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Abstract

A computational co-simulation framework for flying robots with flexible wings is presented.
The authors combine a nonlinear aerodynamic model based on an extended version of the
unsteady vortex-lattice method with a nonlinear structural model based on a segregated
formulation of Lagrange’s equations obtained with the Floating Frame of Reference formal-
ism. The structural model construction allows for hybrid combinations of different models
typically used with multibody systems such as models based on rigid-body dynamics,
assumed-modes techniques, and finite-element methods. The aerodynamic model includes
a simulation of leading-edge separation for large angles of attack. The governing differential-
algebraic equations are solved simultaneously and interactively to obtain the structural
response and the flow in the time domain. The integration is based on the fourth-order
predictor-corrector method of Hamming with a procedure to stabilize the iteration. The
findings are found to capture known nonlinear behavior of flapping-wing systems.
The developed framework should be relevant for conducting aeroelastic studies on a wide
variety of air vehicle systems.

Keywords: flexible wings, flapping wings, morphing wings, micro-air vehicles, aero-
elasticity, co-simulation

1. Introduction

Natural flight is characterized by highly nonlinear and unsteady flows and wing-deformation

patterns that include time-dependent in-and-out-of-plane bending, changing camber, spanwise

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



twisting, expanding and contracting wing surfaces, and so on. A detailed description of the

deformations of wings in different flight configurations is crucial for quantifying the influence

of a wing’s flexibility on the aerodynamic forces. Flight kinematics and aerodynamics have been

identified and studied for a variety of insect and bird wings [1–13]. Advances in computational

power have further enabled studies of highly flexible structures such as flapping and morphing

wings of micro-air vehicles (MAVs). The primary components of numerical simulations are the

aerodynamic solver, the structural-dynamic solver, and the communication between them. Early

studies on fluid-structure interactions for vehicles with flapping wings have been based on either

two-dimensional models or other simplified aerodynamic models based on thin-airfoil theory or

unsteady panel methods or Euler methods and on linear beam finite elements [14–17].

Nakata and Liu [18] used an unsteady aerodynamic model based on a Navier-Stokes solver [19]

coupled with a finite-element formulation specifically developed for insect flight that accounts

for the distribution and anisotropy of the wing’s veins and membranes. Chimakurthi et al. [20]

proposed a computational framework, in which a nonlinear finite-shell-element solver is coupled

with a Navier-Stokes flow solver [21]. Malhan et al. [22] analyzed flexible flapping wings by

using a computational fluid dynamics-computational structural-dynamics (CFD-CSD) environ-

ment. They used a Reynolds-averaged Navier-Stokes (RANS) solver [23] along with an open-

source multibody software [24]. Unger et al. [25] investigated the flow around a flexible airfoil

based on a seagull’s wing. They used a flow model based on the incompressible unsteady RANS

equations (URANS) [26]. To model the structure and obtain the response, the authors generated

a finite-element model that includes shells, solids, and contact elements for modeling the various

structural members of a wing, and used an ANSYS [27] solver. Recently, Bose et al. [28] solved

the incompressible two-dimensional flow field for a range of solid-to-fluid added-mass ratios

(characteristic of natural flappers or MAVs) by using an arbitrary Lagrangian-Eulerian (ALE)

formulation and a nonlinear discrete model of the structure. They coupled the models through a

fourth-order Runge-Kutta scheme implemented in OpenFOAM [29], and found that the struc-

tural response experienced a supercritical Hopf bifurcation [30].

Computational difficulties and costs associated with the use of CFD models have led to alterna-

tive approaches. For example, unsteady vortex-lattice methods (UVLMs) are an effective and a

simple choice [31–33]. Related to flapping wings, Taha et al. [34] identified five main contributors

to flow characteristics during hover: the wing’s translation and rotation, the leading-edge vorti-

ces (LEVs), wake capture, viscosity, and added-mass effects. UVLMs can be used to model all

aspects except viscous and LEVeffects. As shown by the experiments of Dickinson et al. [1], over

the range of Reynolds numbers (75–4000) of hovering insects, viscous effects can be neglected;

this makes the use of UVLMs suitable for modeling the aerodynamics of flapping wings and

morphing wings.

The authors extend the approach proposed by Preidikman andMook [32] and Preidikman [35];

a computational aeroelastic framework is presented. In these prior studies, the structures were

much simpler than those considered here, and they were represented by means of traditional

beam formulations based on assumed-modes/finite-element methods. In the authors’ novel

methodology, the dynamical system is partitioned into two subsystems (the structural and

aerodynamic models) that communicate with each other across the boundary of the flow field

Aerial Robots - Aerodynamics, Control and Applications4



(the surface of the structure) in a strong way. The computational environment can be consid-

ered a strong co-simulation framework [36]. Initial steps taken in this direction are presented in

reference [37]. The underlying methodology is detailed in Section 2. The aerodynamic and

structural models are presented in the third and fourth sections, respectively. The communica-

tion between the two models and the numerical integration scheme are presented in Section 5.

In the next section, results obtained for systems with flapping and morphing wings are

presented. Finally, concluding remarks are collected together and presented.

2. Methodology

The structural model (Simulator 1) and the aerodynamic model (Simulator 2) are different sub-

systems, which are constructed to exchange information bi-directionally in an iterative sequence

that continuously improves the estimation of the aerodynamic loads (see Figure 1) and, conse-

quently, the structure’s response. The numerical scheme used by Simulator 2 is based on the

UVLM, and the one used by Simulator 1 to solve the vehicle’s equations of motion is based on

Hamming’s fourth-order predictor-corrector method [35]. This procedure was chosen for two

reasons: (i) performance of Simulator 2 is better if the loads are evaluated at integral time steps

and (ii) aerodynamic loads depend on the structure’s acceleration. To combine the simulators, a

technique for transferring information (TTI) based on radial basis functions is used.

The substantial deformations of the lifting surfaces induce significant changes in the aerody-

namic loads, which in turn induce further changes in the deformation of the wings. This

feedback between the aerodynamic loads and the movement of structural members (flowfield

boundaries) generates strong coupling between the aerodynamic and structural models. In

order to capture these complex interactions with a numerical model, a strong coupling method

Figure 1. Schematic diagram of fluid-structure interaction framework [37].
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is needed; the authors have chosen a so-called two-way non-monolithic strategy. Although

Simulators 1 and 2 are computational implementations of independently modeled physical

components, the coupling procedure is strong because information can be bi-directionally

exchanged, and the chosen time step advance is the same for both models. Traditional

approaches used to study unsteady aeroelastic characteristics may not be adequate for model-

ing the unusual fluid-structure interactions that characterize aerial vehicles with flexible flap-

ping wings. Classical linear analyses can, in some instances, predict when aeroelastic systems

become unstable, but they can neither detect subcritical instabilities nor describe post-instability

motions. As the solutions are obtained in the time domain here, the authors have the capability

for predicting both subcritical instabilities and post-instability motions [30].

3. Aerodynamic model

Here, UVLM is used to compute the aerodynamic loads. It can be applied to lifting surfaces of

any planform, camber, and twist. The lifting surface may undergo any time-dependent defor-

mation and execute any maneuver in moving air. The flow surrounding the lifting surface is

assumed to be inviscid, incompressible, and irrotational over the entire flowfield, except at the

solid boundaries and in the wakes. Due to the relative motion between the wing and the fluid

and due to the viscous effects, vorticity is generated in the fluid in a thin region next to the

wing’s surface (the boundary layer). The boundary layers on the upper and lower surfaces are

merged into a single vortex sheet. Vorticity in this sheet must be shed from the sharp edges

(trailing edge, leading edge, and wing tips) so that the pressures are equal in the merging flows

coming off the upper and lower sides of the lifting surface, the so-called Kutta condition.

This shed vorticity forms the wake as it moves with the fluid in order for the pressure to

remain continuous across the wake, which is force-free. The calculation of the velocity field

associated with the vorticity is expedited by replacing the continuous vortex sheet with a

lattice of discrete vortex lines. The boundary layers are represented by bound-vortex lattices,

which are attached or bound to the lifting surface and move with it. The wakes are represented

by free-vortex lattices, which move freely with the flow so that their position and vorticity

distribution are determined as part of the solution [35, 37–39].

3.1. Mathematical formulation

The velocity of a fluid particle that occupies position, r, at instant t is denoted by V r; tð Þ. Since

the flow is irrotational outside the boundary layers and wakes and considered to be incom-

pressible, the velocity field can be expressed as the gradient of a scalar potential ϕ r; tð Þ, which

is governed by the continuity equation:

∇
2ϕ r; tð Þ ¼ 0: ð1Þ

In a three-dimensional flow, the velocity field satisfying Eq. (1) and associated with a straight,

finite-length segment of a vortex line with circulation Γ tð Þ is given by the Biot-Savart law:

Aerial Robots - Aerodynamics, Control and Applications6



V r, tð Þ ¼
Γ tð Þ

4π

L� r1

kL� r1k
2
2 þ δkLk2ð Þ2

L � ê1 � ê2ð Þ½ � ð2Þ

Here, r1 and r2 are the position vectors of the point of interest relative to the ends of the vortex

segment; ê1 and ê2 are the unit vectors parallel to r1 and r2, respectively, and L ¼ r1 � r2 is

the vector along the vortex segment. The term δkLk2 in Eq. (2) is added in order to avoid

the singularity that appears when the point approaches the vortex line or its extension. The

influence of the cutoff radius δ on the velocity is strongly felt in the immediate vicinity of the

vortex line but is hardly noticeable elsewhere. A linear cutoff radius is another option [40].

3.2. Unsteady vortex-lattice method

In UVLM, the vortex sheets are replaced by lattices of short straight vortex segments with

spatially constant circulation. These segments divide the wing surface into a finite number of

typically nonplanar, quadrilateral elements of area with straight edges often called panels. The

model is completed by joining the free-vortex lattices (wakes) to the bound-vortex lattice (lifting

surface) along the edges where separation occurs. The separation location is user supplied and

typically based on experience. Each quadrilateral element of the bound lattice has a single

unknown circulation G tð Þ instead of the four unknown circulations around each of the short,

vortex-line segments along its edges. Consequently, the requirement of spatial conservation of

circulation [41] is automatically satisfied throughout the lattices. Once all the G tð Þ0s are known,

the Γ tð Þ0s around all of the straight vortex segments can be easily determined. In Figure 2, a

representative example of the resulting bound and free-vortex sheets and vortex lattices after the

discretization is shown.

The governing equation is complemented with the following boundary conditions: (i) the veloc-

ity field associated with the disturbance decays away from the body and its wakes. Hence,

lim
krk2!∞

kVB r; tð Þ þ VW r; tð Þ þ VLW r; tð Þk ¼ kV∞k, ð3Þ

Figure 2. Vortex sheets and vortex lattices.
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where VB r; tð Þ, VW r; tð Þ, and VLW r; tð Þ are the velocity fields associated with the bound-vortex

lattice, the free-vortex lattice shed from the wing’s trailing edge (including the tip), and leading

edge, respectively, and V
∞
is the free-stream velocity. The velocity field obtained from the Biot-

Savart law satisfies this condition. (ii) The normal component of the fluid velocity relative to

the body’s surface must be zero:

V
∞
þ VB r; tð Þ þ VW r; tð Þ þ VLW r; tð Þ � VPð Þ � n̂ ¼ 0, ð4Þ

where VP is the velocity of the body’s surface, and n̂ is a unit vector normal to the surface. Since

there is a finite number of panels, and hence unknown circulations, Eq. (4) is only imposed at

one point in each panel. Here,VB is expressed in terms of the unknown values for the loop-

vortex circulations Gj tð Þ and the aerodynamic influence coefficients Aij tð Þ [35, 39]. To satisfy the

unsteady Kutta condition at each time step, the vortex rings along the edges are shed into the

flow where they have the same order as they had on the wing’s surface. The vortex rings are

moved downstream with the flow by moving the end points of their vortex segments, called

nodes, with the local fluid-particle velocity V to new positions, denoted r tþ Δtð Þ, according to

the first-order approximation:

r tþ Δtð Þ ¼ r tð Þ þ Vðr, tÞ Δ t: ð5Þ

3.3. Leading-edge separation model

Vortex shedding from the leading edge (LEV) depends on the angle between the local fluid

velocity and the velocity of the edge of the moving wing’s plane (the effective angle of attack).

Several studies on conventional aircraft wings have reported that flow attached to the wing

starts to separate when the effective angle of attack exceeds a critical value of 12–15�. Several

numerical tools based on vortex-lattice methods account for LEV on highly swept delta

wings [42]. Here, the effects of leading-edge separation are included through an on/off mech-

anism that consists mainly of computing the value of the effective angle of attack αe at each

time step and comparing it with a reference value αc. Only when αe ≥αc is leading-edge

separation included [38].

3.4. Aerodynamic loads

The force on each element of the bound lattice is determined based on the pressure jump across

the lifting surface at the control point; this calculation is carried out by using the unsteady

Bernoulli’s equation:

∂tϕðr, tÞ þ
1

2
Vðr; tÞ�V ðr; tÞ þ

pðr, tÞ

ρ
¼ H tð Þ ð6Þ

Here, ∂t denotes the partial time derivative at a fixed location in an inertial reference frame, ρ is

the fluid density, p is the pressure, and H(t) is the total energy per unit mass, which only

depends on time and has the same value at every point in the whole domain of the flow [35].

Aerial Robots - Aerodynamics, Control and Applications8



4. Structural model

The equations governing the structure were developed for large rotations and displacements,

called primary motions, and small/moderate rotations and displacements with respect to a

moving reference frame, called secondary motions. The primary motions describe the position

and orientation of each body as a whole, and the secondary motions describe deformations.

The Floating Frame of Reference (FFR) formalism and Lagrange’s method for constrained

systems [43] were used to derive the equations of motion. The flying robot system is modeled

as a collection of nb rigid and deformable bodies subjected to nc constraints, which are used

to impose the connections and predefined motions. The fuselage (called the central body) is

rigid, and the wings attached to it are assumed to be flexible. Three reference-point coordi-

nates that typically coincide with either the body’s center of mass or its centroid represent the

rigid-body’s position. The rigid body’s orientation is described by Euler angles. In what

follows, bold italic letters and bold letters are used for tensor notation and matrix notation,

respectively.

4.1. Reference frames

In the FFR formalism, the rigid-body motion of the kth body is the primary motion, and the

motion of points in the body’s reference frame is the secondary motion. If the displacement

field contains rigid-body modes, a set of conditions has to be imposed to define a unique

displacement field with respect to the selected body reference. Consequently, nb þ 1 reference

frames are used in order to describe the kinematics of the multibody system: (i) an inertial

systemN ¼ n̂1, n̂2, n̂3f g and (ii) a reference system fixed to each body k, Bk ¼ b̂
k

1, b̂
k
2, b̂

k
3

n o

. The

set of vectors n̂ i and b̂k
i for i ¼ 1, 2, 3 form a dextral orthonormal basis.

4.2. Velocity for an arbitrary point in a body

Let us consider the kth flexible body, which moves and deforms in space. The components of

the absolute translational velocity at an arbitrary point in the body P, _Rk
p, , can be expressed in

the segregated form:

_Rk
p ¼

_Rk þQNBk _rk0 þ _u
k þωk � rk0 þ uk

� �

h i

, for k ¼ 1,…, nb ð7Þ

Here, _Rk is the velocity of the origin of the body-fixed frame Bk; rk0 is the position vector of an

arbitrary point P on the kth body in the undeformed configuration, and _rk0 is identically zero

because the differentiation is performed with respect to the Bk frame; uk is the elastic displace-

ment vector of the point P and _uk represents its time derivative with respect to the body-fixed

frame;ωk is the angular velocity vector of Bk relative to the inertial frameN; andQNBk : Bk ! N

represents a rotation tensor from the body-fixed frame Bk to the inertial frameN. After algebraic

manipulations, Eq. (7) can be written as

Computational Aeroelasticity of Flying Robots with Flexible Wings
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_Rk
p ¼

_Rk þQNBk _uk �QNBk rk0 þ uk
� �

ω
k

� �

, for k ¼ 1,…, nb, ð8Þ

where rk0 and uk are skew-symmetric tensors associated with rk0 and uk, respectively. Their

actions on vectors are equivalent to the cross products. The tensor QNBk is a function of qk, the

vector of absolute coordinates that describes the motion of the Floating Frame of Reference Bk

attached to body k, or primary motions. The vector qk is given by

qk ¼ Rk
� �T

θ
k

� �T
h iT

, ð9Þ

where Rk is a set of coordinates for the origin of the body reference frame Bk, and θ
k is a set of

rotational parameters that orient the body reference frame (e.g., Euler angles, Rodriguez param-

eters, etc.). When high-order terms are not considered, the elastic displacement vector solved in

the body-fixed frame is uk ¼ Nkpk, where Nk is a matrix of shape functions for interpolating the

elastic displacement across the body domain, and pk is a time-dependent vector of generalized

coordinates that is used to describe secondary motions.

4.3. Equations of motion

Once the absolute vector of translational velocity for any point on the body is known, the

equations of motion can be derived. Additionally, it is important to consider that a flexible body

can be constrained [43, 44], by either linking it with other bodies or by choosing the parameters

to describe primary motions; only holonomic constraints are considered. To simplify the manip-

ulation, Lagrange's equations are separated into two groups: one corresponding to qk and the

second to pk. The constrained Lagrange’s equations are given by

dt ∂
_qkTk

� �

� ∂qkTk þ BT
qkλ

k ¼ Qk
q

� �T
, and dt ∂

_pkTk
� �

� ∂pkTk þ BT
pkλ

k þ ∂pkUk ¼ Qk
p

� �T
,

ð10Þ

which are complemented by a set of algebraic-constraint equations expressed as

Φ
k qk�1,qk,qkþ1; t
� �

¼ 0: ð11Þ

Here, the qk pk
� �

were defined previously, and dt, ∂qk ∂pk

� �

as well as ∂
_qk ∂

_pk

� �

denote time

derivatives, the partial derivatives with respect to qk pk
� �

and with respect to _qk
_pk

� �

, respectively.

λ
k is the vector of Lagrange multipliers, Bqk Bpk

� �

is the Jacobian tensor of constraints associated

with the coordinates qk pk
� �

, Tk is the kinetic energy of the k-th body, Uk is the elastic potential

energy, and Qk
q Qk

p

� �

is the generalized load vector corresponding to the vector qk pk
� �

. The

kinetic energy Tk follows from _Rk
p in Eq. (8), and then the equations for primary and secondary

motions for the k-th body are as follows:

Aerial Robots - Aerodynamics, Control and Applications10



Mk
€qk þ ðMkÞT €pk þ BT

qkλk ¼ ðQk
qÞ

T ,

mk €pk þMk
€qk þKkpk þ BT

pkλk ¼ ðQk
pÞ

T ,

Φ
kðqk�1,qk,qkþ1,pk�1,pk,pkþ1; tÞ ¼ 0, for k ¼ 1,…, nb:

ð12Þ

Here, Mk is the mass matrix for primary motions, which is differentiable, symmetric, and at

least positive-semi-definite; Mk is the mass matrix that couples primary and secondary

motions; mk is the metric tensor for secondary motions, which is constant, symmetric, posi-

tive-definite, and its matrix representation is the “elastic mass matrix”; Kk is the stiffness

matrix for the secondary motions; and Φ
k is the set of holonomic-rheonomic constraint equa-

tions associated with the k-th body. It should be noted that qT ¼ q1
� �T

,…, qmð ÞT
n o

for m ≤nb

and pT ¼ p1
� �T

,…, pnð ÞT
n o

for n ≤nb:. The total number of coordinates is calculated through

6nb þ
Xnb

k¼1
Nk ¼ ncoord (Nk is the number of elastic generalized coordinates of the k-th body).

Thus, the number of degrees of freedom is ndof ¼ ncoord � nc. A beam element based on Euler-

Bernoulli/Rayleigh theory is used. Hermite polynomials are used to interpolate displacement/

rotation fields in each finite element from nodal values. First-order polynomials are used to

interpolate elongation and torsion, and third-order polynomials are used to interpolate bend-

ing [45]. Finally, the equations of motion for the complete multibody system are obtained by

assembling the equations of motion for each body:

M€x þ BT
xλ ¼ F,

Φ ¼ 0:

ð13Þ

Here, M∈R
ncoord�ncoord is the global mass matrix, Bx ∈R

ncoord�nc the constraint Jacobian matrix,

x∈Rncoord�1 is the global vector of generalized coordinates, λ∈R
nc�1 is the global vector of

Lagrange’s multipliers, F∈Rncoord�1 is the global vector of forces, and Φ∈R
nc�1 is the set of all

constraints for the multibody system.

5. Communication between models and numerical integration

In this section, the schemes for exchanging information (loads, displacements, and velocities)

between the structural and aerodynamic models and integrating the resulting algebraic-differ-

ential equation are described.

5.1. Information transfer between simulators for aerodynamics and structural dynamics

At each time step, the aerodynamic and structural models exchange information bi-directionally

in an iterative sequence to improve the estimates of both the structure’s response and the

aerodynamic loads (see Figure 3). To this end, the authors propose the use of an interpolation

procedure based on radial basis functions (RBFs) [46].

Computational Aeroelasticity of Flying Robots with Flexible Wings
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A linear relationship between the generalized displacements associated with both the

aerodynamic mesh and the structural mesh is established through the following coupling

matrix:

w ¼ GNA
AE u, and v ¼ G CP

AE u ð14Þ

Here,w and v are the displacements of the nodes and control points of the aerodynamic mesh,

and u is the generalized nodal displacements of the structural mesh. GNA
AE is the coupling

matrix that relates w with u, and GCP
AE relates the control-point and the structural-node dis-

placements. As a first step, a continuous scalar function s xð Þ is generated by using the radial

basis functions φ jx� xei j
� �

[47, 48], where x is the location for the evaluation of s, and xei is the

positions of centers (structural nodes in the present case). It is required that the function s

recovers the generalized structural displacements when it is evaluated at the centers. For the

component z of u (denoted by uzi ),

uzi ¼ s xei
� �

¼ α1 φ jxei � xe1j
� �

þ ⋯ þ αi φ jxei � xei j
� �

þ ⋯ þ αne φ jxei � xenej
� �

f or i ¼ 1, 2,…, ne:

ð15Þ

This constitutes a set of ne (number of structural nodes) linear algebraic equations, which

have the matrix form Aeeα ¼ uz, where Aee ∈R
ne�ne contains the functions ϕ evaluated at the

structural nodal positions, α is a column vector that contains the coefficients αi, and uz is an

array which collects the z-components associated with the nodal translations of the struc-

tural mesh.

Solving for the unknown α, makes it possible to approximate the aerodynamic nodal displace-

ments by evaluating the function s(x) at the aerodynamic nodal positions xai . Again, this

Figure 3. Schematic diagram of transfer technique between simulators.

Aerial Robots - Aerodynamics, Control and Applications12



procedure leads to a linear algebraic system Aaeα ¼ wz, where Aae ∈R
na�ne (na is the number of

aerodynamic nodes) contains the functions φ evaluated at the aerodynamic nodal positions.

Combining the aforementioned two linear systems, a direct relation between wz and uz is

obtained, wz ¼ H uz, where H ¼ AaeA
�1
ee . If the same RBFs are used to interpolate the x(wx)

and y(wy) components of w, a similar relation is found. Therefore,

wr ¼ Hur, for r ¼ x, y, z: ð16Þ

In fact, matrix H is a linear map that relates the aerodynamic and structural nodal displace-

ments. According to prior studies [35, 49], the procedure to obtain each one of the matrices

introduced above consists of the following: (i) computing H based on the data associated with

the structural and aerodynamic meshes, (ii) obtaining GNA
AE from H, and (iii) computing GCP

AE

[49]. The last matrix is used to transform the aerodynamic loads FA, acting at the control points

of the aerodynamic grid, to an equivalent set of forces FE acting on the finite-element mesh,

FE ¼ GCP
AE

� �T
FA. The structural-aerodynamic force relation is obtained by establishing some

kind of abstract equivalence; that is, both systems of forces must perform the same virtual

work for any given virtual displacement [35]. In particular, this procedure has been developed

for combining UVLM grids with structural meshes based on beam finite elements. As the

coupling matrix only depends on the kind of RBFs used and the clouds of points to be

interpolated, the same formulation is valid for other types of finite-element meshes.

5.2. Numerical integration of the index-1 DAEs

The set of equations of motion for the entire multibody system represents an index-3 system of

DAEs. These dynamic equations are, in general, nonlinear. To solve them by means of stan-

dard solvers for ordinary differential equations (ODEs), an index reduction is required for the

set of DAEs [44]. The methodology adopted in this work includes differentiation of the con-

straint equations twice with respect to time. This new set of equations is often called constraint

acceleration level and is given by

€Φ x, _x; tð Þ ¼ Bx€x þ 2∂x ∂tΦð Þ _x þ ∂ttΦþ ∂x Bx _xð Þ _x ¼ 0, ð17Þ

where xT ¼ qT ,pT
� 	

, ∂x denotes the partial derivative with respect to the vector x, and ∂tt

denotes the second partial time derivative. The equations of motion for the multibody system

(13) can be rewritten together with the acceleration level constraint equations, as an index-1

system of DAEs as follows:

M BT
x

Bx 0


 �

€x
ν

� 

¼
Q
κ

� 

, ð18Þ

where κ ¼ �2∂x ∂tΦð Þ _x � ∂ttΦ� ∂x Bx _xð Þ _x.

Numerical integration of Eq. (18) is susceptible to instabilities as a consequence of truncation

procedures and round-off errors. The evident one is that the position and velocity constraints

are no longer exactly satisfied; that is, a drift-out of the constraints does exist. In the literature,
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several stabilization methods to correct this numerical drift can be found, among which the

most widely used due to its simplicity is Baumgarte’s technique [50]. Another technique

currently used consists in discretizing numerically the ODE and projecting the approximate

solution onto the selected constraints manifold (coordinate projection) [51]. In this work, the

authors have adopted the coordinate projection method to control/eliminate the numerical

drift. As mentioned in Section 2, the numerical scheme used by Simulator 2 is well known

and can be found in prior work [35, 39]. On the other hand, the numerical procedure adopted

for Simulator 1 to solve the equations of motion of the aerial robot is based on Hamming’s

fourth-order predictor-corrector method [35, 52].

5.2.1. Co-simulation strategy

During a time step Δt, the wakes are convected to their new positions with the local fluid-particle

velocity. Simultaneously, the structure of the aerial robot moves to its new position as a result of

the acting forces and constraint equations. This concept is implemented by performing the

following sequence of steps to calculate the solution at time tþ Δt as follows:

1. Simulator 2 is used to predict the new position of the wakes. A fluid particle in the wake

moves from its current position r tð Þ to its new position r tþ Δtð Þ according to Eq. (5).

During the rest of the procedure for this time step, the wake is frozen.

2. The current loads computed by Simulator 2 are used in Simulator 1 to predict the response

of the structure.

3. The current state of the structure is used as input to Simulator 2 and the loads are

recalculated. Then, these loads are used as input to Simulator 1 and the state of the

structure is updated again. This step is repeated until convergence. Usually, three to seven

iterations are required to reduce the error to less than 10�10.

4. The final position and velocity of the structure are evaluated by using Simulator 1, and

used by Simulator 2 to recalculate the flow field and obtain the final estimate for the

aerodynamic loads.

The procedure described above needs information from four previous time steps. At the

beginning of the procedure, this information does not exist; so, the authors have used a special

starting scheme: at t ¼ 0, the initial conditions are used by Simulator 2 to calculate the aerody-

namic loads ignoring the contribution of ∂tϕ. Further studies on this issue are needed to

definitively state that ∂tϕ can be neglected at t ¼ 0.

6. Numerical results

In this section, results obtained with the implementation of the proposed methodology written

in Fortran 90 are presented. The implementation is structured in a modular organization; that

is, so that each part can be individually removed and replaced, as well as the capability of

adding new models without modifying the general structure of the program. Although the

Aerial Robots - Aerodynamics, Control and Applications14



parallelization of the code is not implemented, acceptable computing times, for full nonlinear

simulations, were achieved. Simulations involving only structural models may take only a few

minutes, but aeroelastic simulations including unsteady, nonlinear aerodynamics may take

above 1 day on average in a desktop computer with an i7 processor, and RAM DDR3 of 4 GB.

6.1. Aerial vehicles with flapping wings

In this subsection, a series of numerical results obtained with the developed computational

tool for a mechanical system based on flapping wings is presented. The first set of results

consists of the aerodynamic analysis of MAVs with flapping wings, including some validations

against experimental data. The second set of results is related to the study of the unsteady

aerodynamics and nonlinear dynamics of MAVs, which explains some basic features of the

involved flight mechanisms.

6.1.1. Aerodynamics of flapping wings

In this first study, the lift forces obtained from numerical simulations and comparisons of them

with the experimental data reported by Dickinson et al. [1] are presented. The dynamically

scaled experimental model imitated a Drosophila melanogaster, dubbed Robofly, with a wing

span of 25 cm (from the force sensor to the wingtip). The wing executed an insect-like flapping

motion at a frequency of 0.145 Hz with the wing tip tracing out a figure of eight. The viscosity

of the oil, the length of the wing, and the flapping frequency were chosen in order to match the

Reynolds number (Re) typical of the flight of a fruit fly (Re ¼ 136). The kinematic pattern

employed by Dickinson’s team consisted of a stroke amplitude of 160�, and an angle of attack

at midstroke of 40� for both upstroke and downstroke. In Figure 4, the authors show the three

kinematic patterns used: (i) wing rotation precedes the reversal stroke by 8% of the wing-beat

cycle (advanced pattern), (ii) wing rotation occurs symmetrically with respect to the reversal

stroke (symmetrical pattern), and (iii) wing rotation is delayed with respect to the stroke

reversal by 8% of the stroke cycle (delayed pattern). Details of the kinematic model used in

this work to prescribe the motion of the Robofly’s wing, as well as an extensive study of

kinematical parameters can be found in reference [53].

In Figure 5, numerical results for the lift force (advanced pattern) with and without leading-

edge separation and the comparison with those obtained by Dickinson et al. are shown. The

results obtained are very encouraging because they show better agreement than those reported

in previously published comparisons such as the CFD study by Sun and Tang [54], and the

two-dimensional aerodynamic model developed by Ansari et al. [55, 56]. These results are

significant because they justify the use of the nonlinear unsteady vortex-lattice method to

study the three-dimensional aerodynamics of insects executing different maneuvers. Similar

results were found for the symmetrical and delayed patterns [38]. These results suggest that

the present model will also serve well for the study of aerial robots.

The Fast Fourier Transforms (FFTs) of the force data from numerical simulations and experi-

ments were also computed and the results are shown in Figure 5b. The frequency content for

the experimental data clearly shows the flapping frequency of the motion (point A in Figure 5b,

nf ¼ 0:1446 Hz) and twice this frequency (point B in Figure 5b, 2nf ¼ 0:2893 Hz) along with a
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number of harmonics. These harmonics appear because there are two half-strokes per wing-

beat cycle (the wing-passing frequency). The frequency content of the predicted lift force

closely matches the flapping frequency of the motion (nf ¼ 0:145 Hz and 2nf ¼ 0:29 Hz).

Another indication of the quality of the numerical prediction is given by the mean lift, L. The

square and circular symbols in Figure 5b represent the experimental and predicted mean lift

force, respectively. The difference between the predicted mean lift force and the experimental

mean lift force for the advanced pattern is about 4.5%. For a detailed study of the aerodynamic

Figure 5. Comparison of numerical results with experimental data for the advanced pattern (first-stroke cycle). Dotted

line for Dickinson’s data, solid line for numerical results without LEV, and broken line for numerical results with LEV.

Figure 4. (a) Stroke position angle and angle of rotation of the wing for three different rotational timings. (b) Time

derivatives of the stroke position angle and the rotation angle for three rotational timings. Here, Tf is the flapping period.
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of flapping wings using a modified version of the unsteady vortex-lattice method, the reader is

referred to the work of Roccia et al. [38].

6.1.2. Dynamics of flapping wings

In this section, the numerical results obtained for the dynamic behavior of a fruit fly

(D. melanogaster) in hovering flight are presented. The general equations of motion were adapted

to consider only imposed deformations. These include torsion and bending in the directions

normal and parallel to the wing’s chord. Details of the kinematics and the dynamic models that

allow one to prescribe such patterns of deformation are given in reference [57, 58]. Data reported

by Fry et al. [58] on the actual kinematics of a fruit fly in hover were used to describe the wing

motion over a flapping cycle (see Figure 6a where the solid blue line represents the stroke

deviation angle, the dotted red line represents the stroke position angle, and the broken black line

represents the rotation angle). Due to the complex motion experienced by the wings during a

stroke cycle, the wake shed from the leading edge during the downstroke is likely cut by the wing

during the upstroke. A wake rupture model is not yet available, and therefore no leading-edge

separation was allowed in this case. For this numerical experiment, the following parameters were

chosen: flapping frequency nf ¼ 210 Hz; wing span R ¼ 2:5 mm and wing area S ¼ 2:21 mm2;

air density ρair ¼ 1:2 kg=m3; insect’s mass of 0.84 mg. A spatial discretization of the MAVof 1405

aerodynamic panels was used: 200 panels over each of the wings and 1005 panels over the central

body (head, thorax, and abdomen of the insect). Only the first stroke cycle was simulated, which

was discretized into 100 time steps. In Figure 6b, the authors show the computational model of the

insect where the relative size and topology of the aerodynamic grid can be appreciated.

Two cases are presented next. In the first, the authors consider a rigid wing, and in the second,

the authors consider a flexible wing with prescribed deformation. The prescribed deformation

consists of wing torsion, which varies linearly along the wing span, combined with bending in

the normal and tangential direction of the wing chord. The values used for the three different

deformations are based on a detailed study carried out by the authors on the influence of

Figure 6. (a) Actual kinematics of a fruit fly in hovering, circular markers indicate experimental data. (b) Computational

model of the insect.
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spanwise twisting and bending on the lift-force generation in flapping-wing MAVs [58]. In order

to show the role of the wing’s flexibility in the production of lift, the parameters that regulate the

deformation were tuned in order to increase the lift force throughout the stroke cycle with

respect to the rigid-wing model. The set of initial conditions for the two cases studied consists

of a body angle of 75� and a stroke plane angle of 15�. These values produce a horizontal stroke

plane. Both the linear and angular velocities of the central body are zero at t ¼ t0.

In Figure 7, the authors show the lift and horizontal forces obtained numerically for both the

rigid-wing model and the flexible-wing model along with experimental measurements obtained

by Fry et al. [58] for a Drosophila in hover. The most important requirement of hovering flight is

undoubtedly that the value of the vertical force must compensate for the insect’s weight. In

Figure 7a, a peak force can be observed at the center of each half-stroke, mainly during the

upstroke. The peak force produced by the flexible wing is approximately 30% higher than what

the rigid-wing model predicts. This fact is also reflected in Figure 7d, in which the degree of

freedom associated with the vertical displacement of the center of mass of the central body has

been plotted. When the authors use a rigid-wing model, the lift force produced can hardly

support the insect’s weight, showing a slight downward movement at the end of the stroke

cycle. On the other hand, when the authors impose a suitable deformation pattern, not only the

lift generated is sufficient to balance the insect’s weight, but it also rises almost continuously.

In order to assess the quality of numerical simulations, the aerodynamic forces obtained numer-

ically are compared with experimental measurements. As can be observed in Figure 7a, the time

evolution of the lift force for the rigid and flexible wing shows a shape and trend similar to the

curve reported by Fry et al. [58]. Nevertheless, lift levels predicted by the numerical model are

lower than those measured experimentally (approximately 14% lower for flexible wing case).

Possibly, this fact is because the LEV phenomenon was not taken into account. On the other

hand, the predicted horizontal force (Figure 7b) departs quite noticeably from the results of Fry

et al. However, the shape and trend is well captured. It should be noted that the aerodynamic

model used is inviscid. Furthermore, UVLM does not account for leading-edge suction. In

addition, the horizontal force is always opposite to the wing’s motion, leading to a longitudinal

oscillation of the insect’s body. This dynamic behavior can be observed in Figure 7c.

Unlike forward thrust and lift, sideways thrust cancels instantly due to the bilateral symmetry of

the wing motion (see Figure 7f). Similarly, because each wing contributes to yaw and roll torque

in opposite directions, these moments cancel out. On the other hand, the sign and magnitude of

pitch torque is the same for both wings. This fact directly affects the pitch angle (see Figure 7e).

Fry et al. [58] observed that pitch torque averages zero over a complete cycle, and therefore the

insect’s body experiences an oscillation in the pitch angle. In real insects, this phenomenon is

controlled by the wing kinematics, the flapping frequency, and the precise motion of the head and

abdomen relative to the insect’s thorax. Such a control mechanism is essential to prevent the pitch

torque from growing indefinitely. In this work, no control strategy was applied, and therefore the

pitch angle does not behave as expected. It decreases continuously for most of the flapping cycle,

only showing a slight increase toward the end of the upstroke.

Aerial Robots - Aerodynamics, Control and Applications18



Figure 7. Aerodynamic forces. (a) Lift force. (b) Horizontal force. (c) Longitudinal displacement. (d) Vertical displace-

ment. (e) Pitch angle. (f) Roll, yaw, and lateral displacements.
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6.2. Aerial vehicles based on the morphing-wing concept

In this section, a series of numerical results for an aerial vehicle with morphing wings is

presented. The first set describes the aerodynamic behavior of a bio-inspired, morphing-wing

concept. The second set of results is related to the aeroelastic study of an aerial-robot wing

model whose planform geometry is based on the seagull wing.

6.2.1. Aerodynamics of morphing wings

The model’s geometry preserves certain morphological parameters of a gull wing [59], and a

folding wing mechanism is used to change the wing’s shape. The model consists of the right

and the left wings, which are joined at the wing root. Because the two parts are mirror images,

the model is represented by only the right wing (see Figure 8a).

Each wing is represented by two parts: the inner wing and the outer wing. In Figure 8a, the

boundary between these parts is pointed out. A seagull-wing profile obtained by Liu et al. [60] is

used. The center line, contained in the plane of symmetry xz, does not move during the morphing

process. The inner and outer parts of the wing are connected and can move with respect to each

other. The folding motion of the inner and outer wings is described by the dihedral angles θB and

θC, respectively (see Figure 8b and c). During the simulation, the wings remain fully extended

until a time TI, and then the morphing process begins by varying the dihedral angles according to

expression (19) until a time TS, where the wings take a configuration that is maintained in a steady

state and is determined by the angles θS
B and θ

S
C. The simulation ends at a time TF.

θB tð Þ ¼ θ
S
B

t� TI

ΔT
�

1

2π
sin

2π t� TIð Þ

ΔT

� �� �

and θC tð Þ ¼ θ
S
C

t� TI

ΔT
�

1

2π
sin

2π t� TIð Þ

ΔT

� �� �

: ð19Þ

Here ΔT ¼ TS � TI . Three passages through the morphing processes were simulated with a

mesh of 8 � 32 panels in the chordwise and spanwise directions, respectively. The morphing

wing was reconfigured in time by means of Eq. (19) with the values given in Table 1. In each

case, two conditions were considered: (i) with shedding vorticity from the wing tips and (ii)

without shedding vorticity from the wing tips.

Figure 8. (a) Wing’s geometry, (b) definition of the inner and outer wing, and (c) definition of the dihedral angles.
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In Figure 9, the lift coefficients for the three cases are plotted as functions of time. There are

only slight differences between the solutions obtained with conditions (i) and (ii); thus, the

vorticity being shed from the wingtips may be ignored. For all three cases, the number of

elements in the wake associated with the wingtips is 20% of the total in the wake; when the

wing-tip elements are eliminated the computational time is reduced by 35%.

During the first part of the flight simulation, when the wing is fully extended, the lift rapidly

increases until the steady state is reached at TI. During the second part of the flight TI < t < TS,

which is the morphing process, the lift depends on the prescribed kinematics of the dihedral

angles. In the third phase of the process after the morphing is completed, t > TS, the wings

approach new steady states. In Case III, the lift smoothly decreases until it reaches a local mini-

mum, t ≈ TM ¼ (TI þ Ts)/2, and then it increases to a value that corresponds to the wing’s

configuration in the new steady state. In this case, it appears that during the morphing process

there could be a loss in altitude or perhaps a decrease in the rate of climb or an increase in the rate

of descent. In Case II, the lift increases during the morphing process to reach a local maximum, t ≈

TM, and then it begins to decrease until it reaches a value that corresponds to the wing’s new

configuration in the steady state. In this case, it appears that the morphing process would produce

a gain in altitude. In Case I, the lift behavior is different; it decreases smoothly until the steady-state

solution is reached. For this last case, the lift characteristic does not have either a local maximum or

Case θ
S

B
θ
S

C
TI TS TF V8 α

I �30� 30� 35 c0/V8 70 c0/V8 90 c0/V8 12.4 [m/s] 5�

II 10� 30�

III �10� �30�

Table 1. Simulation parameters.

Figure 9. Lift coefficient as a function of time.
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a local minimum during the morphing. With some tweaking in the three cases, the wing could

arrive at any (within reason) prescribed steady-state lift, but most likely with the aircraft at

different altitudes and different airspeeds. Here, although the airspeed was held constant in these

three examples, it could be changed step by step. The present model provides an accurate tool to

account for the following: (i) the strong dependence between the unsteady aerodynamic loads and

the morphing motion, and (ii) the power needed to drive the morphing [61].

6.2.2. Aeroelasticity of morphing wings

The wing model adopted for the numerical aeroelastic simulations presented in this section

consists of an inner and outer wing as it was described in Section 6.2.1. The wing’s structural

skeleton consists of a set of structural elements modeled as beams with rectangular cross

sections (width ¼ 2 cm and height ¼ 0.6 cm) and material properties: density ρb ¼ 1187 kg/m3,

Young’s modulus E ¼ 3.18 GPa, and shear modulus G ¼ 1.35 GPa (see Figure 10).

The inner and outer wing sections are oriented in space through the dihedral angles θB and θC.

However, the wings do not have a prescribed motion (pitching, flapping, and lagging) and the

wing’s roots are considered to be clamped to the fuselage. This dynamic configuration deacti-

vates the large rotations and displacements associated with primarymotions; therefore, the set of

governing equations (12) is reduced to the well-known set of classical ODEs for structural

dynamics,

m €p þK p ¼ Qp

� �T
: ð20Þ

After algebraic manipulations and after expressing secondary motions as a linear combination

of the free-vibration modes of the structure, the set of Eq. (20) is rewritten in a dimensionless

form

dt̂ t̂ p̂ t̂
� �

þ Λ̂ p̂ t̂
� �

¼
1

2
ρC L4C

� �

~m�1
Ψ

T G CP
AS

� �T
F̂A, ð21Þ

Figure 10. Computational wing model.
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where t̂ is the Dimensionless-time (t/TC); dt̂ t̂ denotes the second dimensionless time derivative;

p̂ is a column vector containing the modal coordinates associated with the free vibration

modes; ~m is the diagonal modal mass matrix; Λ̂ is a diagonal matrix that contains the natural

frequencies in a dimensionless form (reduced frequency);Ψ is the modal matrix; LC, TC and ρ
C

are characteristic properties of the problem [35]; and F̂A is the dimensionless form of the

aerodynamic loads [49]. The rest of the variables are as defined before.

The main goal of the numerical experiment is to compute the flutter velocity VF for different

dihedral angles, ranging from θB ¼ 0� to θB ¼ 45�, with steps of ΔθB ¼ 5�. θC ¼ 0� was used

for all values of θB. Due to the lack of primary motions, the dihedral angles remain constant

during the whole simulation. Additionally, the angle of attack is α ¼ 0� for all simulations.

The computational model consists of the following: (i) a finite-element mesh for the struc-

tural discretization consisting of 21 beam elements and (ii) a vortex-lattice mesh for the

aerodynamic surface consisting of 256 panels (8 in the chordwise direction and 32 in the

spanwise directions). In Figure 11, the authors show the flutter speed versus the dihedral

angle of the inner wing θB. It can be observed that VF decreases linearly from the maximum

value of 29.66 m/s (for θB ¼ 0�), between 10� and 30�, to the minimum of 18 m/s for θB ¼ 45�.

The curve represents a boundary for the stable and unstable regions. All flight conditions

located below the curve lead to a response that tends to a static equilibrium position for any

perturbation. On the contrary, the response for flight conditions located above the curve

achieves a periodic motion with an amplitude that depends on the flight speed, that could

lead to a collapse of the structure.

In Figure 12a, the amplitudes of three vibration modes are shown as functions of dimension-

less time for a flight condition (pointed out in Figure 11 by a) located in the stable region

Figure 11. Flutter speed versus dihedral angle of the inner wing.
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(free stream of 21 m/s and a configuration defined by θB ¼ 20�). An initial perturbation on

the second mode p̂2 0ð Þ ¼ 0:08 was imposed in the simulation. The amplitudes of all vibration

modes clearly decay, not to zero, but to their equilibrium positions. This is exclusively due to

the aerodynamic damping, because the structural model does not include any damping. In

Figure 12. (a) Aeroelastic response for three modes as function of the dimensionless time. (b) Phase portrait for two

modes (V
∞
¼ 21.5 m/s and θB ¼ 20�).

Figure 13. (a) Aeroelastic response for three modes as function of dimensionless time. (b) Phase portrait for two modes

(V
∞
¼ 24.5 m/s and θB ¼ 20� for both responses, blue-dashed line and red-solid line).
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Figure 12b, the authors show the phase portraits for two modes. Both modes have a behav-

ior similar to a stable focus.

In Figure 13a, the amplitudes of the same three modes are also shown as functions of time

but for a flight condition located in the unstable region (pointed out in Figure 11 by b, with a

free stream of 24.5 m/s and a configuration defined by θB ¼ 20�). Two initial conditions were

considered in the simulation. The corresponding responses (blue-dashed line and red-solid

line) are characterized by a transient behavior that evolves into periodic orbits whose ampli-

tudes are the same. In Figure 13b, the phase portraits for two of the modes clearly reveal the

presence of a limit-cycle oscillation (LCO). The trajectory associated with the first initial

condition approaches the LCO from outside, while the trajectory associated with the other

initial condition approaches the LCO from inside.

7. Concluding remarks

A combined structural and aerodynamic model for studying the aeroelastic behavior of

flying robots with flexible wings has been presented, and aeroelasticity studies have been

carried out for systems with flexible wings. The modular approach is based on the follow-

ing: (i) a general, nonlinear-unsteady vortex-lattice method, (ii) a segregated version of

Lagrange’s equations and the Floating Frame of Reference formalism for constrained sys-

tems, (iii) tight coupling of the aerodynamic model (UVLM) with the structural model, (iv)

radial basis functions to transfer information between the aerodynamic and structural

grids, and (v) an efficient and novel algorithm, based on a computational platform with

modular structure, to integrate the equations interactively and simultaneously in the time

domain.

As illustrated by the examples, the authors’ methodology will enable fully coupled aeroelastic

simulations for MAVs with flapping wings and/or morphing wings and further investigations

in this direction. Their development paves the way to advance the current methodology by

implementing a vortex-particle method to improve the description of the wakes and a fast

multi-pole method for computing the velocity field, and by including various other beam and

shell elements.

Acknowledgements

The authors gratefully acknowledge the partial support received from the Consejo Nacional de

Investigaciones Científicas y Técnicas, Argentina, the U.S. National Science Foundation

through Grant No. CMMI-1250187, the U.S. Air Force Office of Scientific Research through

Grant No. FA95501510134, and the Minta Martin Foundation. In addition, the authors would

like to thank the Grupo de Electrónica Aplicada (GEA) and Grupo de Matemática Aplicada

(GMA), Engineering School, Universidad Nacional de Río Cuarto, Argentina.

Computational Aeroelasticity of Flying Robots with Flexible Wings
http://dx.doi.org/10.5772/intechopen.69396

25



Author details

Sergio Preidikman1,2*, Bruno Antonio Roccia1,2,3, Marcos Leonardo Verstraete2,3,

Marcelo Federico Valdez2,4, Dean T. Mook5 and Balakumar Balachandran6

*Address all correspondence to: spreidik@umd.edu

1 Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba,

Argentina

2 Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina

3 Grupo de Matemática Aplicada, Facultad de Ingeniería, Universidad Nacional de Río

Cuarto, Argentina

4 Universidad Nacional del Salta, Argentina

5 Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and

State University, Blacksburg, VA, USA

6 Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

References

[1] Dickinson MH, Lehmann FO, Sane SP. Wing rotation and the aerodynamic basis of insect

flight. Science. 1999;284:1954–1960

[2] Ellington CP, Van Den Berg C, Willmott AP, Thomas ALR. Leading-edge vortices in insect

flight. Nature. 1996;384:626–630

[3] Wang ZJ, Birch JM, Dickinson MH. Unsteady forces and flows in flow Reynolds number

hovering flight: Two-dimensional computational vs robotic wing experiments. Journal of

Experimental Biology. 2004;207:269–283.

[4] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mecha-

nisms for lift production. Journal of Experimental Biology. 1973;59:169–230

[5] Ellington CP. The aerodynamics of hovering insects flight. III. Kinematics. Philosophical Trans-

actions of the Royal Society of London. Series B, Biological Sciences. 1984;305(1122):41–78

[6] Willmott AP, Ellington CP. The mechanics of flight in the hawkmoth Manduca sexta. I.

Kinematics of hovering and forward flight. Journal of Experimental Biology. 1997;200:2727–

2738

Aerial Robots - Aerodynamics, Control and Applications26



[7] Wang H, Zeng L, Liu H, Yin C. Measuring wing kinematics, flight trajectory and body

attitude during forward flight and turning maneuvers in dragonflies. Journal of Experi-

mental Biology. 2003;206:745–757

[8] Walker SM, Thomas ALR, Taylor GK. Deformable wing kinematics in free-flying

hoverflies. Journal of the Royal Society of London, Interface. 2009b;7(42):131–142

[9] Lehmann FO, Gorb S, Nasir N, Schützner P. Elastic deformation and energy loss of

flapping fly wings. Journal of Experimental Biology. 2011;214:2949–2961

[10] Mountcastle AM, Combes SA. Wing flexibility enhances load-lifting capacity in bumble-

bees. Proceedings of the Royal Society, Series B, Biological Sciences. 2013;280(1759):1–8

[11] Ishilhara D, Hoire T, Denda M. A two-dimensional computational study on the fluid-

structure interaction cause of wing pitch changes in dipteran flapping flight. Journal of

Experimental Biology. 2009;212:1–10

[12] Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B. Influence of flexibility

on the aerodynamic performance of a hovering wing. Journal of Experimental Biology.

2009;212:95–105

[13] Fitzgerald T, Valdez M, Vanella M, Balaras E, Balachandran B. Flexible flapping systems:

Computational investigations into fluid-structure interactions. The Aeronautical Journal.

2011;115(1172):593–604

[14] Smith MJC. The effect of the flexibility on the aerodynamics of moth wing: Towards the

development of flapping-wing technology. In: 33rd Aerospace Sciences Meeting and

Exhibit; 9–12 January; Reno: AIAA 95-0743; 1995

[15] Willis DJ, Israeli ER, Persson P, Drela M, Peraire J, Swartz SM, Breuer KM. A computational

framework for fluid structure interaction in biologically inspired flapping flight. In: 25th

AIAA Applied Aerodynamics Conference; 25–28 June; Miami: AIAA 2007-3803; 2007.

[16] Kim DK, Lee JS, Lee JY, Han JH. An aeroelastic analysis of a flexible flapping wing using

modified strip theory. In: SPIE 15th Annual Symposium Smart Structures and Materials;

09 March; San Diego, California: 69281O; 2008.

[17] Gopalakrishnan P, Tafti DK. Effect of wing flexibility on lift and thrust production in

flapping flight. Journal of Aircraft. 2010;48(5):2505–2519

[18] Nakata T, Liu H. A fluid-structure interaction model of insect flight with flexible wings.

Journal of Computational Physics. 2012;231:1822–1847

[19] Liu H. Integrated modeling of insect flight: From morphology, kinematics to aerodynam-

ics. Journal of Computational Physics. 2009;228:439–459

[20] Chimakurthi SK, Stanford BK, Cesnik CES, Shyy W. Flapping wing CFD/CSD aeroelastic

formulation based on a co-rotational shell finite element. In: 50th AIAA/ASME/ASCE/

Computational Aeroelasticity of Flying Robots with Flexible Wings
http://dx.doi.org/10.5772/intechopen.69396

27



AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2009–

2412; 4–7 May 2009; Palm Springs, California

[21] Shyy W, Udaykumar H, Rao M, Smith R. Computational Fluid Dynamics with Moving

Boundaries. New York, NY: Dover; 2007

[22] Malhan R, Baeder JD, Chopra I, Masarati P. CFD-CSD coupled aeroelastic analysis of

flexible flapping wings for MAVs applications. In: 54th AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference; 8–11 April 2013; Boston

[23] Lakshminarayan VK, Baeder JD. Computational investigation of micro-scale coaxial rotor

aerodynamics in hover. Journal of Aircraft. 2010;47(3):940–955

[24] Masarati P, Morandini M, Quaranta G, Vescovini R. Multibody analysis of a micro-aerial

vehicle flapping wing. In: Multibody Dynamics 2011; July 2011; Brussels

[25] Unger R, Haupt MC, Horst P, Radespiel R. Fluid-structure analysis of a flexible flapping

airfoil at low Reynolds number flow. Journal of Fluid and Structures. 2012;28:72–88

[26] Kroll N, Rossow CC, Schwamborn D, Becker K, Heller G. MEGAFLOW–a numerical flow

simulation tool for transport aircraft design. In: 23rd International Congress of Aeronau-

tical Sciences ICAS. 8–13 September; Toronto, Canada: Paper 2002–1105; 2002.

[27] ANSYS Inc. ANSYS11.0documentation. 2006. Available from: http://www.ansys.com

[28] Bose C, Badrinath S, Gupta S, Sarkar S. Dynamical stability analysis of a fluid structure

interaction system using a high fidelity Navier-Stokes solver. Procedia Engineering.

2016;144:883–890

[29] OpenFOAM. The Open Source CFD Toolbox User Guide. 2013. Available from: URL:

http://www.openfoam.org/

[30] Nayfeh AH, Balachandran B. Applied Nonlinear Dynamics: Analytical, Computational,

and Experimental Methods. New York, NY: Wiley; 1995 (2006)

[31] Murua J, Palacios R, Graham JMR. Applications of the unsteady vortex-lattice method in

aircraft aeroelasticity and flight dynamics. Progress in Aerospace Sciences. 2012;55:46–72

[32] Preidikman S, Mook DT. Time–Domain simulations of linear and non-linear aeroelastic

behavior. Journal of Vibration and Control. 2000;6(8):1135–1176

[33] Obradovic B, Subbarao K. Modeling of flight dynamics of morphing-wing aircraft. Jour-

nal of Aircraft. 2011;48(2):391–402

[34] Taha HE, Hajj MR, Nayfeh AH. Flight dynamics and control of flapping-wing MAVs: A

review. Journal of Nonlinear Dynamics. 2012;7(2):907–939

[35] Preidikman S. Numerical simulations of interactions among aerodynamics, structural

dynamics, and control systems [Ph.D. thesis]. Blacksburg: Virginia Polytechnic Institute

and State University; 1998

[36] Kalmar-Nagy T, Stanciulescu I. Can complex systems really be simulated? Applied Math-

ematics and Computation. 2014;227:199–211

Aerial Robots - Aerodynamics, Control and Applications28



[37] Roccia BA, Preidikman S, Balachandran B. Computational dynamics of flapping wings in

hover flight: A co-simulation strategy. AIAA Journal. In Press, pp. 1–17, 2017.

[38] Roccia BA, Preidikman S, Massa JC, Mook DT. A modified unsteady vortex-lattice

method to study the aerodynamics of flapping-winds in hover flight. AIAA Journal.

2013;51(11):2628–2642

[39] Konstandinopoulos P, Mook DT, Nayfeh AH. A numerical method for general, unsteady

aerodynamics. In: 7th Atmospheric Flight Mechanics Conference; 19–21 August; Albu-

querque, New Mexico: AIAA-81–1877; 1981

[40] Van Garrel A. The Development of a Wind Turbine Aerodynamics Simulation Module,

ECN Rept. ECN-C-03-079, Delft Univ. of Technology, Delft; 2003

[41] Katz J, Plotkin A. Low-Speed Aerodynamics. 2nd ed. New York, NY: Cambridge Univer-

sity Press; 2001. pp. 421–495

[42] Mook DT, Maddox SA. Extension of a vortex-lattice method to include the effects of

leading-edge separation. Journal of Aircraft. 1974;11(2):127–128

[43] Shabana AA. Dynamics of Multibody Systems. 3rd ed. Cambridge: Cambridge Univer-

sity Press; 2010

[44] Bauchau OA. Flexible Multibody Dynamics. New York, NY: Springer; 2011

[45] Cook RD, Malkus DS, Plesha ME, Witt RJ. Concepts and Applications of Finite Element

Analysis. 4th ed. New York, NY: Wiley; 2001.

[46] Beckert A, Wendland H. Multivariate interpolation for fluid-structure-interaction

problems using radial basis functions. Aerospace Science and Technology. 2001;5:

125–134

[47] Buhmann M. Radial Basis Functions. Cambridge: Cambridge University Press; 2005

[48] Wendland H. Scattered Data Approximation. Cambridge: Cambridge University Press; 2005

[49] Verstraete ML. Simulaciones numéricas del comportamiento aeroelástico de vehículos

aéreos no tripulados con alas que cambian de forma [Ph.D. Dissertation]. Argentina:

Engineering School, National University of Rio Cuarto; 2016

[50] Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems.

Computational Mathematics Applied to Mechanical Engineering. 1972;1:1–16

[51] Ascher UM, Chin H, Petzold LR, Reich S. Stabilization of constrained mechanical systems

with DAEs and invariant manifolds. Journal of Mechanics of Structures and Machines.

1995;23:135–158

[52] Carnahan B, Luther HA, Wilkes JO. Applied Numerical Methods. New York, NY: John

Wiley and Sons; 1969

[53] Roccia BA, Preidikman S, Massa JC, Mook DT. Development of a kinematical model to

study the aerodynamics of flapping-wings. International Journal of Micro Air Vehicles.

2011;3(2):61–88

Computational Aeroelasticity of Flying Robots with Flexible Wings
http://dx.doi.org/10.5772/intechopen.69396

29



[54] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in

flapping motion. Journal of Experimental Biology. 2002;205:55–70

[55] Ansari SA, Żbikowski R, Knowles K. Non-linear unsteady aerodynamics model for

insect-like flapping wings in the hover. Part 1: Methodology and analysis. Journal of

Aerospace Engineering. 2006;220:61–83

[56] Ansari SA, Żbikowski R, Knowles K. Non-linear unsteady aerodynamics model for

insect-like flapping wings in the hover. Part 2: Implementation and validation. Journal of

Aerospace Engineering. 2006;220:169–186

[57] Roccia BA, Preidikman S, Verstraete ML, Mook DT. Influence of spanwise twisting and

bending on lift generation in MAV-like flapping wings. Journal of Aerospace Engineering

(ASCE), paper 04016079; 2016. pp. 1–17

[58] Fry SN, Sayaman R, Dickinson MH. The aerodynamics of hovering flight in Drosophila.

Journal of Experimental Biology. 2005;208:2303–2318

[59] Tennekes H. The Simple Science of Flight: From Insects to Jumbo Jets. Cambridge: MIT

Press; 2009

[60] Liu T, Kuykendoll K, Rhew R, Jones S. Avian wing geometry and kinematics. AIAA

Journal. 2006;44(5):954–963

[61] Verstraete ML, Preidikman S, Roccia BA, Mook DT. A numerical model to study the

nonlinear and unsteady aerodynamics of bioinspired morphing-wing concepts. Interna-

tional Journal of Micro Air Vehicles. 2015;7(3):327–345

Aerial Robots - Aerodynamics, Control and Applications30


