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Abstract

This chapter presents the design and development of an energy management system
(EMS), which guarantees a secure operation of an islanded microgrid under possible
imbalances between generation capacity and loads demand. The EMS performs an opti-
mal calculation of low priority loads to be shed, as well as charging and discharging cycles
of batteries within the microgrid. A nonlinear model-predictive control (NMPC) algorithm
is selected for implementing the EMS, which processes a data set composed of loads
measurements, generation capacity, batteries state of charge (SOC), and a set of operation
constraints. The EMS is designed under the assumption of having an advanced metering
infrastructure (AMI) installed in the microgrid. The EMS is tested in a simulation platform
that integrates models of the microgrid components, as well as their distributed controllers
(DCs). Simulation results show the effectiveness of the proposed approach, since critical
variables as the microgrid’s frequency and voltage magnitude operate within a secured
interval even under the presence of faults in one of the DCs.

Keywords: energy management, microgrid, fault-tolerant control, smart grids, power
flow

1. Introduction

Many inventions have evolved over time from their initial conception, for example, the tele-

phone. The telephone invention triggered a revolution in communications around the world

that led to the powerful technology we have today. Alexander Graham Bell would be proud of

his invention because of the impact and evolution of telephone, from landlines to satellite

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



communications, the Internet, and so on. Another important invention is electricity. According

to Ref. [1], electricity is the most important engineering invention of the last century. Electric

networks’ evolution led to a power system composed of three main systems: generation, trans-

mission, and distribution. The main objective of the electric power system is to guarantee an

efficient delivery of energy to end users. In the last 10 years, there has been a continuous search

for emerging technologies, which foster green-energy integration into the main grid. In addi-

tion, stakeholders of the power grid have also changed their functionality in the system. Today,

consumers are no longer just consumers, they can also be generators and their consumption

and generation must be carefully regulated. This is the world of the smart grids (SGs) [2],

where it is possible to have small isolated power systems operating as standalone islands

purposefully. These islands are called microgrids.

A key objective of SGs is to provide reliable power supply through a combination of monitor-

ing, control, and response. Electric utilities are expected to provide continuous and high-

quality services to their customers at reasonable prices by making economical use of available

infrastructure. The most powerful force shaping the future of power industry is economics, but

environmental protection is receiving growing attention today. Global warming trend could be

damped through energy conservation. Therefore, any new innovations/trends will probably be

adopted only if they reduce costs and CO2 emissions.

The development of an intelligent power distribution system requires new approaches. Refer-

ence [3] provides a French vision of SGs, which shows that distributed generation (DG) has

strongly increased in the last 10 years. By 2020, the European Union targets 20% of the energy

consumed to be generated by renewable energy sources (RESs). A technical report on the devel-

opment of an intelligent distribution automation system in Korea [4] describes the following

system features: remote operation, management of low voltage (LV) and medium voltage (MV)

networks supported on a geographic information system (GIS), loss minimization, volt/var con-

trol for integrated DG, and power quality monitoring. Reference [5] details the features of an

automatic power restoration system, which integrates DCs, distributed intelligence, and peer-to-

peer communication to isolate faults and restore power to unfaulted sections. Further information

about active microgrids projects around the world, including details on technical operational

aspects and design criteria, can be found in the survey papers [6, 7].

2. Smart grids overview

The SG is defined as an electrical network that integrates in a smart way every action of the

users plugged into it—generators, consumers, and those that can perform both actions, deliv-

ering electricity efficiently, sustainably, economically, and safely.

2.1. Distributed generation

A DG unit is a small-scale generation source with its output ranging from 1 KW to several MW

and usually installed at the distribution level. A particular characteristic of DG is that the

generating sources are near end users. As RESs penetrate the utility systems, the power industry
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undergoes a paradigm shift that will change the industry to the use of DG systems. Figure 1

illustrates the DG concept by showing three different locations with installed DG units.

Small generators, which transform energy from RES, can be incorporated in the electric distri-

bution network, for example, wind turbine generator (WTG) and photovoltaic (PV) arrays.

These energy sources present many challenges to researchers and designers regarding power

quality and economic issues. Today’s power systems rely on spinning reserve and drooping

frequency-load characteristics. Future systems, on the other hand, will rely on RES, which

operate at peak power in order to displace as much fuel consumption as possible. This peak

power constraint imposed by wind and sun complicates the frequency/load control of the

entire system [8]. In order to compensate for this intermittent and changing power, short- and

long-term storage devices should be deployed. Storage devices can be charged during periods

of low-power demand and can supply power during high-power demand. This concept is

shown in Figure 2.

2.2. Microgrids

Microgrids are small-scale LV/MV power systems with distributed energy resources (DERs),

storage devices, and controllable loads, connected to the main power network or islanded, in

Figure 1. DG overview.

Figure 2. Example of an energy dispatch strategy for a microgrid.

Design of an Energy Management System for Secure Integration of Renewable Energy Sources into Microgrids
http://dx.doi.org/10.5772/intechopen.69399

153



a controlled and coordinated way [9]. Microgrids have different operating characteristics

than bulk power systems (BPSs). A comparison, between microgrids and BPS, is shown in

Table 1. Microgeneration units, typically located at users’ sites, have emerged as a promising

option to meet growing customer needs for electric power with an emphasis on reliability,

power quality, and contribution to different economic, environmental, and technical bene-

fits. However, the impact of microgeneration at LV levels on power balance and grid fre-

quency is still a great challenge.

2.3. Advanced metering infrastructure

Smart meters (SMs) are important components of SGs. These devices have the following main

features: full-duplex communication, ability to connect or disconnect consumer’s loads, and

recording capabilities for capturing waveforms for supervising voltage and current. SMs are

gradually replacing traditional meters currently in operation and are also being installed in

new microgrids. SMs transmit information to different information clients via SCADA systems

and other networks.

Among the benefits that SMs offer to consumers, there is the possibility to know in real-time rates

and pricing policies, allowing users to decide wisely how to use electric energy. Several research

papers are devoted to household scheduling using AMI in order to reduce power consumption

during peak consumption hours [10, 11]. Figure 3 shows a possible architecture for an AMI. Due

to the large number of SMs that will be available in distribution systems, the potential ability of

SMs to provide additional information for outage management is also being investigated [12].

2.4. Fault-tolerant control

Critical-safetyand operability issueswith a definedperformance in technological systems, such as

electrical, industrial, aircraft control, nuclear generation, and so on, cause them to rely on complex

control systems. Classic control schemes are suitable for guaranteeing a desired system perfor-

mance in a specific operating range. However, these control strategies are unable to maintain the

system performance under faulty scenarios. Therefore, there is a necessity of fault-tolerant control

(FTC) strategies to improve the reliability and availability of critical-safe systems.

Quick detection of faults avoids serious damages to machines and humans, while allowing

online reconfiguration of fault-tolerant controllers. Many books and research papers related to

the field of FTC coincide on a two-stepmethodology for making a system fault-tolerant [13, 14]:

RES penetration Energy storage Voltage levels Dispatch objects Operation mode

Microgrid High Yes LV and MV Controllable generators

and loads

Grid-connected and

autonomous

BPS Low Negligible HV Controllable generators Independent operation

Table 1. Comparison between microgrids and BPS.
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1. Fault diagnosis: Whenever a fault is present in the system, it has to be detected and

identified.

2. Control reconfiguration: The controller has to be designed with the ability to accommo-

date faults on components automatically.

This methodology is an active research field, mainly due to the variety of possibilities for execut-

ing the abovementioned steps. Fault diagnosis is performed by a fault detection and diagnosis

(FDD) module, while control reconfiguration could be done by many different control

approaches, such as model-based, intelligent, gain scheduling, and so on. Such an FTC system,

which relies on the fault information obtained from the FDD module, is called an active fault-

tolerant control system (AFTCS). Figure 4 shows an architecture of an AFTCS [14].

Figure 3. Remote management system for electricity measurement.
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3. Microgrid modeling

Control engineering most of the times is model dependent. Understanding the process, sys-

tem, or plant to be controlled is fundamental for proposing proper control strategies. This

section presents modeling procedures of the microgrid components used throughout this

research: diesel engine generator (DEG), WTG, PV array, battery storage system (BSS), and

power converters. At the end of this section, a microgrid benchmark model is presented, which

integrates the microgrid components in one single simulation environment. Figure 5 shows the

aforementioned elements in a microgrid configuration.

The rationale for the SGs lies in the integrative analysis of DERs, many of which will be

intermittently operating, with the deployment of short-term and long-term storage systems.

Current strategies on load sharing will not work to integrate RES due to its peak-power and

intermittent operation. Therefore, new control strategies for voltage/reactive-power and load-

sharing/frequency need to be developed; microgrid modeling is the first step prior to advanced

controllers design.

3.1. DG units modeling

A DG unit is conformed mainly of three components:

1. Microgeneration unit. Typical choices are batteries, PV, WTG, flywheels, fuel cells, and so

on.

2. Power conditioning system (PCS). PCS is related with power conversion, AC/DC or DC/

AC, and its control techniques.

3. Coupling circuit. Interface elements, most of the times a filter, for coupling the DG unit

with the network.

Figure 4. A general structure of an AFTCS [14].
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3.1.1. Power electronic converters

Proper integration technology has to be developed for using DG units in a microgrid configu-

ration. The majority of DG units is integrated to the grid through the use of power electronics-

based interfaces, which convert the power, firstly, to DC and then puts the energy into the grid

by using an inverter. Adequate control strategies of the PCS allow maximum extraction of the

energy from RES.

Power electronic converters performing conditioning have to be highly efficient, flexible, and

reliable. It is well known that improving the performance of power converters increases

system’s efficiency. According to Figure 5, there are mainly three power electronic circuits that

need to be implemented to control voltage, power, and frequency of a DG unit: AC/DC

converter, DC/DC converter, and voltage source inverter (VSI).

3.1.2. Diesel engine generator

Diesel generating sets are typically used in power systems without connection to the power

grid, as emergency power supply if the grid fails, as well as for more complex applications

such as peak-shaving, grid support, and energy export to the power grid. This section pre-

sents models for the diesel engine (DE) components: synchronous generator and diesel

engine.

Figure 5. Microgrid control and management system architecture.
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3.1.2.1. Synchronous machine model

The synchronous generator has two circuits magnetically coupled: the first one is static and has

the shape of a hollow cylinder with longitudinal slots and an armature winding; the second

component is the rotor whose winding is supplied with DC current. The DC current is supplied

to the field winding by an exciter, which may be a generator mounted on the same shaft or a

separate DC source connected to the field winding through brushes bearing on slip rings [15].

As a prime mover drives the machine shaft, the magnetic field generated by the field winding

links the stator coils to induce voltage in the armature windings.

As presented in Ref. [16], a state-space model, which uses the dq dynamic equations of the

electrical circuit of a synchronous generator with a pure resistive load (RL) connected to its

terminals, can be represented as follows:

ð1Þ

where ½id iq iF�
T are the dq stator and field currents, respectively; Rs and RF are the stator and

field resistances; Ls, Lm, and LF are the stator, magnetizing, and field inductances; ω is the

electrical speed; vd and vq are the dq stator voltages; and vF is the field voltage which will be

used as a control input.

3.1.2.2. Diesel engine model

The DE contains the combustion system and is responsible for the movement of the pistons,

consequently the movement of the crankshaft that generates the output torque T(s). Figure 6

shows a block diagram of a DE. A first-order system models the actuator dynamics of the DE.

The time delay e-τ s and a torque constant Kb model the combustion system. The flywheel block

Figure 6. DE block diagram [6].
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models the inertia generated inside the machine, η represents the flywheel acceleration con-

stant, and the coefficient δ represents friction. The fuel injected to the DE is represented by

x1(t), whereas x2(t) represents the angular velocity of the engine’s shaft. d(s) models load

changes in the rotor’s shaft.

-

ð2Þ

Table 2 shows the characteristic values of the DE constants of model (2).

3.1.3. Wind-driven generation system

This section presents details on the modeling of a wind-driven electricity generation system

(WEGS). A horizontal axis wind turbine (WT) is chosen as prime mover, while an induction

generator performs the energy conversion. The wind turbine induction generator is an attrac-

tive DG unit in a deregulated electric energy market since wind energy is a non-polluting

source.

Wind energy is air in motion whose energy is derived from sun, because about 2% of the solar

flux falling on earth’s surface is transformed into wind due to uneven heating of the atmo-

sphere. Wind energy has some limiting characteristics such as non-schedulability, uncontrolla-

ble, and so on.

3.1.3.1. Wind turbine model

The WT model used throughout this chapter is a lumped mass model. The WT is pitch

controlled through the blade pitch angle, β. The power coefficient, Cp as shown in Eq. (3),

characterizes the WTand depends on the tip speed ratio, λ ¼ΩR/Vw, and β, where R is the WT

rotor radius,Ω is the mechanical angular velocity of the WT rotor, and Vw is the wind velocity.

The pitch angle β is only varied to limit the over-speed of the generator

System parameter Value range Nominal range

Actuator gain constant Ka (pu) 1.0 1.0

Actuator time constant Ta (s) 0.05–0.2 0.125

Engine torque constant Kb (pu) 0.8–1.5 1.15

Engine dead time t (s) 0–1 0.5

Plant and flywheel acceleration δ (s�1) 0.1–0.5 0.3

Friction coefficient η (pu) 0.1 0.1

Table 2. System parameters of a typical DE.
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ð3Þ

The dynamic output mechanical torque of the WT, Tm, is expressed as

ð4Þ

where ρ is the air density and A represents the swept area of the blades.

3.1.3.2. Induction generator model

The electrical equations of the induction generator model in the dq reference frame can be

expressed in pu as

-

ð5Þ

where vs, vr, is, ir, Ψs, and Ψr represent the voltage, current, and flux (subscript s stands for

stator and subscript r for rotor); rs and rr are stator and rotor resistance, respectively; ωr is the

rotor angular speed; ωb is the base electrical angular velocity; H represents inertia moment, T0

is load torque, and p denotes a time derivative operation.

3.1.4. Photovoltaic generation system

A PV cell is represented as a single-diode mathematic model, which is composed of a current

source Iph, a nonlinear diode, and internal resistances, Rs and Rsh. Figure 7 shows the PV cell

model.

A PV array is composed of the combination of Np parallel and Ns serial PV cells. The total

current produced by a PV array is expressed as follows:
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ð6Þ

3.1.5. Battery model

An electrical battery is one or more electrochemical cells that convert stored chemical energy

into electrical energy. The lead-acid battery is the oldest type of rechargeable battery with a

low energy-to-weight ratio. Lead-acid batteries are fully charged if it is possible to measure an

open-circuit voltage of fully discharged battery cell(s). The term discharged means that all free

charges are zero and the only voltage source is the cell(s) voltage, V0 [17].

References [18, 19] present a simple nonlinear Thevenin model for the lead-acid battery. This

model considers the dynamic response of the battery, which is influenced by the capacitive

effects of the battery plates and also by the charge-transfer resistance. Figure 8 shows the

equivalent circuit of a lead-acid battery

ð7Þ

Figure 7. Single diode PV model.

Figure 8. Nonlinear lead-acid battery equivalent circuit.
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3.2. Microgrid model

Operating a microgrid within the limits of the established operation standards requires the

development of novel control strategies. According to the standard ANSI C84.1, utilities are

required to maintain voltage at the customer’s service panel between 114 and 126 V (�5%)

Figure 9. Microgrid MV benchmark model CIGRE TF C6.04.02.
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based on a 120-V nominal secondary voltage. Standard IEEE 1547-2-2011 [20] recommends

that for interconnecting DERs with electric power systems, the total time should be less than

0.15 s when the magnitude of the frequency variation exceeds 0.5 Hz and the magnitude of the

voltage variation exceeds 5%.

Figure 9 shows the microgrid benchmark model configuration, consisting of two feeders

supplied by a distribution substation. A grid of DG units is connected to the left-side feeder,

including four PV array units, one WTG, two BSS, and one DEG. Every DG unit has a DC. The

rated voltage level of the network is 20 KV, which is supplied from a 110 KV transformer

station. The parameters of the network, the load and the DG units (in pu), were taken from Ref.

[21] and are summarized in Tables 3 and 4.

Although maximum values for active and reactive power loads are considered in the network

parameters shown in Table 3, variable load profiles have been generated for loads L1, L2, L6, L7,
and L9.

The features of DG units are as follows

• DEG: As previously described, a DE is used as the prime mover of a synchronous generator.

The system frequency is determined by the DE mechanical speed ωm, and the synchronous

Load no. Load type Pmax (pu) Qmax (pu)

1 Residential 0.15000 0.03100

2 Industrial 0.05000 0.01000

3 Residential 0.00276 0.00069

4 Industrial 0.00224 0.00139

5 Residential 0.00432 0.00108

6 Residential 0.00725 0.00182

7 Residential 0.00550 0.00138

8 Industrial 0.00077 0.00048

9 Residential 0.00588 0.00147

10 Industrial 0.00574 0.00356

11 Industrial 0.00068 0.00042

12 Residential 0.00477 0.00120

13 Residential 0.00331 0.00083

14 Residential 0.15000 0.03000

15 Industrial 0.05000 0.01700

16 Industrial 0.00032 0.00020

17 Industrial 0.00330 0.00020

18 Residential 0.00207 0.00052

Table 3. Load parameters of the microgrid model.
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generator field current sets the voltage magnitude. The rated output power of the DEG is

0.3125 pu over a Pbase of 5 MW.

• WTG: The characteristics of WTG are assumed in Section 3.1.3. The maximum output

power of the WTG is 0.2 pu.

• PV array: The features of the PV modules 330 SunPower (SPR-305) are used. PV1 array

consists of 66 strings of five series-connected modules connected in parallel, providing

0.02 pu. PV2, PV3, and PV4 have 0.02, 4 � 10-3, and 5 � 10-3 pu of power generation

capacity, respectively. The PCS of every PV array is composed of a boost converter and a

VSC.

• BSS: The lead-acid batteries are combined with bidirectional DC/AC converters with a

maximum output power of 0.02 pu for BSS1 and 0.015 pu for BSS2. The charging power

for every BSS is 0.01 pu.

DERs do not provide system frequency regulation. Therefore, for power flow calculations,

the DG units (except for the DEG) are considered as load nodes with negative power

consumption. During grid-connected operation, the main grid controls voltage and fre-

quency. Islanded operation demands that local microgrid generation controls voltage and

frequency.

From To R X C L

Node Node (Ω/km) (Ω/km) (nF/km) (km)

0 1

1 2 0.579 0.367 158.88 2.82

2 3 0.164 0.113 6608 4.42

3 4 0.262 0.121 6480 0.61

4 5 0.354 0.129 4560 0.56

5 6 0.336 0.126 5488 1.54

6 7 0.256 0.130 3760 0.24

7 8 0.294 0.123 5600 1.67

8 9 0.339 0.130 4368 0.32

9 10 0.399 0.133 4832 0.77

10 11 0.367 0.133 4560 0.33

11 4 0.423 0.134 4960 0.49

3 8 0.172 0.115 6576 1.3

0 12

12 13 0.337 0.358 162.88 4.89

13 14 0.202 0.122 4784 2.99

Table 4. Transmission line parameters.
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4. Energy management system

The system states for the islanded section (left-side feeder) of the distribution system in

Figure 9 are defined as

ð8Þ

where Vi and δi are node’s voltage and angle of the bus i.

Additionally, more variables and vectors are needed for the controller formulation, such as power

at the nodes Si ¼ Pi þ jQi, admittance matrix Y, and power generated by the DG units, PDGi:

ð9Þ

ð10Þ

ð11Þ

Equation (11) is solved iteratively through the Newton-Raphson (NR) power flow algorithm,

with prior knowledge ofPDGi, and current load consumption of every power systemnode.PDE is

estimated in a prediction horizon of length N. An important modification of Eq. (11) is the

inclusion of the reactive power consumed by the WTG at bus 7, which is calculated as fol-

lows [22]:

ð12Þ

where the negative sign of Eq. (12) represents reactive power consumption of the WTG

induction generator from the network; zm, zc, z1, and z2 represent the excitation reactance,

reactance of a capacitor bank installed at the terminal of the induction generator, and the stator

and rotor reactance, respectively.
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The control objectives of the proposed strategy are as follows:

• To manage the connection and disconnection events of batteries;

• To shed low priority loads every time the load demand is greater than the generation

capacity. This control action anticipates any harmful operation of the system through the

predicting model, which predicts potential load imbalances;

• To keep the voltage magnitude with a maximum variation of �5%.

A microgrid-centralized controller (MGCC) implements an NMPC algorithm. Loads man-

agement as well as batteries connecting and disconnecting events are performed by a

control vector, u, defined by Eq. (13). The control vector is calculated in real time by the

MGCC, and transmitted to the DCs in the microgrid. Table 5 presents the relationship

between each bit of u and its corresponding load controller for switching purposes, that

is, for ui ¼ 1 ! Li load is connected, and for ui ¼ 0 ! Li load is disconnected

ð13Þ

An important requirement in the design of NMPC is the availability of a model for predicting

the output variables. The NMPC algorithm requires predicted values of the power generated

by the DEG to optimally decide which load has to be shed. Trip commands are sent from the

MGCC to proper loads. Figure 10 shows the EMS architecture. This control architecture is

deeply analyzed in Ref. [23].

Control signal Load Observations

u1 L1* ¼ {L1 U L2} Variable loads

u2 L3 U L4 Constant loads

u3 L5 Constant load

u4 L6 Variable load

u5 L7 Variable load

u6 L8 Constant load

u7 L9 Constant load

u8 L10 Constant load

u9 L11 Constant load

u10 BSS1 Charge mode

u11 BSS1 Discharge mode

u12 BSS2 Charge mode

u13 BSS2 Discharge mode

Table 5. Control vector correspondence with loads and BSS.
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The NR power flow algorithm is used to predict the microgrid’s system states, and conse-

quently the PDE in a specific prediction horizonN. To find the optimal steady-state operation of

the microgrid, the connection and disconnection commands of the control vector u are

accounted within the NR algorithm. An initial data set Zk composed of the batteries’ SOC,

load demand, and the active power generated by every DER is required prior to the execution

of the NR calculation. The data set Zk does not consider load variations within the prediction

horizon. This fact is considered, and two approaches were tested for the initial iterative load

values of the NR algorithm in order to predict PDE:

Figure 10. NMPC architecture for a centralized load shedding strategy.
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1. Consider the load measurements as constants during the entire prediction horizon N;

2. Use a load predictor based on an artificial neural network (ANN). For this purpose, 20

load profiles from different days of the week for every variable loads in the microgrid

were used as training set for configuring a three-layer ANN.

Another approach for predicting the PDE was developed with an autoregressive model with

external input (ARX) through a data-based modeling using an adaptive neuro-fuzzy infer-

ence system (ANFIS). As in the case of the ANN training algorithm, 20 different generation

profiles of the DEG for different days of the week were used as training set for the ANFIS.

The ARX configuration developed is the one detailed in Ref. [24]. This modeling procedure

does not imply an NR calculation, therefore reducing the computing time of the control

algorithm.

Since the voltagemagnitude of themicrogrid is to be keptwithin a�5% range of variation, a static

voltage stability index, presented inRef. [22], is used for defining a secure range of operation of the
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DEG. Consider average generation values of DERs: PWT ¼ 0.15, ΣPP V1,2,3,4 ¼ 0.049 and PBSS1,2 ¼

0.035 in dischargemode and PBSS1,2¼ -0.02 in chargemode, and that the voltagemagnitude limits

are 0.95 ≤ |V| ≤ 1.05, an optimization procedure in which a sweep of the values of PL,QL, and |V|

within allowable ranges is performed in order to obtain a secure margin of operation of the

microgrid. The secure range of operation for theDE, estimated by the optimization process, is

ð14Þ

The control vector u calculated by the NMPC algorithm is restricted to be binary. Optimization

problems of this type are called mixed-integer nonlinear programming (MINLP) problems. The

MINLP package of TOMLAB for MATLAB was used for solving this optimal control problem.

Figure 11 shows the transient response of the voltage magnitude of node-1 of the microgrid in

islanded operation. Near 04h00 AM, the DE presents a loss of effectiveness in the servo-

mechanism used for fuel injection. Based on the detection of the fault and estimation of the

post-fault model of the DE by using a combination of the parity space and Kalman filter

methods, a fault-tolerant model-predictive control (FTMPC) has been implemented (see Ref.
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Figure 12. Profiles of RES generated power and load power consumption.
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[25] for further details). A simple MPC has also been tested, which causes microgrid instability

due to its lack of adaptability to faulty situations.

Figure 12 provides additional information on the NMPC performance by showing the voltage

and frequency of the microgrid, and the loads and batteries switching due to the NMPC

calculation. Voltage magnitude maintains within the �5% band (in the weaker bus/node 1)

when the microgrid operates in islanded mode. In this operation mode, when no control action

is performed, the voltage magnitude constraint is violated. On the other hand, constraints

included in the NMPC algorithm are not violated. From Figure 12, it is seen that high priority

loads L1, L7, and L8 were not disconnected, and at least one load of the low priority loads group

kept connected, as it was programmed in the NMPC algorithm. Batteries charge at off-peak

times, when there is availability of power from the generation units (Pgen > Pload). Batteries

deliver power to the grid when there is a power deficit due to peak consumption. The inclusion

of load shedding and battery management in the NMPC algorithm improves the microgrid’s

overall performance by guaranteeing a reliable and secure operation.
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Figure 13. (Upper) PDE when the load shedding NMPC strategy is used (islanding event at 12h00). (Lower left) Voltage

magnitude variation; (lower right) frequency variation.
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In addition to the previous results, Figure 13 shows the operation of the microgrid under similar

conditions of Figures 11 and 12. The islanding event occurs at 12h00, and as expected the voltage

magnitude variation does not overpass the �5% variation when the EMS takes decisions on the

batteries energy management, and low priority loads to be shed. A similar situation is observed

with the frequency deviation from 1 pu, which remains in an acceptable range of variation of

maximum 0.05%. By contrast, the simulation of the microgrid operating without the EMS shows

an unsecure behavior of the system, violating the |ΔV| < �5% operation constraint, and also

presenting a much larger frequency variation, as also shown in Figure 13.

5. Conclusions

A predictive control scheme that prevents from unbalances between the load demand and the

capacity of generation installed in an islanded microgrid is analyzed in this chapter. The

NMPC calculates, within an optimization framework, load shedding when necessary as well

as the energy management from the batteries in the microgrid. Therefore, an optimal control

problem is established, where all the operating conditions of the microgrid are integrated, that

is, load priorities for disconnection and batteries charging and discharging cycles. A compar-

ison of some simulation results of the microgrid working with and without the MGCC shows

improvements in the reliability of the microgrid when it operates in islanded mode, since

simulation results showed the capability of the control strategy of maintaining within safe

limits voltage and frequency of the microgrid, as well as a correct balance of generated power

and load demand.
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