of mollusks (5-HT
2
 in pond snail, 5-HT

7
 in the air-breathing snail, 5-HT

B1
 and 5-HT

B2
 in the 

California sea slug) are differentiated into different branch. Except of two latter case which 
display difficulties to be classified in terms of 5-HT receptors in vertebrates [26], the 5-HT

2
 in 

pond snail and the 5-HT
7
 in the air-breathing snail are considered as the 5-HT

2
-like and the 

5-HT
7
-like receptors, respectively [92, 98].

The 5-HT
py

 and 5-HT
pf

 are expressed in most of the organs, including the ovary, testis, mantle, 

adductor muscle, gill, the nervous system (cerebral-pedal ganglia and VG), digestive gland, 

or kidney [11, 96]. In situ hybridization has shown that the 5-HT
py

 mRNA is localized in the 

oocytes and epithelium of the gonoducts in the ovary and in the spermatids and epithelium of 

the gonoduct in the testis [11]. It has histologically observed that, at spawning, mature oocyte 

and sperm are collected and evacuated from the acini into the surrounding aquatic environ-

ment via gonoducts in the great scallop [99]. Real-time PCR analyses of the 5-HT
pf

 mRNA 

transcription reveals that the order of decreasing is as follows: mature ovary > mature testis, 

VG, and digestive gland > mantle, gills, and adductor muscle. In addition, the testicular and 

ovary 5-HT
pf

 mRNA transcription does not differ among resting, developmental, and mature 
stages, however, increases in the ovary at spawning stage [96].

3. Receptor-mediated 5-HT stimulation of spawning in bivalves

Matsutani and Nomura [18] observed that injection of homogenates of CG, PG, or VG into the 

gonad of Yesso scallop induces spawning in 100% of males; however, they are without effects 
on females. In another experiment, they observed that 5-HT induces spawning in 100% of 

males and 73.3–80% of females. No other neurotransmitters, including adrenaline, noradrena-

line (NA), and ϒ-aminobutyric acid, induced spawning [100–103]. Acetylcholine and dopa-

mine (DA) induce spawning in males (40%), however they are without effects on females. 
Similarly, further studies have shown that neurotransmitters except of 5-HT are not potent 
to induce spawning in the surf clam [40], Zebra mussel [104], and Peruvian scallop [33, 105]. 

It is worth to note that DA at high dose (2 × 10−3 M) is capable of inducing spawning in males 

of Peruvian scallop [105] and in both males and females of Lion's paw scallop (Nodipecten 

nodosus) and Nucleus scallop (Argopecten nucleus) [106]. Omitting these exceptions, it has been 
accepted that 5-HT is the most potent neurotransmitter that induce spawning in bivalves at 
physiological concentration (Table 3). Other studies also show that injection of 0.4 mM 2–20 

× 10−4 M 5-HT induces spawning in bivalve species, including the Atlantic deep-sea scallop, 

butter clam (Saxidomus gigantea), Gaper clam (Tresus capax), Manila clam (Ruditapes philippi-

narum), Pacific geoduck (Panopea generosa), Pacific littleneck clam (Protothaca staminea), Pacific 
oyster, Pacific razor clam (Siliqua patula), Pink scallop (Chlamys rubida), Rock scallop (Hinnites 

multirugosus), Weathervane scallop (Patinopecten caurinus), and Yesso scallop [107, 108]. It has 

also observed that 10−4 to 10−6 M 5-HT stimulates the release of the oocytes from the ovary tis-

sues and sperm from the testicular tissues following a 90-min incubation, in vitro [109–112]. 

These are in agreement with identification of 5-HT and localization of nerve fibers transfer-

ring 5-HT from nervous system to gonad, which are observed around acini or gamete col-

lective tubules. Both males and females response to exogenous 5-HT in a dose-dependent 
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manner. However, it seems that females usually require higher amount of 5-HT than that of 

a male to release the oocytes. The observed sex-specificity might be related to inter-sex differ-

ences in the concentration of 5-HT, which are shown to be higher in males than in females [32, 

34]. Moreover, studies show that 5-HT fully stimulates spawning in ripe individuals.

As 5-HT fibers are localized in the gonad of bivalves, these observations pioneered further 
research to elucidate mechanism through which 5-HT induces spawning. In Zebra mussel, 

methiothepin, a non-selective 5-HT
1
 receptor antagonist (Table 2), decreases 5-HT-induced 

spawning when it is added into the aquarium 5 min after addition of 5-HT. However, it is 

without effects on 5-HT-induced spawning when it is added into the aquarium 10 min after 
addition [120]. A 2 h pre-treatment of the Zebra mussel with 10−4 M methiothepin decreases 

parturition from 65 to 8% and from 82 to 1% in the individuals treated with 10−4 and 10−3 M 

5-HT, respectively. These suggest that 5-HT-induced spawning requires a certain period of 

time and that 5-HT-induced spawning is irreversible.

To better understand which type of 5-HT receptor is involved in 5-HT-induced spawning, 
further experiments have conducted using 5-HT receptor analogs. It has observed that 10−4 M 

8-OH-DPAT, 5-HT, and TFMPP induce 80, 70, and 56% spawning in Zebra mussel; however, 

Species Notes Spawning of female (%) Spawning of male (%) References

Control 5-HT (mM) Control 5-HT (mM)

Yesso scallop 

Patinopecten 

yessoensis

T: 6.7–10.5M: 

Injection to 

gonadD: 0.4 ml of 

5-HT solution 

C: FSW

011.1 2: 73.3, 800.2: 

1000.02: 

200.002: 0

0 2: 1000.2: 800.02: 

1000.002: 800.0002: 

400.00002: 0

[18]

Yesso scallop 

Patinopecten 

yessoensis

T: 17–19M: 

Injection to 

gonadD: 0.4 ml of 

0.1 mM 5-HT 

C: ASW

12.5 T
e
: 87.5T

e
: 

91.7T
e
: 100

– 100 [30]

American 

oyster 

Crassostrea 

virginica

T: 25M: Injection 

to gonadD: 0.4 ml 

of 2 mM 5-HT 

C: FSW

0 0 0 100 2[113]

Bay scallop 

Argopecten 

irradians

T: 20–21M: 

Injection to 

gonadD: 0.4 ml of 

2 mM 5-HT 

C: FSW

33.3 3.5 66.7 96.6 2[113]

Hard clam 

Mercenaria 

mercenaria

T: 28–29M: 

Injection to 

muscleD: 0.4 ml of 

2 mM 5-HT 

C: FSW

0 15.3 0 84.7 2[113]

Hard clam 

Mercenaria 

mercenaria

T: 20M: Injection 

to muscleD: 0.4 ml 

of 5-HT solution 

C: FSW

20: 02: 00.2: 

00.02: 0

20: 02: 1.10.2: 

12.20.02: 2.2

20: 02: 00.2: 

00.02: 0

20:23.32: 40.00.2: 

36.60.02: 14.4

[114]
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Species Notes Spawning of female (%) Spawning of male (%) References

Ocean 

quahog 

Arctica 

islandica

T: 15–16M: 

Injection to 

muscleD: 0.4 ml of 

2 mM 5-HTC: FSW

0 T
e1

: 16.7T
e2

: 

22.2T
e3

: 

23.1T
e4

: 9.1

0 T
e1

: 83.3T
e2

: 77.8T
e3

: 

76.9T
e4

: 90.9

3[115]

Ocean 

quahog 

Arctica 

islandica

T: 15–16M: 

Injection to 

muscleD: 0.4 ml of 

2 mM 5-HTC: FSW

0 21.1 0 79.0 2[113]

Ribbed 

mussel 

Geukensia 

demissa

T: 28M: Injection 

to muscleD: 0.4 ml 

of 2 mM 5-HTC: 

FSW

0 11.1 100 88.9 2[113]

Surf clam 

Spisula 

solidissima

T: 19M: Injection 

to gonadD: 0.4 ml 

of 2 mM 5-HTC: 

FSW

100 33.3 0 66.7 2[113]

Surf clam 

Spisula 

solidissima

T: NDM: Injection 

to gonadD: 0.5 ml 

of 5-HT solutionC: 

ASW

0 2: 1000.2: 

66.70.02: 

66.70.002: 

250.0002: 0

0 2: 1000.2: 85.70.02: 

400.002: 00.0002: 

25

[19]

Japanese 

baking 

scallop Pecten 

albicans

T: 12–16M: 

Injection to 

gonadD: 0.5–1 ml 

of 5-HT solutionC: 

FSW

0 2.5: 900.25: 

87.50.025: 93.8

4[116]

Giant clam 

Tridacna gigas

T: 27.8–30.5M: 

Injection to 

gonadD: 1–7 ml of 

2 mM 5-HTC: FSW

0 2.6 0 66.7 1[117]

Southern 

giant clam 

Tridacna 

derasa

T: 27.8–30.5M: 

Injection to 

gonadD: 1.5–4.5 ml 

of 2 mM 5-HTC: 

FSW

0 4.3 0 47.8 1[117]

Maxima 

clam Tridacna 

maxima

T: 27.8–30.5M: 

Injection to 

gonadD: 0.5–2 ml 

of 2 mM 5-HTC: 

FSW

0 18.8 0 93.8 1[117]

Crocus clam 

Tridacna 

crocea

T: 27.8–30.5M: 

Injection to 

gonadD: 0.5–1 ml 

of 2 mM 5-HTC: 

FSW

0 0 0 73.3 1[117]

Scaly clam 

Tridacna 

squamosal

T: 27.8–30.5M: 

Injection to 

gonadD: 1.5–3 ml 

of 2 mM 5-HTC: 

FSW

0 0 0 67 1[117]
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Species Notes Spawning of female (%) Spawning of male (%) References

Bear paw 

clam Hippopus 

hippopus

T: 27.8–30.5M: 

Injection to 

gonadD: 1–5 ml of 

2 mM 5-HT 

C: FSW

0 52.5 0 100 1[117]

Zigzag 

scallop Pecten 

ziczac

T: 20M: Injection 

to muscle and 

gonadD: 0.4 ml of 

2 mM 5-HT 

C: FSW

Feb.: 0Mar.: 

0Apr.: 0

Feb.: 0Mar.: 

0Apr.: 0

Feb.: 0Mar.: 

0Apr.: 0

Feb.: 55Mar.: 

100Apr.: 90

[118]

Doughboy 

scallop 

Mimachlamys 

asperrima

T: 15M: Injection 

to gonadD: 0.05 ml 

of 5-HT solutionC: 

Saline solution 

(Instant Ocean, 

Sarrebourg, 

France)

0 0.001: 00.01: 

1000.1: 1001: 

10010: 100

20 0.001: 200.01: 

600.1: 601: 

10010:100

[119]

Zebra mussel 

Dreissena 

polymorpha

T: 12M: 5-HT 

has added into 

aquarium, in vivo

0 1: 1000.1: 48.7 0 1: 1000.1: 65.4 [120]

Fingernail 

clam 

Musculium 

transversum

T: 23M: 5-HT 

has added into 

aquarium, in vivo

0 1 M: 1000.1: 

560.01:0

5[121]

Peruvian 

scallop 

Argopecten 

purpuratus

T: NDM: Injection 

to gonadD: 0.4 ml 

of 0.02–2 mM 5-HT 

C: FSW

0 0–20 0 100 [105]

Japanese 

clam Mactra 

chinensis

T: NDM: Injection 

to footD: 0.4 ml of 

0.001–2 mM 5-HT 

C: FSW

0 2: 1001: 

1000.1: 

93.30.05: 

1000.02: 

1000.01: 

26.70.001: 0

0 2: 1001: 1000.1: 

93.30.05: 1000.02: 

1000.01: 26.70.001: 

0

[122]

Catarina 

scallop 

Argopecten 

ventricosus

T: 23M: Injection to 

gonadD: 0.025–2.5 

mM 5-HTC: ND

0 0 0 100 [123]

Manila clam 

Ruditapes 

philippinarum

T: NDM: Injection 

to footD: 0.2 ml of 

5-HT solution 

C: FSW

0 8.8 0 10: 801: 600.1: 

86.70.01: 1000.001: 

500.0001: 0

[124]

Nucleus 

scallop 

Argopecten 

nucleus

T: 22M: Injection 

to gonadD: 0.2 

ml of 1 mM 5-HT 

solution 

C: FSW

40 67 20 90 [106]
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2-methyl-5-HT and α-methyl-5-HT are without effects (4.1 and 0%) [104]. None of these 5-HT 

receptor agonists induce spawning at 10−5 M. A 2 h pre-treatment of Zebra mussel with 10−4 

M cyproheptadine and mianserin results in 50 and 30% inhibition of 10−3 M 5-HT-induced 

spawning, respectively, whereas propranolol, 1-NP, NAN-190, and ketanserin are without 

effects. In addition, cyproheptadine is the only effective analog that totally inhibits 10−4 M 

5-HT-induced spawning. A 2 h pre-treatment of Zebra mussel with 10−4 M cyproheptadine 

or mianserin totally suppress spawning at 10−4 or 10−3 M 8-OH-DPAT-induced Zebra mussel. 

In addition, 10−4 and 10−3 M 8-OH-DPAT-induced spawning are inhibited by 30 and 60% in 

the presence of 10−4 M NAN-190, respectively. These results may suggest that 5-HT
1
 receptor 

agonists are potent to induce spawning. Antagonists of 5-HT
2
 receptor are strongly potent 

to interfere with spawning induced by 5-HT
1
 receptor agonist; however, they are capable 

of partially inhibiting 5-HT-induced spawning. The latter note, itself, represents interaction 
between 5-HT binding sites [104] or suggests the presence of more than one type 5-HT recep-

tor to regulate 5-HT-induced spawning.

In Japanese clam [122], 1, 10, 20, 50, 100, and 1000 μM α-methyl-5-HT injected into the foot 
induces spawning in 0, 25, 31, 63, 75, and 100% of specimens, respectively, compared to 0% 

in control and 100% in ≥20 μM 5-HT. In addition, Japanese clams injected with 10, 100, and 

Species Notes Spawning of female (%) Spawning of male (%) References

Lion's paw 

scallop 

Nodipecten 

nodosus

T: 22M: Injection 

to gonadD: 0.2 

ml of 1 mM 5-HT 

solution 

C: FSW

6 48 24 93 [106]

Atlantic deep-

sea scallop 

Placopecten 

magellanicus

T: 5 and 10M: 

Injection to 

gonadD: 0.4 ml of 

2 mM 5-HT 

C: FSW

0 100 [125]

Abbreviation: ASW, artificial seawater; C, injection to control; D, dose; FSW, filtered seawater; M, method; ND, not 
determined; T, temperature (°C), T

e
, experimental trial.

1Values for control are 0% as no individual injected with filtered seawater exhibited spawning behavior [117].
2Numbers of female and male injected with 5-HT are not determined. Values show percentage of spawned females 

and males from total number of individuals that spawned following injection of 5-HT. Total percentage of spawning 

are 27.1% (Ocean quahog), 82.9% (Bay scallop), 70% (American oyster), 45.0% (Ribbed mussel), 41.6% (Hard clam), 

and 60.0% (Surf clam). In the control group of Bay scallop, Ribbed mussel, and Surf clam, 8.6, 5.0, and 2.2% spawned, 

respectively. Individual in the control group of American oyster, Hard clam, and Ocean quahog did not spawn.
3Numbers of female and male injected with 5-HT are not determined. Values show percentage of spawned females and 

males from total number of individuals that spawned following injection of 5-HT. Total percentage of spawning are 17.1, 

22.5, 37.1, and 35.5% in individual spawning trail 1 (T
e1

), individual spawning trial 2 (T
e1

), mass spawning trial 1 (T
e3

), 

and mass spawning trial 2 (T
e4

), respectively. Individual spawning represents spawning of a specimen placed in a glass 

dish (1 l FSW). Mass spawning represents placing of all individuals in troughs (140 l FSW). Individual in any control 

group did not spawn.
4Induction of spawning in the male phase of hermaphrodite scallop.
5Animals are exposed, and the percentage of parturition is evaluated based on the number of the release of juveniles.

Table 3. 5-hydroxytryptamine (serotonin, 5-HT) stimulates spawning in various species of bivalve mollusks.
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1000 μM 8-OH-DPAT into the foot spawns 15, 33, and 100%, respectively. In this species, nei-

ther TFMPP nor mCPBG induces spawning in Japanese clam. Injection of mianserin into the 

foot of Japanese clam decreases spawning to 25 and 0% at 100 and ≥500 μM, respectively. The 
mianserin-inhibited spawning can be partially overcome by the second injection of 20 μM 

5-HT, resulting in 60 and 50% spawning at 100 and 500 μM, respectively. Based on the rank 

order of potency of the 5-HT agonists, the authors suggested that a mixed 5-HT
1
/5-HT

2
 recep-

tor mediates 5-HT-induced spawning in this species. However, spawning of the individual 

pre-treated with mianserin may also suggest that 5-HT binding sites to induce spawning are 

different from those of mianserin. On the other hand, there might be more than one 5-HT 
receptor in the Japanese clam; however, 5-HT signaling seems to be mediated via a 5-HT

1
 

receptor.

4. Conclusion and future research perspectives

A few studies exist that investigate the characteristics of 5-HT binding site in the plasma 

membrane of the oocyte and sperm. Pharmacological profiles of binding sites in competition 
experiments suggest the presence of a single or mixed 5-HT

1
, 5-HT

2
, and 5-HT

3
 receptors in 

bivalves. The phylogenetic analysis of 5-HT receptor suggests that classification of the bivalve 
5-HT receptors based on available mammalian 5-HT receptor classification is not successful. 
It might be due to sensitivity and insensitivity of 5-HT binding sites to 5-HT analogs. On 

the other hand, the 5-HT receptor(s) in bivalves is distinct from those of other organisms. 

However, molecular identity of 5-HT receptor shows that the 5-HT receptor in bivalve seems 

to be a homolog of 5-HT
1
 receptors in mammals.

Tissue distribution of the 5-HT receptor has shown that it is widely expressed in various 

organs, although its mRNA transcription is relatively high in the ovary and testis. This sug-

gests multifunctional characteristics of 5-HT in bivalves. In addition, transcription of the 5-HT 

receptor undergoes seasonal variation. Studying 5-HT content and expression of 5-HT recep-

tor in the nervous system and the gonad of bivalves will help us to better understand 5-HT 
signaling in reproduction.

To better understand receptor-mediated 5-HT signaling, it requires to produce genetic mod-

els of bivalves that do not express 5-HT receptor(s). Another valuable biological tool is to 

use bivalves that show natural alternations in 5-HT biosynthesis or natural disruption of 

reproduction. Bivalves host some parasites that particularly infect the reproductive system. 

For instance, Garnerot et al. [31] observed histopathological changes in the gonad of soft-

shell clam infected with a trematode Prosorhynchus squamatus. In infected individual, the fol-

licles and genital follicles are not surrounded by 5-HT-IR fibers around, and 5-HT staining is 
clearly visible inside the parasite. Another example is protozoan Marteilioides chungmuensis 

that become mature in the oocyte of the pacific oyster [126]. The parasites affect the reproduc-

tive follicles causing irregular enlargement of the infected gonadal tissues [127]. Although 

infected female oysters produced oocytes continuously and spawned repeatedly, however 

the parasites cause nutritional wasting and mortality, and affect the reproductive output of 
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infected female oyster [127, 128]. Ngo et al. [129] also reported that M. chungmuensis delays 

spawning and cause damages to ripe oocytes. These biological examples of parasite-infected 

bivalves can provide us with model organisms to study 5-HT regulation of gonadal develop-

ment and gamete maturation.
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