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Abstract

This chapter focuses on understanding the electromagnetic response of nanoscopic
metallic antennas through a classical computational electromagnetic algorithm: volu-
metric method of moments (V-MoMs). Under the assumption that metals only respond to
external electromagnetic disturbance locally, we rigorously formulate the light-nanoantenna
interaction in terms of a volume integral equation (VIE) and solve the equation by using
the method of moments algorithm. Modes of a nanoantenna, as the excitation indepen-
dent solution to the volume integral equation (VIE), are introduced to resolve the antenna’s
complex optical spectrum. Group representation theory is then employed to reveal how the
symmetry of a nanoantenna defines the modes’ properties and determines the antenna’s
optical response. Through such a treatment, a set of tools that can systematically treat the
interaction of light with a nanoantenna is developed, paving the road for future nanoantenna
design.

Keywords: computational electromagnetics, nanoantennas, optical response, modal
analysis, symmetries, group representation theory

1. Introduction

In the past decade, the grand leap in nanotechnology has granted us the very capability to

reproduce every single object in the macroscopic world nanoscopically. Since classical antennas

have been so optimized for controlling the low-frequency (normally below 1 THz) electromag-

netic interaction, their topology naturally becomes the first option to be explored at nanoscale.

The nanoscale version of classical antennas, which is always referred to as a “nanoantenna,” has
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been proven to provide an effective route to couple photons in and out of nanoscale volumes.

They are considered as excellent tools to probe and control light-matter interaction at the nano-

scale (e.g., the interaction between light and molecules) and therefore have become an essential

element in the discipline of nanophotonics [1, 2]. Till now, the concept of nanoantennas has

been applied to many different fields [3–11] covering single-molecule detection, magnetic record-

ing, bio-imaging, photochemistry, nanoscale signal processing, optical functional material, and

so on.

The general physics of the interaction between electromagnetic fields and the collective oscil-

lations of free electrons in a metal can be described by Maxwell’s equations. This physical

observation enables the reuse of traditional numerical techniques developed within the micro-

wave community. On the one hand, well packaged in commercial solvers, differential equa-

tion-based techniques, the finite difference time domain (FDTD) method [12], and the finite

element method (FEM) [13], to name a few, are widely employed by experimental physicists.

On the other hand, integral equation-based techniques [14], where the light-nanoantenna

interaction is mathematically depicted by surface integral equations (SIEs) or volume integral

equations (VIEs), are also of essential importance. Since an integral equation involves a pre-

calculated Green’s function (analytically known) and only targets the scatterers, that is, the

nanoantennas, it can provide an unbeatable accuracy, efficiency, and physical clarity compared

to their differential equation counterpart.

To reach an integral equation formalism, one may start from the equivalence principle, match

the electromagnetic field at the nanoantenna’s boundary, and obtain surface integral equations.

Another possibility is to use the volume equivalence principle. The nanoparticles are replaced

by equivalent-induced electric polarization currents. With discretized boundaries or bodies,

both the surface integral equation and the volume integral equation can be subsequently

solved by the method of moments (MoMs) algorithm [15].

In this chapter, we solely focus on the volume integral equation formalism. A review of the

surface integral equation formalism will be presented separately in the future. This chapter is

organized as follows. In Section 2, under the local response material assumption, we formulate

the interaction between light and a nanoantenna, which is of an arbitrary shape immersed in a

generic environment composed of several dielectric regions, in terms of a volume integral

equation. Then, the volume integral equation is solved by the method of moments algorithm.

To validate our implementation and demonstrate its diversity, simulation results are

contrasted with a wide range of experimental data.

In Section 3, the notions of eigenmodes and natural modes of a nanoantenna are presented. A

mode is a fixed spatial distribution of some physical quantities (e.g., charge, current, electric

field, magnetic field, etc.), and is only determined by the material, the geometry, and the

environment of the structure. It is thus independent of the incident field. Two kinds of modes

are introduced: eigenmodes and natural modes. While the eigenmodes are still frequency

dependent, the natural modes are frequency independent. The latter represent the most fun-

damental properties of a structure. Different from a closed system (e.g., a cavity), the modes of

an open system (i.e., a nanoantenna) are not necessarily orthogonal in an inner product sense.

This implies a possible interference between the modes which is the very cause of the forma-

tion of an asymmetric line, that is, a Fano resonance, in a nanoantenna’s scattering spectrum.
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Section 3 indicates that the modes of a nanoantenna are not necessarily orthogonal. Neverthe-

less, the condition under which the modes are orthogonal or not orthogonal is not specified. In

Section 4, we supply such a condition by using symmetry arguments. The relation between the

symmetries of a nanoantenna and the mode orthogonality is rigorously put into the mathe-

matical framework of the group representation theory. It is found that the modes that belong to

different irreducible representations are orthogonal to each other in an inner product sense,

and therefore no interference between these modes is allowed.

2. Volume integral equation formulation and volumetric method of

moments algorithm for light–nanoantenna interaction

Assume a nanoantenna in space (see Figure 1) shone upon by an incident plane wave. This

plane wave is generated by a current source which is very far from the scatterer. It oscillates

with a time dependency ejωt with an angular frequency ω. A general field relation, which is the

total field, is the sum of the scattered field and the incident field, must be satisfied at every

point in the space,

Etot r,ωð Þ ¼ Escat r,ωð Þ þ Einc r,ωð Þ, ð1Þ

Especially, at the nanoantenna the total electric field can be linked with the induced current

which includes both the conduction currents due to the motion of free electrons and the

displacement currents due to the motion of bound electrons through a dielectric function,

Jind r,ωð Þ ¼ jω ε r,ωð Þ � ε0ð ÞEtot r,ωð Þ: ð2Þ

In Eq. (2), ε0 is the vacuum permittivity. However, in general it can be understood as the

ambient background permittivity where the nanoantenna is positioned. ε r,ωð Þ is a function of

Figure 1. An abstract model for the light interaction with a nanoantenna (scatterer). In the figure, the scatterer is

composed of a material characterized by electric and magnetic parameters, that is, εV r,ωð Þ and μ0. Here, the material is

assumed to be non-magnetic. For the sake of conciseness, a homogeneous background is assumed and plotted but the

background can be inhomogeneous. Lastly, the incident field is generated by a predefined current distribution.
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observation point and frequency and represents the permittivity of the material constituting

the nanoantenna. Here, the locality (i.e., the material property does not depend on the source

point and hence no non-local behavior is assumed), the homogeneity (i.e., within the

nanoantenna, the permittivity is a constant), and the isotropy (i.e., the dielectric function is a

scalar) of the material are assumed. The relation stated in Eq. (2) is the so-called volume

equivalence principle.

Further, it should be realized that the scattered field is induced by the induced current (as in

Eq. (2)),

Escat r,ωð Þ ¼ �jωμ0

ð

V 0

G r, r0,ωð Þ � Jind r0,ωð Þdr0: ð3Þ

In Eq. (3), μ0 is the vacuum permeability and, in the most general case, should be understood

as the background permeability. G r, r0,ωð Þ is a Dyadic Green’s function describing how an

elementary-induced current Jind r0,ωð Þ at a source point r0 generates an electric field at an

observation point r: The volume integral takes into account all the induced current spanning

the nanoantenna and gives the scattered field at an observation point r.

Focusing on the volume of the nanoantenna, substituting Eqs. (2) and (3) into Eq. (1) and

putting all the terms containing the induced current on the left side of the equation, it is readily

found that

Jind r,ωð Þ

jω ε r,ωð Þ � ε0ð Þ
þ jωμ0

ð

V 0

G r, r0,ωð Þ � Jind r0,ωð Þdr0 ¼ Einc r,ωð Þ: ð4Þ

Eq. (4) is the main equation in this chapter. Since the integral is taken with respect to the

volume of the nanoantenna, in this manner, we formulate the interaction between light and a

nanoscopic scatterer in terms of a volume integral equation. In short, Eq. (4) can be recast in an

operator form,

Z Jind r,ωð Þð Þ ¼ Einc r,ωð Þ: ð5Þ

The Z operator is named as the impedance operator since this operator links current density

with electric field and has the same unit as an impedance. This operator consists of two parts,

Z ¼ Ztot þ Zscat: ð6Þ

The first term in Eq. (6) is called the total field operator that links the induced current with the

total electric field,

Etot r,ωð Þ ¼ Ztot Jind r,ωð Þð Þ ¼
Jind r,ωð Þ

jω ε r,ωð Þ � ε0ð Þ
: ð7Þ

The second term in Eq. (6) is called the scattered field operator that links the induced current with

the scattered field,
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Zscat Jind r,ωð Þð Þ ¼ jωμ0

ð

V 0

G r, r0,ωð Þ � Jind r0,ωð Þdr0 ð8Þ

By inverting the impedance operator in Eq. (5), in principle the induced current Jind r,ωð Þ can be

calculated. The scattered field in the space other than the region of the nanoantenna can be further

calculated by using Eq. (3), and therefore the total field at any point in space can be recovered.

Since analytical solutions for the main equation (4) only exist for a few cases (e.g., the Mie

solution in case of a sphere), in general the equation has to be solved numerically. To this end, a

method of moments algorithm can be employed [15]. The algorithm starts with the

discretization of the antenna with tetrahedral or hexahedral blocks (see Figure 2) and further

assumes that the current density flowing from one tetrahedral (hexahedral) element to a

neighboring one forms a certain basis function ϕi rð Þ, for example, a rooftop shape [16, 17].

Approximating the induced current Jind r,ωð Þ by a weighted sum of the basis functions,

Jind r,ωð Þ ¼
X

n

i¼1

wiϕi rð Þ, ð9Þ

and inserting Eq. (9) into Eq. (5), one equation with n unknowns is found

X

n

i¼1

Z wiϕi r
0ð Þ

� �

¼ Einc r,ωð Þ ð10Þ

In order to construct a system ofN equations withN unknowns, a testing procedure is applied.

Assuming that a test function is ψj rð Þ, it is obtained that

zji
� �

wif g ¼ ej
� �

: ð11Þ

In Eq. (11), zji
� �

, wif g, and ej
� �

represent the impedance matrix, the vector containing the

weighting coefficients as in Eq. (9), and the vector containing the projection of the incident field

onto the jth basis function. zji
� �

and ej
� �

are

Figure 2. Continuum description (a), discretized description (b), and tetrahedral/hexahedral blocks (c) used to mesh the

continuous volume.
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zji ¼ 〈ψj rð ÞjZjϕi rð Þ〉 ¼

ð

V j

ψj rð Þ∙ϕi rð Þdr

jω ε r,ωð Þ � ε0ð Þ
þ

ð

V j

ψj rð Þ

ð

V i

G r, r0,ωð Þ �ϕi r
0ð Þdr0, ð12Þ

ej ¼ 〈ψj rð ÞjEinc r,ωð Þ〉 ¼

ð

V j

ψj rð ÞEinc r,ωð Þdr: ð13Þ

Notice that in Eqs. (12) and (13), the integrations are with respect to the volume of the ith basis

function, V i, and the jth test function, V j. By inverting the impedance matrix, the induced

current can be reconstructed and the related physical quantities, for example, the near field

and the far field of the nanoantenna, can be calculated.

In our method of moments implementation, Green’s function for a planar stratified back-

ground is considered. Instead of using the Dyadic form of Green’s function as in the above

equations, a hybrid mixed-potential form is employed [18–22]. In the spirit of the Fourier

transform, Green’s function is analytically constructed in the Fourier space (the spectral

domain) and then numerically transformed back to the real space (the spatial domain). In the

latter step, all the singular behaviors in the Fourier space, for example, the branch point,

the pole, the slowly decreasing asymptotic behavior when an observation point is close to a

source point, are manually removed and analytically converted back to the real space so that

the numerical integration is considerably facilitated.

Besides, if a hexahedral block (see Figure 2(c)) is used, a basis function that varies separately in

the transverse direction and in the vertical direction is chosen. A transverse basis function reads,

ϕi rð Þ ¼ Δi x, yð ÞΠi zð Þ: ð14Þ

In Eq. (14), the functions Δi x, yð Þ and Πi zð Þ are triangular and rectangular functions,

Δiðx, yÞ ¼

ρi

li
, ρi ¼ ðx, yÞ ∈ Si

0, ρi ¼ ðx, yÞ ∉ Si

8

<

:

ð15Þ

Πi zð Þ ¼
1, z�i < z < zþi

0, z�i > z or z > zþi :

(

ð16Þ

In Eq. (15), Si denotes the base rectangle of the ith hexahedral block. ri gives the distance of a

point away from a given edge. li emphasizes the distance between the chosen edge and its

opposite edge. In Eq. (16), the superscripts “+” and “�” delimit the upper limit and the lower

limit of the block, respectively. A vertical basis function is

ϕi rð Þ ¼ Πi x, yð ÞΔi zð Þ: ð17Þ

In Eq. (17), the triangular and rectangular functions are similarly defined as in Eqs. (15) and

(16). Notice that Green’s function for a general planar multilayer structure behaves differently
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in the transverse direction (which is described mathematically by a Bessel function and phys-

ically by a cylindrical wave) and in the vertical direction (which is described mathematically

by an exponential function and physically by a plane wave). For example, a generic form of

Green’s function is

ð

∞

0

Ai kρ
� �

J0 kρρ
� �

ejkiz jz�z0 jdkρ: ð18Þ

In Eq. (18), kρ is the transverse wave number and kiz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2i � k2
ρ

q

is the corresponding vertical

wave number in the ith layer. Ai kρ
� �

represents the amplitude of a field component in the ith

layer.

Based on the above facts, the sevenfold integral (including three from the inner volume, and

three from the outer volume, and one from the inverse Fourier transform) in the second term of

Eq. (12) can be reduced to a fivefold integral. Take the coupling between a horizontal test

function and a horizontal basis function as example,

ð

V j

ψj rð Þ

ð

V i

G r, r0,ωð Þ �ϕi r
0ð Þdr0 ¼

ð

sj

Δj x, yð Þ

ð

Si

ð

∞

0

Ai kρ
� �

J0 kρρ
� �

ðzþ
j

z�
j

ðzþ
i

z�
i

ejkiz jz�z0jdz0dz dkρ

( )

Δj x, yð Þds0ds

ð19Þ

In Eq. (19), the twofold integral with respect to the vertical direction can be performed analyt-

ically. In this way, an enormous amount of numerical efforts can be saved. Please notice that in

order to cope with the recently increasing interest in nanoscale antenna arrays, the calculation

Figure 3. (a) The scanning electron microscope (SEM) image, (b) the depth profile, and (c) the geometry of a “G” shape

structure with a period of 2400 nm. This figure is reproduced from [25].
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of periodic Green’s functions has been implemented on the basis of a quasi three-dimensional

(3-D) mixed potential integral equation formulation [23, 24].

The above MoM implementation is extremely efficient for the so-called extruded structures and

can be immediately confirmed by experimental data. Take the Nickel (Ni)-based G shape

structure (see Figure 3) as an example. In the simulation, the structure is illuminated by

horizontally polarized light. As a result, the induced current is highly localized along the

structure’s diagonal (see Figure 4(a)). Remembering that the current is directly related with the

electric field via Eq. (2), a corresponding intensive electric field concentration can be anticipated

(see the second harmonic generation image of the structure’s near field in Figure 4(b)). This

electromagnetic response induces a local thermal effect, that is, heat accumulation (due to the

large Ohmic loss in Ni). The generated heat can go beyond the melting point and finally

decorates the optical response of the structure. Similar simulation—experiment comparison—

can be found in [26–31].

3. Eigenmodes and natural modes of a nanoantenna

3.1. Eigenmodes of a nanoantenna

The impedance operator in Eq. (5) and accordingly the discretized version in Eq. (11) actually

include all the electromagnetic properties of the light-nanoantenna interaction problem. As

mentioned in the previous section, for a given incident electric field (e.g., a plane wave or the

electromagnetic fields emitted by a fluorescent molecule), the induced polarization current in a

nanoantenna can be calculated and the associated scattered fields can be readily derived. This

analysis scheme indeed works for every nanoantenna.

Nevertheless, it should be noted that the solution is incident field dependent. In some cases, due

to the complexity of a nanoantenna’s geometry (e.g., the G-shape structure), an excessive

amount of information can be read from a single simulation, for example, a very complex

near-field pattern, multiple resonances in the extinction, and scattering spectra. In this sense,

Figure 4. The optical response of the G-shape structure. (a) In the simulation, the G shape structure is excited by

horizontally polarized normally incident light. The spatial distribution of the induced current intensity is plotted with

the spatial positions where the current intensity is marked by red circles (in print: bold dashed lines). The plot is coded

from blue to yellow to denote the strength of the induced current’s intensity. (b) In the nonlinear experiment, the excitation

condition is the same as in (a). The near field pattern is captured by a Second Harmonic Generation (SHG) imaging

technique. The plot is coded from blue to white to denote the strength of the field intensity. (c) In the Atomic Force

Microscopy (AFM) experiment, the bumps due to the local heat accumulation are demonstrated.
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the incident field-dependent full solution may not be a good starting point for an analysis. To

cope with this problem, in this section we pursue two incident field-independent solutions,

that is, based on the eigenmodes and natural modes of a nanoantenna, and reveal their distinct

roles in determining the antenna’s response.

First, we investigate at the eigenvalue problem derived from Eq. (5) [32, 33],

Z Jn r,ωð Þð Þ ¼ λn ωð ÞJn r,ωð Þ: ð20Þ

In Eq. (20), Z is the impedance operator defined in Eq. (5). For a specific angular frequency

ω, Jn r,ωð Þ is the nth eigenmode with an eigenvalue λn ωð Þ. Some extra attention should be paid

to the terminology. Here, we define the eigenmodes of a nanoantenna based on the impedance

operator Z. This definition is different from the term “eigenmode” (or “normal mode”) in

quantum optics. There, eigenmodes are defined based on a differential operator (e.g., the

differential operator in the Helmholtz equation), while here eigenmodes are defined linked to

the integral operator as in Eq. (20).

Under the assumption that the material constituting a nanoantenna is locally responding,

homogeneous and isotropic, the total field operator Ztot (defined in Eq. (7)) is a scalar. On this

basis, we can distinguish two different contributions to the eigenvalue,

λn ωð Þ ¼ λn, tot ωð Þ þ λn,scat ωð Þ, λn, tot ωð Þ ¼
1

jω ε r,ωð Þ � ε0ð Þ
: ð21Þ

Apparently, λn, scat ωð Þ is associated with the scattering field operator (defined in Eq. (8)) and

hence is controlled by the geometry (as the volume integral in Eq. (8) is taken with respect to

the volume of the nanoantenna) and the environment of the nanoantenna (as the involvement

of the Dyadic Green’s function in Eq. (8)). After removing the total field operator from both

sides of Eq. (20), it is obtained that

Zscat Jn r,ωð Þð Þ ¼ λn,scat ωð ÞJn r,ωð Þ: ð22Þ

From Eq. (22), we can readily conclude that

When the material constituting a nanoantenna is local, homogeneous, and isotropic, the antenna’s

eigenmodes are indeed independent from the material of the nanoantenna. They only depend on the

antenna’s geometry and environment.

Due to the reciprocity of Green’s function, Zscat is a complex symmetric operator (i.e., the

operator contains complex elements and its transpose is equal to itself Zscat ¼ ZT
scat ), which

further implies that the eigenmodes are complex functions and orthogonal in a pseudo inner

product sense [32],

〈Jm r,ωð ÞjJn r,ωð Þ〉 ¼

ð

V 0

Jm r,ωð Þ � Jn r,ωð Þdr ¼
1 m ¼ n
0 m 6¼ n

:

�

ð23Þ

By expanding the induced current in terms of the eigenmodes,
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Jind r,ωð Þ ¼
X∞
n¼1

cnJn r,ωð Þ, ð24Þ

and projecting Eq. (5) onto the eigenmodes in a pseudo inner product sense, another matrix

equation can be received,

zmnf g cnf g ¼ emf g: ð25Þ

In Eq. (25), emf g is short for the projection of the incident field onto the mth eigenmode,

em ¼

ð

V 0

Jm r,ωð Þ � Einc r,ωð Þdr: ð26Þ

Eq. (25) is very similar to Eq. (11) in the sense that Eq. (11) uses local basis functions to

approximate the induced current, while in Eq. (25) eigenmodes which can be deemed as global

basis functions are employed. However, different from Eq. (11), which is in general a full

matrix, due to the orthogonality property presented in Eq. (23), the impedance matrix zmnf g is

a diagonal one. The weighting coefficients in Eq. (25) can be then evaluated as

cn ωð Þ ¼

ð
V 0
Jn r,ωð Þ � Einc r,ωð Þdr

λn ωð Þ
: ð27Þ

Thus, combining Eq. (24) with Eq. (27), it can be concluded that

The induced current is a weighted sum of eigenmodes. The contribution of an eigenmode is deter-

mined by two factors: on the one hand the fact whether the incident field can efficiently excite the

eigenmode (the denominator of Eq. (27)); on the other hand the absolute value of the eigenvalue, that

is, when the absolute value of the eigenvalue reaches its minimum, the corresponding weight reaches

its maximum and hence the eigenmode reaches its resonance.

Interestingly, it should be noted that we may use the concept of inner product as well in the

construction of Eq. (25). In contrast to the definition of a pseudo inner product, which is

ð

V

Jm r,ωð Þ � Jn r,ωð Þdr, ð28Þ

the inner product is defined as

ð

V

J�m r,ωð Þ � Jn r,ωð Þdr: ð29Þ

Comparing Eq. (28) with Eq. (29) immediately reveals the key difference between the notion of

the pseudo inner product and the notion of the inner product, namely the extra complex

conjugate operation. In classical electromagnetism, the pseudo inner product is more associ-

ated with the reciprocal properties, while the inner product is emphasized in the definition of
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energy/power-related physical quantities, for example, the work done to a scatterer by an

incident field.

In this spirit, we can reformulate Eqs. (24)–(27) while using the concept of inner product,

z
0

mn

n o

cnf g ¼ e
0

m

n o

: ð30Þ

z
0

mn ¼

ð

V j

J�m r,ωð Þ

ð

V i

Z Jn r0,ωð Þð Þdr0dr, ð31Þ

e
0

m ¼

ð

V 0

J�m r,ωð Þ � Einc r,ωð Þdr: ð32Þ

In Eq. (30), the impedance matrix and the vector containing the projection of the incident field

on the mth eigenmode are primed to emphasize that the inner product is applied here. Notice

that now the impedance matrix z
0

mn

n o

is not a diagonal matrix anymore. This is because the

eigenmodes are only orthogonal in a pseudo inner product sense but are not orthogonal in an

inner product sense.

Further, we can see the right-hand side of Eq. (20) as an “eigen” incident field,

Einc,n r,ωð Þ ¼ λn ωð ÞJn r,ωð Þ: ð33Þ

Using Eq. (33), Eq. (31) becomes

z
0

mn ¼

ð

V j

J�m r,ωð Þ � Einc,n r,ωð Þdr: ð34Þ

Hence, physically z
0

mn gives the work done by the nth“eigen” incident field on the mth eigen-

mode and quantifies the energetic coupling between different eigenmodes. We can give the

following two definitions,

Definition 1: When n ¼ m, z
0

nn ωð Þ is defined as the self-impedance of the nth eigenmode.

Definition 2: When n 6¼ m, z
0

mn ωð Þ is defined as the mutual impedance between the mth eigenmode

and the nth eigenmode.

Quantitatively, by evaluating Eq. (34), a self-impedance and a mutual impedance are related

with the eigenvalues,

z
0

mn ωð Þ ¼ dmn ωð Þλn ωð Þ: ð35Þ

In Eq. (35), dmn ωð Þ is the inner product of the mth and the nth eigenmodes and represents a

unitless factor taking into account the fact that the eigenmodes are not orthogonal in the inner

product sense, that is, not energetically orthogonal
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dmn ωð Þ ¼

ð

V

J�m r,ωð Þ � Jn r,ωð Þdr: ð36Þ

Note that in Eqs. (30), (31), and (34), the factor 1
2 has been systematically omitted.

3.2. Natural modes of a nanoantenna

As a special case of Eq. (5) where the eigenvalue is at zero, we can define the natural mode for a

nanoantenna [34, 35]

Z J
α
r,ωαð Þð Þ ¼ 0 ð37Þ

In Eq. (37), J
α
r,ωαð Þ is the nth natural mode with a natural frequency ωα. Different from the

eigenmodes discussed in the previous section, the natural modes are independent of fre-

quency. Mathematically, the natural modes originate from the impedance operator’s null space

and mark the non-trivial solutions to Eq. (37). Physically, the natural modes (including the

induced current and the associated field distribution) correspond to the resonant modes of an

open resonator (in contrast to a closed resonator like a perfect electric conductor (PEC) cavity).

Because of the radiation damping and the material loss in a nanoantenna, a natural frequency

is a complex number (remember in a PEC cavity with no losses the natural frequency is real).

In our MoM algorithm, we can numerically solve for a natural mode by seeking for the

(complex) frequency where the determinant of the impedance matrix is zero,

det zji ωαð Þ
� �� �

¼ 0, ωα ∈ complex plane ð38Þ

We are especially interested in how a natural mode and a natural frequency affect the optical

response to an external perturbation at an angular frequency ω. The induced current is

obtained by inverting the impedance operator,

Jind r,ωð Þ ¼ Z�1 Einc r,ωð Þð Þ: ð39Þ

As in Eqs. (11), (25), and (30), the impedance operator can be recast for a specific set of basis

functions. Eq. (39) can be further written as

Jind r,ωð Þ ¼
adj Zð Þ

det Zð Þ
Einc r,ωð Þ: ð40Þ

adj Zð Þ and det Zð Þ are, respectively, the adjugate and the determinant of the impedance matrix

(operator). In general, the determinant is a polynomial that can be decomposed into a product

of ω� ωαð Þi where i indicates the degree of degeneracy. In the discussion, it is assumed that the

natural mode is not degenerate so that i ¼ 1. The induced current can be rewritten as

Jind r,ωð Þ ¼
X

∞

α¼1

Rα ωαð Þ

ω� ωαð Þ
Einc r,ωð Þ: ð41Þ
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Rα is the system residue matrix at a natural frequency. It can be shown that the residue matrix

is a dyadic and can be decomposed as the outer product of a natural mode and its transpose,

Rα ωαð Þ ¼ ⌈J
α
r,ωαð Þ〉〈J

α
r,ωαð Þ⌋: ð42Þ

Substituting Eq. (42) into Eq. (41), the induced current can be expressed as

Jind r,ωð Þ ¼
X

∞

α¼1

〈J
α
r,ωαð ÞjEinc r,ωð Þ〉

ω� ωαð Þ
⌈J
α
r,ωαð Þ〉: ð43Þ

Based on Eq. (43), we can clearly define the weighting coefficient for a natural mode,

cα ωð Þ ¼
〈J
α
r,ωαð ÞjEinc r,ωð Þ〉

ω� ωαð Þ:
ð44Þ

As the natural frequency is a complex number,

ωα ¼ ωαr þ jωαi, ð45Þ

For an incident field with an angular frequency ω around ωαr, we can approximate the

coupling coefficient by

cα ωð Þ �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω� ωαrð Þ2 þ ω2
αi

q : ð46Þ

In the above approximation, the imaginary part of the natural frequency is assumed to be

small. It is readily seen from Eq. (46) that when ω is around ωαr, the weighting coefficient is

maximized.

Moreover, consider an incoming electromagnetic pulse with a delta time dependence δ tð Þ and

apply an Inverse Fourier Transform to Eq. (43) with respect to the frequency. In time domain,

Eq. (44) reads,

Jind r, tð Þ ¼
X

∞

α¼1

kα ωð ÞJ
α
r,ωαð Þejωαt

: ð47Þ

In Eq. (47), kα ωð Þ describes the coupling between a natural mode and an incident field. Due to

the complex nature of the natural frequency, the natural mode oscillates at a frequency ωαr but

decays with a rate of ωαi. Since the decaying rate is linked with the dissipated power and the

stored energy in a scatterer,

�2ωαi ¼
Pdissipated

Wstored
: ð48Þ

Accordingly, the “life time” of a natural mode can be defined as 1
�2ωαi

. In this way, a modal

quality factor Qmod can be defined for each natural mode,
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Qmod ¼
ωαrWstored

Pdissipated
¼ �

ωαr

2ωαi
: ð49Þ

Again consider the frequency domain and apply an incident field with an angular frequency ω

around ωαr. Assuming that the αth natural mode is dominant, the induced current is

Jind r,ωð Þ �
〈J
α

r,ωαð ÞjEinc r,ωð Þ〉

ω� ωαð Þ
⌈J
α

r,ωαð Þ〉: ð50Þ

That is, the response near the resonance is largely determined by the excited natural mode.

Since a fixed stored energy and dissipated power are associated with the natural mode, the

modal quality factor Qmod renders a good estimation for the quality factor Qresat resonance.

3.3. Examples

In this section, we take real nanostructures to illustrate the above theoretical discussions on the

eigenmodes and natural modes of a nanoantenna.

3.3.1. Eigenmodes of a nanobar

Assume a normal incident field polarized along the longest axis of the nanobar structure

(Figure 5). The real part and the imaginary part of the self-impedance for the first three

eigenmodes are demonstrated in Figure 6(a) and (b). Note that the coupling coefficient is

inversely proportional to the eigenvalue as in Eq. (27) and the eigenvalue is closely related

with the self-impedance as in Eq. (35). When the absolute value of the self-impedance reaches

its minimum, the coupling coefficient may maximize. Comparing Figure 6(a) and (b) with

Figure 6(c), this is indeed the case for the first mode (the L1 mode) and the third mode (the L2

mode). For the L2 mode, the coupling (the integral in the numerator of Eq. (27)) between the

incident light and the mode pattern (see the top surface charge distribution for the first three

Figure 5. The topology, the depth profile, and the SEM image of the nanobar (L ¼ 370 nm, W ¼ 70 nm, and H ¼ 50 nm)

are presented. The white bar represents 100 nm.
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modes in Figure 6(c)) should be taken into account. Since the L2 mode pattern is symmetric

with respect to the short axis of the bar but the normal incident field is anti-symmetric, the

coupling (the integral in the numerator of Eq. (27)) is zero, that is, the second mode does not

contribute to the optical response at all. Further discussions on the symmetry can be found in

Section 4. Lastly, comparing the numerically calculated (by the V-MoM algorithm) and exper-

imentally obtained extinction cross sections with the coupling coefficients, one finds that

although the coupling coefficients and the extinction cross sections follow the same trend,

there is a shift. This shift is actually from the well-known near-field—far-field shift, which is a

direct consequence of the radiation loss.

Figure 6. The left column illustrates the real part (a) and the imaginary part (b) of the self-impedance for the L1 – L3 mode,

coupling coefficients (c) for the L1 mode and the L3 mode and extinction cross sections (d and e), while the right column

demonstrates the real part (f) and the imaginary part (g) of the mutual impedance for the L1mode and the L3mode, the self-

coupling power (h) of the L1 mode and the L3 mode, the mutual coupling power (i) between the L1 and L3 modes and the

extinction cross sections (j and k). In the inset of (c), the top surface charge distribution for the first three modes is plotted.

The colour there is coded from blue to yellow to mark the polarity of the surface charge (in print: grey scale). In (d), the V-

MoM simulation is marked by the solid line. In (j), the total dissipated power is marked by the solid line.
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In the right column of Figure 6, the role of the mutual impedance in determining the antenna’s

optical response is studied. As discussed in Eq. (34), the mutual impedance describes the

energetic coupling between different modes.

First, since the first mode and the third mode (i.e., the odd-order modes which are anti-

symmetric with respect to the bar’s short axis) have a different symmetry compared to the

second mode (the even-order modes are symmetric with respect to the bar’s short axis), the

mutual coupling between the odd-order modes and the even-order modes is zero. Further,

because the second mode is not excited by the incident field at all, the second mode does not

contribute in any way to the antenna’s response.

Second, the first mode and the third mode are energetically coupled (see the mutual imped-

ance in Figure 6(f) and (g)). As a result, the excitation of one of these two modes would directly

lead to the excitation of another. Taking this power transfer in between different modes into

account breaks the symmetric line shape in the self-coupling power and generates the so-called

asymmetric Fano line shape (see Figure 6(h)–(k)).

3.3.2. Natural modes of nanopatches and nanodimer

In this section, three nanostructures, that is, a gold (Au) nanopatch, a nickel (Ni) nanopatch,

and a gold (Au) nanodimer, are considered. The nanopatches are fabricated on top of an SiO2

(100 nm)/Si layer, while the nanodimer sits on an SiO2 substrate (see Figure 7). In the numer-

ical simulations, the same mesh (5 � 4 � 1) is used for the patch structures, while each

monomer in the dimer is discretized by a 3 � 2 � 1 mesh. For the sake of simplicity, the

multilayer substrate is not explicitly taken into account but is modeled by a homogeneous

surrounding environment with an effective refractive index (n ¼ 1.25).

Essentially, two observations can be immediately made from the simulations and experiments

shown in Figure 8:

First, natural modes are fundamental to the optical response of a nanoantenna. Depending on

the incident field, some of the modes are excited, while some of the modes are forbidden. For

the patch, due to the comparable dimensions along the long axis and the short axis, it is readily

expected that the first two resonant modes are horizontal and vertical dipolar modes.

Depending on the excitation, that is, horizontally (vertically) polarized normal incident light,

Figure 7. The design of an Au nanopatch (a), a nickel nanopatch (b) and a gold nanodimer (c). Both patches have the

following dimensions: L ¼ 250 nm, W ¼ 200 nm, and H ¼ 25 nm, while the dimensions of the dimer are L ¼ 135 nm,W ¼

100 nm, H ¼ 50 nm, and gap ¼ 20 nm). This figure is reproduced from [35].
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the horizontal (vertical) dipolar mode is excited (see the left column in Figure 8). The same

argument applies to the dimer structure (see Figure 8). Especially, the second mode (the L2

mode) can be only excited by an oblique incident field.

Second, natural frequencies control the resonances of a nanoantenna. From Figure 8, it is clear

that the real part of a natural frequency gives a “baseline” for the resonance, while the

imaginary part finally shifts the resonance to the “right” position. Another role that the

imaginary part plays is that it is associated with the loss (both radiation and material dissipa-

tion) in the structure. A large imaginary part can “flatten” the resonance (e.g., the gold patch

has less material loss than the nickel one, so it has a sharper resonance, or the L2 mode in the

dimer has less radiation loss than the other two modes, resulting in a sharper resonance).

Figure 8. Natural frequencies, natural modes, and scattering/extinction spectra for the patches (the left column) and the

dimer (the right column). (a) and (d) illustrate the natural frequencies and the natural modes for all the structures. In the

inset of (a) and (d), the top surface charge distribution for the natural modes is illustrated. The colour is coded from blue

to yellow to denote the polarity of the charge concentration (in print: grey scale). In (b-c) and (e-f), the scattering and

extinction cross sections from simulations are demonstrated. In (b) and (c) of the left column, the red (in print: the line

with triangle markers) and blue colour (in print: the line with square markers) respectively correspond to the response of

the horizontal and the vertical modes while in (e) and (f) the right column, the red, green and blue colours (in print: the

solid line with triangle markers, the solid line with square markers and the dotted line) represent the optical response

from the L1, L2 and L3 modes. This figure is reproduced from [35].
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4. Symmetries

In this section, we introduce a set of symmetry arguments to determine under which circum-

stances the eigenmodes are orthogonal to each other in an inner product sense (as defined in

Eq. (29)). Since a natural mode is just a special case of an eigenmode, the developed theory

applies to the natural mode case as well. In the following, we shall concentrate solely on the

symmetries and the eigenmodes of a nanoantenna.

To make our discussion more pedagogical, we again take the simple bar shape structure (see

Figure 9(a)) as an example. The bar structure carries a C2 symmetry group. There are two

symmetry operations in this group: the identity operation E where no transformation is

conducted, and a rotation of π about the z-axis, the C2 symmetry operation.

Since symmetry operations are always applied based on coordinates, we should be able to find

a corresponding set of matrices to “represent” these operations. Here, we especially focus on

the matrices with the lowest dimensionalities, that is, the irreducible representations. Since the

group under discussion is an abelian group, we have two irreducible representations and they

are shown in Figure 9(b).

Moreover, in contrast to these transformations operating on coordinates, we follow Wigner’s

conventions [36, 37] and define transformation operators which operate on functions,

PRf rð Þ ¼ f R�1r
� �

, PRf rð Þ ¼ R � f R�1r
� �

: ð51Þ

In Eq. (51), this definition is illustrated for both scalar functions (such as charge, etc.) and vector

functions (such as currents, electromagnetic fields, etc.). These transformation operators are

commutative with the impedance operator defined in Eq. (5), that is, the sequence of applying

the transformation operator and the impedance operator does not affect the final outcome of the

calculation,

Figure 9. (a) The length (L), width (W) and height (H) of the nanobar are 370 nm, 70 nm and 50 nm. The bar sits on top of

a SiO2 substrate characterized by a constant refractive index of 1.5. (b) The irreducible representation of the C2 group is

shown. E and mv respectively represent the identity operation and the mirroring operation with respect to the short axis

of the bar structure (marked by the red dash line in (c)). (c) The top surface charge pattern of the first four modes (L1-L4)

are shown. The colours from blue to yellow are used to denote the charge polarity (in print: grey scale).
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PRZ Jind r,ωð Þð Þ ¼ Z PRJind r,ωð Þð Þ: ð52Þ

Combining the group’s irreducible representations and its transformation operators, we can

further construct a set of projection operators for the group under discussion,

℘j ¼
lj

h

X

R

Γ
�
j Rð ÞPR: ð53Þ

In Eq. (53), a projection operator is characterized by the subscript jwhich marks an irreducible

representation. Here, j may run from one to two. lj is the dimensionality of an irreducible

representation. Since every irreducible representation has a dimensionality of one, lj is equal

to one. Then, the summation is carried out with respect to all the symmetry operations.

Based on the defined projection operator, we can categorize all the eigenmodes according to the

irreducible representations (see an illustration of an eigenmode categorization in Figure 9(c)). It

is well known that [36, 37] the functions (e.g., in the current case, the eigenmodes) that belong to

different irreducible representations are orthogonal to each other in an inner product sense.

Figure 10. The mutual impedance (a) – (p) between the first four modes (see Figure 9) of the bar structure. This figure is

organized as follows. A column represents a “source” mode that generates eigen-incident field as in Eq. (33) while a row

represent an “observation”mode that the eigen-incident field is applied onto. Thus, the figure at the cross of the mth row

and the nth column denotes the mutual impedance z'mn as defined in Eq. (34). This figure is reproduced from [36].
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This is the very condition that controls the modes’ orthogonality (in an inner product sense).

The above is equivalent to saying that, according to the irreducible representations, an

eigenspace (in which one finds all the eigenmodes) can be split into several invariant subspaces

(in which one finds all the eigenmodes belonging to an irreducible representation).

To demonstrate this condition, the energetic coupling among the first four eigenmodes for the

bar structure is calculated with the V-MoM algorithm discussed in this chapter. Upon

inspecting Figure 10, it can be immediately concluded that the even-order modes do not

energetically couple with the odd-order modes. This is the same as we have seen in Section

3.3.1, where the vanishing energetic coupling is attributed to the integration of the product of

an odd function and an even function. Now, this intuitive idea is formally incorporated in the

framework of group theory. That is, since the even and the odd eigenmodes belong to different

irreducible representations, they must be orthogonal in an inner product sense.

Following the same line of reasoning as in Section 3.3.1, an excitation is applied (see Figure 11).

The incident field is polarized along the bar’s long axis but the incident direction is oblique. As

already seen in Figure 6, power transfer between modes of the same parity, that is, the even

Figure 11. The power transfer (a) – (p) between the first four modes (see Figure 9) of the bar structure. This figure is organized

similar to Figure 10. A column represents a “source” mode that generates eigen-incident field as in Eq. (33), while a row

represent an “observation”mode that the eigen-incident field is applied onto. However, different from Figure 10, the coupling

coefficients of the “source” and the “observation”modes are included. Thus, the figure at the cross of the mth row and the nth

column denotes the power transfer p'mn as defined in Eq. (54). This figure is reproduced from [36].
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(odd)-order modes, is allowed and can be evaluated by including the effects of the different

eigenmodes’ coupling coefficients,

p
0

mn ¼ c�m ωð Þcn ωð Þdmn ωð Þλn ωð Þ: ð54Þ

Eq. (54) is a direct extension of Eq. (35). However, as stipulated by group theory, the power

transfer between modes of different parity is forbidden. Lastly, as a comment, different from

Figure 6, due to the obliquely incident field, the even-order modes are now excited, and hence

the resonance and the energetic coupling between the second mode and the fourth mode is seen.

5. Conclusions

This chapter presents a complete set of numerical tools to tackle the nanoscale light-matter

interaction problem. By comparing with experimental results, the V-MoM solver and its exten-

sions are proven to be very efficient and accurate. The modal analysis scheme and the group

theoretical-based analysis scheme are demonstrated to deliver a deep physical understanding

of the physical system under study. Therefore, we believe that the developed integral equation-

based solver may become an essential complement for commercial solvers which are mostly

based on differential equations.
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