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1. Basic research

Studies of discordant xenografts, such as guinea‐pig to rat and pig to human, were started 

more than 30 years ago. The first subject to be addressed was the mechanism of discordant 
xenograft rejection [1], i.e., hyperacute rejection. After verification of the reaction of the com‐

plement system, xeno‐specific glycoantigens in pig‐to‐human xenotransplantation, such as 
the α‐gal epitope, were then studied [2, 3], followed by the other immune systems.

Therefore, the first gene modification on pigs was focused on issues related to comple‐

ment regulatory proteins (CRPs) such as Membrane Cofactor Protein (MCP, CD46), Decay 
Accelerating Factor (DAF, CD55), and CD59 [4]. DAF (CD55)‐transgenic pigs were then first 
produced in 1994 [5, 6], followed by other CRP‐transgenic pigs [7, 8]. On the other hand, dif‐

ferent from the mouse system, pig embryonic stem (ES) cells had not yet been established. 
Therefore, other methods for reducing the α‐gal epitope, such as the overexpression of α1,2 
fucosyltransferase [9], End‐β‐GalC [10], and GnT‐III [11, 12], were examined [13].

Fortunately, the gene targeting technique was combined with (fetus) fibroblasts and the 
nuclear transfer techniques, resulting in the successful development of α‐gal knockout (KO) 
pigs in 2002 [14].

Many kinds of CRP and glycoantigens [15] are now being nominated for transgenic and 
knockout, respectively, based on improved genetic engineering (GE) techniques. The next 
obstacle to xenograft is cellular rejection by the innate immune system, which comprises natu‐

ral killer (NK) cells and monocytes/macrophages.
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Strategies for suppressing NK function on the pig cells have been extensively examined. 
HLA‐class Ia molecules, such as HLA‐C, but also class Ib, HLA‐G1 [16, 17] and –E [18, 19], has 

been considered in the case of the transgenic pig. In addition, changing the pattern of glyco‐

sylation on the surfaces of pig cells is also a reasonable strategy [20–24].

The issue of how to regulate monocytes/macrophages, it is now known that only CD47 [25] 

binds to SIRPα on the surface of monocytes/macrophages that contains the immune receptor 
tyrosine–based inhibition motif (ITIM). Therefore, until quite recently, other routes to the down‐

regulation of monocytes/macrophages have not been not well studied.

However, especially in these past 5 years, additional key molecules for suppressing mono‐

cytes/macrophages have clearly been identified. Thus, for example, HLA class Ib, HLA‐G1 
[26], and –E [27] were identified as having a suppressive function not only for NK cells but 
also for monocytes/macrophages as well. Monocytes/macrophages actually have common 
receptors in common with NK cells. In addition, changes in glycoantigens, such as the overex‐

pression of the α2,6‐sialic acids, as well as other methods [28], also function to downregulate 

monocytes/macrophages [29].

In addition, meanwhile, the many strategies for suppressing the movement of T cells have 
been proposed, such as class II dominant negative (CIIDN) [30, 31], HLA class I‐KO [32], FasL, 
and tumor necrosis factor receptor I IgG‐Fc (TNFRI‐Fc) [33]. In addition to immunological 
studies, studies of coagulation systems, such as thrombomodulin (TM), the tissue factor path‐

way inhibitor (TFPI), the endothelial cell protein C receptor (EPCR), CD39 and CD73, and 
anti‐apoptotic and anti‐inflammatory genes, such as heme oxygenase 1 (HO‐1) and A20, have 
also progressed.

2. Genetic engineering

The most progress during these past 5 years involves gene targeting technology. One involves 
zinc‐finger nucleases (ZFN) [34] and is continued by the transcription activator‐like effector 
nuclease (TALEN) [35] method, and finally the clustered regularly interspaced short palindromic 
repeats/CRISPR associated protein 9 (CRISPR/CAS) [36]. These methods had brought about a 
revolution in certain aspects of gene‐targeting technology. Therefore, the KO of a special gene 
became extremely easier than in the past. Not only α‐gal KO but also cytidine monophospho‐ 
N‐acetylneuraminic acid hydroxylase (CMAH, the gene for producing the Hanganutziu‐
Deicher antigen; NeuGc)‐KO, SLA class I‐KO, β4GalNT2‐KO [37], etc. have been established 
in many institutes, combined with transgenic human genes. In addition, the 2A system is 
now popular in our field and also was a great help in producing transgenic pigs with multi‐
genes [38, 39].

In addition, as a new strategy, attempts are being made to retain the fixed expression of 
transgenes, because the transgenic expression of each gene was sometimes not stable over 
generations. Knockin (KI) human genes to the ROSA locus of the pig genome became of 
interest [40].
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3. Preclinical study

During these 5 years since the first version, remarkable progress has been made in the area of 
preclinical xenotransplantation experiments [41–43].

Surprisingly, heterotopic hearts from the GE‐pigs continued to beat for almost 2.5 years, 
when implanted in the monkey abdomen [44], and pig life‐supporting kidney could function 
for nearly 1 year in monkeys [45].

Concerning islet cells, trials in which islet cells from GE‐pigs are transplanted in monkeys 
have been reported. Several groups have reported survival periods of more than 1 year, using 
adult pig islets (APIs) [46, 47]. Generally speaking, results using neonatal porcine islet‐like 
cell clusters (NPCCs) were worse than those using APIs. It is noteworthy that one group 
reported a survival of over 600 days using API from wild‐type pigs [48], suggesting that the 

combination of API from GE‐pigs and excellent drug therapy may permit islets to survive for 
more than 2–3 years.

4. Porcine endogenous retrovirus (PERV)

Concerning the problems associated with the porcine endogenous retrovirus (PERV) [49], 

new studies have appeared during these past 5 years, trials to knockout all PERV genes from 
the pig genome were done using the new techniques, ZFN and CRISPR [50, 51]. However, 
success has not yet been achieved.

However, in spite of hundreds of patients undergoing transplantation of pig organs or tissue, 
no reports have appeared of suffering [52]. The controversy associated with the risks of PERV 
has already been minimized.

5. For clinic

In Japan, in 2014, a law related to the pig cell (islets) transplants was passed. In 2016, the 
guidelines for xenotransplantation were revised. At this moment, clinical detection systems 
for identifying infectious diseases from pig tissue are being improved. Thus, it has already 
become possible to start clinical pig islets transplantation. In addition, in the USA, the council‐
ors of the International Xenotransplantation Association (IXA) will be holding meetings with 
FDA‐staff concerning the start of clinical trials in this September at IXA2017 in Baltimore. We 
are hoping for positive results from this meeting.

On the other hand, regarding clinical trials, many trials have completed and some are ongo‐

ing, such as in Sweden [53], China [54], Mexico [55], Argentina, Russia, the USA, and New 
Zealand [56].
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In the near future, possibly within 1 or 2 years, in Japan, the USA, and Europe, some clinical 
trials involving the use of genetic‐modified pigs or microencapsulation pancreatic islets in 
xenotransplantation will start.
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