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Abstract

Diodes incorporating a bilayer of a metal oxide and an organic semiconductor can show 
unipolar, nonvolatile memory behavior after electroforming. Electroforming involves 
dielectric breakdown induced by prolonged bias voltage stress. When the power dissi-
pated during breakdown is limited, electroforming is reversible and involves formation 
of defects at the organic-oxide interface that can heal spontaneously. When the power 
dissipation during breakdown exceeds a certain threshold, electroforming becomes 
irreversible. The fully electroformed diodes show electrical bistability, featuring (meta)
stable states with low and high conduction that can be programmed by voltage pulses. 
The high conduction results from current flowing via filamentary paths. The bistability 
is explained by the coexistence of two thermodynamically stable phases at the interface 
between semiconductor and oxide. One phase contains mainly ionized defects and has 
a low work function, while the other phase has mainly neutral defects and a high work 
function. In the diodes, domains of the phase with low work function give rise to cur-
rent filaments. In the filaments, Joule heating will raise temperature locally. When the 
temperature exceeds the critical temperature, the filament will switch off. The switching 
involves a collective recombination of charge carriers trapped at the defects as evidenced 
by bursts of electroluminescence.

Keywords: nonvolatile electronic memory, electroforming, unipolar resistive switching, 
phase transition, critical point

1. Introduction

Metal-insulator-metal (MIM) systems often show electrically induced resistive switching. 

Diodes of this type have therefore been proposed as replacement of standard NAND-flash 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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nonvolatile electronic memory [1]. In their pristine state, the materials in the MIM diodes are 

usually high-resistivity insulators. Before the diodes show memory properties, they have to 

be electroformed by applying a high electric field in a current-voltage sweep with an appro-

priate current compliance. This induces a so-called soft breakdown. The electroformed device 

can be switched between a high conductance on-state and a low conductance off-state as 
shown in Figure 1. The resulting bistable current-voltage (I-V) characteristics can be applied 

as a nonvolatile memory. A surprisingly large variety of materials and material combinations 

can give rise to resistive switching [2–9], which indicates that the mechanism of the resistive 

switching may be very general.

The electric fields needed to induce the electroforming are usually close to the critical field 
for dielectric breakdown. In practice, the electroforming needs to be tightly controlled by, 

for example, programming a current compliance limit in the external circuit, in order to 

avoid permanent shorting and breakdown of the MIM diodes. The yield of active mem-

ory cells in the electroforming step is crucial for the success of memristors as a device 

 technology. A detailed understanding of processes happening during electroforming is 

therefore of paramount importance.

Figure 1. Diode layout. (a) Photograph of device containing several diodes. The devices with an active area of 9 mm2 

were encapsulated to exclude O
2
 and H

2
O. (b) Typical nominal e-only diode layout where the Al

2
O

3
 thickness is varied. 

(c) Flat band diagram where numbers are in eV. (d) J-V characteristics after forming showing a pronounced negative 
differential resistance.
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Resistive switching was first reported in 1962 when Hickmott described a hysteretic I-V char-

acteristic in thin anodic films [10]. A large negative resistance was observed for thin films 
of SiO

x
, Al

2
O

3
, Ta

2
O

5
, ZrO

2
, and TiO

2
. Early research up to the 1980s has been thoroughly 

reviewed by Dearnaley et al. [11], by Oxley [12], and by Pagnia and Sotnik [13]. In the 1990s 

attention shifted from binary oxides to complex metal oxides and has been reviewed by Sawa 
[14] and by Waser and Aono [15].

The switching mechanism of electroformed diodes can be unipolar or bipolar depending on 

the type of oxide and the electroforming procedure applied [3]. In unipolar switching, the 

switching direction depends on the magnitude of applied bias but not on the polarity. The I-V 

curves of both the on-state and the off-state are symmetric, and the type of electrode is rela-

tively unimportant. In contrast, the switching is called bipolar or antisymmetric when the set 

of voltage for the on-state occurs at one voltage polarity, while the reset to the off-state occurs 
at the reversed polarity. The I-V curves are asymmetric and depend on the type of electrode.

Here, we focus on unipolar switching in diodes containing a layer of Al
2
O

3
. In order to fabri-

cate reproducible memories, a bilayer comprised of a thin insulating Al
2
O

3
 layer in series with 

a semiconducting layer is needed. The yield of active memories made with only an Al
2
O

3
 layer 

is extremely low. Electroforming then almost inevitably leads to hard shorts, irrespective of 

the set of current compliance or of the type of forming, for example, pulsed or voltage sweep. 

The electrodes melt or even evaporate. Already for the memories made in the 1960s and 1970s, 
it turned out that an unidentified layer of carbon enhances the reproducibility. Diodes made 
in high vacuum did not show switching. Oil vapor contamination from a rotary pump was 

needed to make reliable memories [13].

Reproducible memories with a yield of about unity could be fabricated by adding a well-

defined, thin layer of a semiconducting polymer [16]. The devices therefore are often called 

polymer RRAMs. The type of electrodes turned out to be irrelevant. After electroforming, 

the I-V characteristics are symmetric. A narrow voltage region with a negative differen-

tial resistance (NDR) is observed in both polarities. The device can be switched between a 

high conductance on-state and a low conductance off-state at biases corresponding to the 
top and bottom of the NDR. The switching is unipolar and due to the Al

2
O

3
. The distrib-

uted series resistance of the polymer prevents thermal runaway when a local filament is 
turned on. Polymer/oxide diodes are then expected not only to exhibit a better control of the 
switching properties but also to have superior endurance as compared to oxide-only based 

memristors. In this feature we will show that the semiconducting polymer not only acts as 

a current-limiting series resistance but that the polymer also plays a crucial role by provid-

ing a charged layer of trapped electrons at the polymer/oxide interface. This charge layer 

enhances the tunneling across the oxide and tunes the formation of electrically bistable 

defects.

This contribution is an explanatory account of electroforming and unipolar switching in MIM 

diodes with an internal bilayer structure consisting of Al
2
O

3
 and a semiconducting  polymer 
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and is organized as follows. In Section 2 we describe investigations into the trapping of 

charges in pristine diodes and the dielectric breakdown and electroforming that occurs at 

high bias. In Section 3 we discuss the filamentary nature of the conduction in the diodes 
and the experimental evidence for this heterogeneous conduction from noise measurements. 

Finally, Section 4 is devoted to the switching process in the electroformed diodes.

2. Charge trapping and electroforming

Pristine diodes consisting of an Al/Al
2
O

3
/polyspirofluorene/Ba/Al stack have a large density 

of empty trap sites for electrons which are located at the interface between the semiconducting 

polymers. The trap sites can be studied by quasi-static capacitance-voltage (QSCV) measure-

ments [17] and optical detrapping investigations. These measurements provide information 

on the position and number density of the trap sites.

The QSCV method is ideally suited to study traps that fill quickly but empty slowly. During 
the measurement, the bias voltage is swept over a certain voltage range and by integrating the 

current; one keeps track of the number of charges that enter the diode. From the voltage and 

charge, the capacitance is calculated. Figure 2 shows the cyclic QSCV scans. First, the voltage 

is swept over the reverse bias range (V < 0). In this range a practically constant capacitance 

of 30 nF/cm2 is recorded which we interpret as the geometrical capacitance, C
0
. The minor 

hysteresis in the reverse bias range is due to a small leakage current. When subsequently 

Figure 2. Sequential QSCV characteristics for a Al/Al
2
O

3
 (40 nm)/polymer(80 nm)/Ba/Al diode measured using an 

integration time of 4 s and a voltage step of 100 mV. For negative bias voltage V, no charge is injected into the polymer. 

Both oxide and polymer act as insulators. For positive bias, electrons are injected into the polymer and trapped near the 

polymer/oxide interface.
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sweeping the bias voltage over the forward bias range, a much large hysteresis is observed. 

When the voltage is swept over a certain range for the first time, a very large capacitance is 
obtained, which we denote C

oxide
. Scanning the voltage over the same range but now either in 

the reverse direction or for a second time in the same direction, the capacitance measured is 

low and practically equal to C
0
. To account for the anomalously high capacitance values in the 

first scans, we note that under forward bias electrons can be injected into the semiconducting 
polymer. These electrons can migrate through the polymer layer under the influence of the 
applied bias and subsequently get trapped at the polymer/oxide interface. The trap sites are 

relatively deep, and spontaneous detrapping of the electrons is found to occur on the time 

scale of days. Detrapping of electrons can be accelerated by illumination with light of photon 

energy above the bandgap of the semiconducting polymer (3.1 eV).

By varying the thickness of the oxide layer, it can be shown that the anomalous capacitance is 

inversely proportional to the thickness of the oxide [18, 19]. From the QSCV and optical detrap-

ping experiments [20], it follows that the density of trap sites at the interface exceeds 1017 m−2.

Due to the accumulation of electrons at the polymer/oxide interface, the potential difference 
applied to the diodes as a whole mainly drops over the oxide layer. When increasing the bias 

voltage over the diode, one will eventually come to a point where the electric field in the oxide 
exceeds the critical field strength for electrical breakdown, which is estimated at 109 V/m for 

Al
2
O

3
 [21]. This could lead to catastrophic failure of the diode. In the case of the polymer/

oxide diodes, however, the layer of semiconducting polymer acts as current-limiting element, 

preventing complete or “hard” breakdown of the diodes.

A subtle way of inducing “soft” electrical breakdown in the polymer/oxide diodes is to sub-

ject the structure to so-called constant current stress [22]. This is illustrated in Figure 3. In the 

particular example shown, the diode is subjected to a constant current of 1 μA/cm2, and the 

voltage needed to maintain this current is monitored over time. As can be seen, the voltage 

that needs to be applied builds up rather quickly over the course of less than a second. This 

time scale corresponds to complete filling of the trap sites in the diode. When the voltage 
over the 10-nm-thick oxide reaches 10 V, the critical dielectric strength of the aluminum oxide 

exceeds, and a sudden, “soft” breakdown occurs. The dielectric breakdown allows the current 

through the diode to be maintained at much lower applied bias (V < 1 V).

An intriguing aspect of the “soft” dielectric breakdown shown in Figure 3 is that the damaged 

insulator shows spontaneous repair. This “self-healing” is illustrated in Figure 4. When moni-

toring the leakage current through the damaged diode at a relative low applied bias voltage, 

one finds that the current decreases over time, following a power-law decay. Curiously, the 
self-healing can be temporarily inhibited, by first emptying the trap sites optically and then 
keeping the diode at short circuit. After 25 h, the self-healing process can be reactivated by 

refilling the traps and proceeds with the same kinetics as in the case without inhibition.

The dielectric breakdown under constant current stress has been investigated in more detail. 

We find that when the electrical power that is dissipated during the breakdown is limited to 
0.1 mW/cm2, the breakdown is fully reversible. In a tentative explanation, we attribute the 
breakdown and the subsequent self-healing to quasi-reversible formation of oxygen vacancy 
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sites in the oxide near the polymer/oxide interface. This mechanism is described in Figure 5. 

Upon injection of positive charge carriers into the oxide, two oxygen ions dimerize into an O
2
 

molecule, whereby the electrons are annihilated by the trapped holes. The oxygen vacancies, 

also referred to as F-centers, can exist in a charge neutral state where an electron occupies the 

Figure 3. Breakdown under constant current stress. The voltage across the Al/Al
2
O

3
(20 nm)/polyspirofluorene(80 nm)Ba/

Al capacitor as a function of time under a constant current stress of 1 μA/cm2. An abrupt voltage drop is observed at 10 V. 

The inset shows the corresponding change in capacitance estimated from the change in slope of the voltage.

Figure 4. Inhibition of self-healing. Current-time plots for a capacitor electroformed with constant low current stress 

of 1 μA. (a) The post-breakdown current probed at 0.5 V bias. The current decays with a power-law dependence on 

time. (b) The current decay in the same electroformed but now after emptying electron traps with 1000 s illumination 

with a blue LED (350 ≤ λ ≤ 650 nm, λ
max

 = 440 nm). After t = 25 h triggers, the self-healing process can be reactivated by 

application of a brief 0–5V voltage ramp to refill the traps.
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empty space left by the oxygen anion. When the electron leaves the vacancy, the F-center is 

ionized (F+). The ionized F+ center can be regarded as a trapped hole. The O
2
 molecules may 

diffuse into the polymer layer, escape from the electroformed device, or even form oxygen 
interstitials, depending on the dissipated power used in the electroforming. As long as the 

O
2
 molecules formed in the breakdown process remain close to the interface, we expect the 

breakdown to be reversible [23]. Due to their large electronegativity, the O
2
 molecules trap 

 electrons. The formed superoxide ions, O2−, react with a neutral and charged oxygen vacancy 

to a defect-free Al
2
O

3
 lattice, indicated by the open square, as

   F   +  +  F   + +   O   2    −  → □  (1)

We note that binding of neutral molecular oxygen to n-type metal oxides is a process that 

occurs in mainly oxides [16, 24, 25], allowing one to monitor oxygen partial pressure through 

measurement of the electrical resistance. Reversible, electrically induced formation of anion 

vacancy sites (F-center) in ionic-wide bandgap semiconductors has also been demonstrated 

for alkali halide-polymer diodes [26–29].

As mentioned above, when the power dissipated during the electrical breakdown is high, the 

process becomes irreversible, and the diodes are electroformed. We find that the electrical 
resistance of the electroformed diodes can be switched reversibly by applying voltage pulses.

3. Filamentary conduction and noise measurements

The electrical current in memristor devices is not homogeneous but transported through 

localized paths or filaments. Evidences have been provided by scanning probe measurement 

Figure 5. Self-healing mechanism. The hatched and filled spheres represent Al3+ and O2− ions of the Al
2
O

3
 lattice. Neutral 

oxygen, O
2
, and the superoxide ion, O2− are presented by the lemniscates. The first electrons are trapped at the polymer/

oxide interface. When the bias is larger than the flat band voltage, holes are injected into the oxide, and a highly polarized 
electric double layer is formed at the polymer/oxide interface. In dielectric breakdown oxygen vacancies, F-centers are 

formed. In self-healing, superoxide ions, O2−, react with a neutral and charged oxygen vacancy to reform a defect-free 

Al
2
O

3
 lattice.
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which confirm the existence of conducting filaments in Al
2
O

3
 [30, 31] and by an IR-enhanced 

CCD camera [32]. The spatially resolved thermal images show, in the on-state, hot spots due to 

highly conductive paths. In the off-state, the spots disappear. However, the spots are not cre-

ated and destroyed upon switching. Upon repeated switching between the on- and off-states, 
the same original hot spots were detected in the thermal image. From these observations it has 

been concluded that upon switching, filaments are neither generated nor destroyed but that 
individual filaments are turned on and off, like switches.

Relevant information about filament properties is obtained from a detailed electrical charac-

terization. In oxide-/polymer-based memristors, three different behaviors are directly caused 
by filamentary conduction:

a. Electrical noise: Filaments cause discrete current fluctuations that generate random tel-
egraph like noise and affect the memory reproducibility and scalability.

b. Slow response upon repeating switching: Filaments interact with nearby filaments, and 
this interaction may slow down the switching speed of a memory device.

c. Anomalous temperature dependence of the current: The mechanism to turn on filaments 
may lead to a counter-intuitive temperature dependence of the current.

In the next paragraphs, we discuss in detail all the electrical characteristics caused by filamentary 
conduction.

Electrical noise. Polymer/oxide memristor devices when operating in the on-state show dif-

ferent types of electrical noise depending on the bias point of the I-V curve where it is recorded 

[33]. For a bias of 0.5 V (ohmic region), the noise follows the 1/f dependence (see Figure 6). 

When the diode is biased at higher voltages, in a space-charge-limited (SCL) region, the noise 

 follows a 1/f3/2 dependence. Hence, a new physical mechanism becomes active at high bias. 

Figure 6. Current noise spectrum in the transition from ohmic to SCL region, indicating a diffusion mechanism at higher bias.
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This mechanism is a switching-on and switching-off of conducting channels, at the Al
2
O

3
 con-

tact. That process dominates the 1/f spectrum and the observed slope of the spectrum (1/f3/2). 

Finally, very near to the onset of the NDR region, the noise shows discrete fluctuations like a 
random telegraph noise (RTN).

Typical time traces from a continuous measurement are presented in Figure 7. The time 

records show large discrete current fluctuations that can reach about 45 nA.

Discrete fluctuations in current-voltage or current-time characteristics appear when charge 
transport is controlled by the statistical capture/emission of electrons at electron trap sites. 

Especially when transport occurs through current-carrying filaments, large current fluctuations 
can occur.

The large discrete current fluctuations allow us to quantify the time that a filament is turned 
on, τ

on
, and turned off, τoff. The first and second traces in Figure 7 exhibit a filamentary path 

that is most of the time active and only once in a while switches off, with τoff ~ 0.7 ms. The third 
trace shows the filament being turned on and turned off at similar time scales of about 1.7 ms. 
The current fluctuations change their frequency in a random way.

Slow response upon repeating switching. When a memory device is in a high conductive 

state, there is a large ensemble of filaments. We will show here that when filaments are in rela-

tively close proximity, the switching-on and switching-off of an individual filament not be a 
totally independent of a filament in the neighborhood. Filaments can interact with each other 
and contribute to turn on more filaments or even promote a cascade of switching-off events.

It is instructive at this point to investigate the changes in potential distribution and current 

flow patterns in the diode in the vicinity of a conducting filament. This was achieved using 
the COMSOL Multiphysics simulator.

In Figure 8 the device is represented by a simple two-layer structure composed of a thin, 

high-resistivity oxide layer supporting a thicker, more conductive polymer layer. The color 

(online) maps represent the potential distributions (blue = −10 V, pink = 0 V) which are further 
emphasized by superimposed contour lines. In (a) the device is in the off-state; leakage current 

Figure 7. Electrical noise of a memristor programmed in the on-state at T= 220 K. The time traces show the current RTN 

fluctuations under an applied bias near the onset of the NDR region. The time traces were recorded at different times 
after the start of the measurements (elapsed time).
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through the oxide is minimal so that virtually all the applied voltage appears across the oxide 

layer owing to the higher conductivity of the polymer. Next, we include a conducting filament 
in the oxide. This results in significant changes in the local potential (b) and in the current 
density profile (c). We note two important changes:

(i) The potential at the polymer/oxide interface decreases giving rise to lateral electric fields 
and extensive distortion of the potential in both the polymer and oxide layers.

(ii) The current tunnels through the polymer into the filament from a circular area of the 
electrode whose radius exceeds the polymer film thickness.

In the case of low on-currents, conducting filaments are isolated and well separated. The non-

uniform potential distribution (Figure 8(b) and (c)) allows electrons to be drawn through the 

polymer from a relatively large area of the electrode. The critical filament current required to 
effect efficient recombination and turn off the filaments is achieved at relatively low voltages.

For high on-currents, a large number of conducting paths are turned on, many in the neigh-

borhood of an originating filament as discussed above. As seen in Figure 8(d) and (e), the 

electrode area from which electrons are drawn does not increase in proportion to the number 

of neighboring filaments. Higher voltages will be required then to provide the critical elec-

tron current through the polymer for extinguishing these filaments. Consequently, within a 
volume extending out from the filament into the polymer, considerable Joule heating will 
occur. Significantly, it is well known that the electrical breakdown strength of most insulating  

Figure 8. COMSOL simulations showing potential distributions represented both in color (blue = −10 V, pink = 0 V) and 
by superimposed contour lines (a), (b), (d), and current streamlines (c) and (e) in our two-layer capacitor model. The 

upper layer represents the polymer and the lower a thin oxide film. (a) Potential distribution in a device in the HRS. 
The corresponding current streamlines will be vertical and of low density. The changes in potential distribution and 

current streamlines arising from a single conducting filament in the oxide are shown in (b) and (c). The corresponding 
distributions for two adjacent filaments are given in (d) and (e).

Memristor and Memristive Neural Networks102



materials decreases with increasing temperature: a relevant example is soft breakdown in SiO
2
 

films a few nanometers thick [34]. We postulate that as the applied bias increases, a combi-

nation of increasing oxide field and high temperature in the vicinity of the conducting fila-

ment triggers the switching of a nearby filament. Figure 8(d) and (e) shows that the region of 

disturbed potential and high current density now expands triggering further switching. This 

process is expected to continue until two local hot spots overlap or expansion becomes limited 

by the process(es) leading to the NDR. Even if further filamentary conduction is not initiated, 
additional thermally induced currents will flow in both the polymer and oxide leading to a 
similar expansion of the hot spot.

Anomalous temperature dependence of the current. The I-V characteristics for the on-

state show a large increase in the magnitude of the current upon lowering the tempera-

ture of the diodes. This behavior is illustrated in Figure 9. The increase of current is more 

pronounced at higher bias voltages, in the voltage range below the sharp onset of the 

NDR.

To further explore this unusual temperature dependence, a diode was programmed into the on-

state at room temperature and then cooled down until 120 K. Meanwhile, the current transient 

was recorded while applying a continuous bias voltage (2 V). The magnitude of the current 

increases more than double in a temperature range of 200°C, as illustrated in Figure 10. This 

observation corresponds to a positive temperature coefficient (PTC) [35–37] of the electrical 

resistivity, α ≈ 0.01 K−1, an anomalously large value when compared with typical values for 

metals (α = 0.0039 K−1 for Cu). On the basis of the anomalously large PTC, it contradicts the 

explanations based on a metallic type of conduction.

The large and stepwise increase in current indicates that by lowering the temperature some 

filaments can be activated. In the next section, we provide a tentative explanation for this 
remarkable experimental observation.

Figure 9. Temperature dependence of the I-V curve of a diode programmed into the on-state.
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4. Electroluminescence and filament model

A key experimental observation in unraveling the mechanism of the nonvolatile electronic 

memory effects in aluminum oxide has been the occurrence of electroluminescence in the vis-

ible range of the spectrum during the switching [10, 38]. This observation provides direct 

experimental evidence that recombination of positive and negative charge carriers takes 

place at defects in the oxide. Furthermore, it has also been reported that electroformed oxide 

layers can emit electrons into the vacuum [11]. The latter observations show that an electro-

formed oxide layer on a metal can dramatically alter the work function of the underlying 

metal [39, 40].

In Figure 11 we illustrate the occurrence of electroluminescence in electroformed Al
2
O

3
/poly-

fluorene diodes during switching. Starting at zero bias in the high conduction state, the current 
density rises rapidly with increasing bias. For voltages above 4 V, the diode shows negative 

differential resistance (NDR), and the current density actually decreases with increasing bias 
voltage. In the voltage range corresponding to the NDR behavior, the diode also shows irreg-

ular electroluminescence. Light is emitted during a series of short bursts. At high bias voltage 
(V > 10 V), the diodes show more steady light emission.

In order to account for the filamentary conduction and the electroluminescence, we propose 
that in the diode clusters of charged defects at the polymer/oxide interface are present. 

We propose a charged bilayer arrangement of charges with, for example, positively charged 

defects in the oxide compensated by trapped electrons on the polymer side of the inter-

face. The double-layer arrangement locally changes the work function of the electrodes and 

Figure 10. Temperature dependence of the I-V curve of a diode programmed into the on-state monitored at 2 V. The 

cooling speed is 1 K/min.
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allows current to flow at already low bias voltages. The local spots on the oxide layer where 
the effective work function has been altered give rise to current filamentary currents in the 
diode (see Figure 12). We note that formation of charged double layers near metal electrodes 

is well known in wet electrochemistry [41, 42].

To explain the electrical bistability of the nonvolatile memories, we propose the coexistence of 

two thermodynamically stable phases in the electroformed oxide layer [26]. The two phases 

occur in the quasi-two-dimensional double layer consisting of trapped electrons in the organic 

semiconductor and holes trapped at defects in the metal oxide. One phase containing mainly 

ionized defects has a low work function. The other phase comprises mainly defects in their 

neutral state and has a high work function. In the diodes, domains of the phase with low work 

function constitute current filaments.

Figure 11. Electroluminescence. (Upper panel) current density (J) and (lower panel) electroluminescence (EL) intensity 
recorded simultaneously for an electroformed ITO/Al

2
O

3
 (10 nm)/polyfluorene (80 nm)/Ba/Al diode during a voltage 

sweep from 0 V→16 V→0 V.

Figure 12. Schematic representation of current filament. In the electroformed diode, ionizable defects are present near 
the oxide/organic semiconductor interface with a number density above a critical limit. Due to cooperative interaction 

between the defects, the diode is electrically bistable. Arrays of mainly neutral defects have a high work function and 

constitute the off-state. Arrays of mainly ionized defects have a low work function and constitute the on-state.
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In order to better explain the proposed thermodynamic bistability, we draw on an anal-

ogy with saturated salt solutions. Charged ions in such a system can be present in two 

phases, one where the ions are dispersed throughout the solutions and another phase 

where ions of opposite charge have condensed into a crystal. As is well, cooperative 

interactions between the oppositely charged ions give rise to crystallization of salt, for 

example, NaCl.

In rock salt, the positive and negative ions are packed in a cubic lattice (see Figure 13). If we 

however cut the crystal under an oblique angle, for example, parallel to the (1 1 1) plane, one 

sees that the crystal actually consists of layers of oppositely charged ions.

For the electroformed oxide layers, we argue that, provided neutral defect sites which are 

available with sufficient density, electrical charges that have been injected into the diode 
may condense spontaneously at the polymer/oxide interface due to their mutual electro-

static stabilization. By detailed consideration of the Coulomb interaction potentials of the 

charge defects, it can be shown that also the image charges in the nearby metal electrode 

contribute to the stabilization. The condensation of the charges can be mapped onto the 2D 

Ising model. Based on the 2D Ising model, one predicts that in analogy to ferromagnetism, 

a critical temperature T
c
 should exist. For temperatures lower than T

c
, the coexistence of two 

thermodynamically stable phases is predicted. One of the phases should have mainly ion-

ized defects and the other predominantly neutral defects. The magnitude of T
c
 depends on 

the strength of the interactions between the sites and should therefore be influenced by the 
density of defect states.

In order to explain the switching-off of current filaments, we argue that Joule heating associ-
ated with the current through the filaments in the oxide will cause the temperature in the 
oxide layer to rise locally. Once the temperature is above T

c
, the mutual stabilization of charges 

is compromised, and sudden massive recombination of charges occurs. This recombination 

may account for the bursts of electroluminescence that can be observed during the switching 

process (see Figure 11). Furthermore, recombination of charges in the oxide layer will result 

in changes in the effective internal work function of the electrodes. This may account for the 
experimental observation of changes in the built-in potential of an electroluminescent diode 

during electrically induced breakdown [43].

Figure 13. Crystal structure of rock salt (NaCl). Ions of the same charge are packed in layers that lie parallel to the (1 1 1) 

plane.
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5. Conclusion

Unipolar switching in Al
2
O

3
 diodes involves defects that are created during the electroform-

ing step. The density of defects is critical to the memory operation. Reproducible electro-

forming is possible by including in the device a well-defined thin layer of a semiconducting 
polymer. In their pristine state, the polymer/oxide diodes are insulating. The purpose of the 

polymer layer is threefold. Firstly, the polymer layer acts as a current-limiting series resistance 

that prevents thermal runaway during electroforming. Secondly, the presence of the polymer 

introduces an internal polymer/oxide interface, where electrons can accumulate. The trapped 

electrons stabilize positively charged defects that are generated during electroforming by elec-

trostatic interactions. The trapped electrons promote injection of holes into the oxide, yielding 

a soft breakdown. Molecular oxygen is expelled and oxygen vacancies are formed. The third 

 purpose of the polymer in the diode is to buffer the molecular oxygen formed.

The experimental evidence indicates that the density of defects in the metal-insulator-metal diodes 

is of crucial importance to obtain a memory diode with nonvolatile memory  properties. If the defect 

density is too high, the diode will be low. If the density is too low, the critical temperature T
c
 for phase 

coexistence is also low. At temperatures T > T
c
, phase  coexistence is not possible, and the memory 

diode does not show electrical bistability. Upon cooling down, additional filaments should switch 
on as soon as the temperature drops below the T

c
 associated with the locale defect density near the 

filament. This prediction is supported by the experiments in Section 2. Noise  measurements prove 
a unique tool to characterize the  dynamics of the defect ionization and neutralization. The onset 

of discrete fluctuations and random telegraph signals may serve as a  diagnostic to determine the 
difference between the actual defect density and the desired concentration for memory operation.

In summary, unipolar resistive switching poses a unique challenge to the materials that scien-

tists design, deposit, and characterize with appropriate electronic structure, defect ordering, 

and internal charge carrier dynamics. This challenge seems parallel to development of, e.g., 

materials for high-temperature superconductivity. Fortunately, in the case of memristors, we 

have already the certainty from the present state of the art involving the electroforming that 

relatively simple materials exist with the required properties. The challenge is to gain control 

over the now largely random process of defect formation.
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