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Abstract

In this chapter, three-dimensional digital rock models can be constructed by the micron
X-ray computed tomography (CT). Then, lattice gas automata was applied to simulate
the flow of electrical current in the saturated digital rocks to reveal the non-Archie
relation of resistivity index and water saturation (I-Sw). The flow of single-phase New-
tonian fluid in pore space had been studied with LBM for calculating the absolute
permeability. Moreover, we have developed a model based on digital rock to simulate
thermal neutrons transporting for imaging the anisotropy of pore structure. The advan-
tages of the model over traditional methods indicate that it can simultaneously consider
both the separation of matrix and pore and the distribution of mineral components. The
results of numerical simulation with Monte Carlo are in good agreement with the pore
distribution from X-ray CT, which can further verify the validity of the new model. In
contrast to the conventional conclusion, we find that the porosity calculated with neu-
tron data can be affected by the anisotropy. Therefore, a new formula to relate the
resolution of array detectors to the quality of imaging, had been proposed to analyze
the critical resolution and to optimize the number of neutrons in each simulation.

Keywords: digital rock, numerical simulation, X-ray computed tomography, Monte
Carlo method

1. Introduction

Due to extremely sensitive to the hydrogen [1, 2], neutron radiography (NR) is commonly used

to investigate the physical properties, which are dependent on the element in porous media,

such as the distribution of water and mineral contents in ceramic, brick and concrete [3–5].

During petroleum exploration, it is proved that the transport property of thermal neutrons

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



(TN) can be used to identify the fluid types bearing in rock and soil [3, 6]. Moreover, NR is

often taken as an effective non-destructive method in the research of pore structure. However,

a few research studies have been reported to investigate the anisotropy of pore connectivity

with TN in the last decade. Besides, many researchers believe that porosity computed with

neutron data cannot be affected by the anisotropy. Therefore, a few research studies have been

done to investigate the anisotropic transport of TN. Moreover, it is very difficult to study the

anisotropy in the traditional rock experiment, because the intrinsic pore structure cannot be

measured directly.

With the application of micron X-ray CT in digital rock physics (DRP) [7], the advantages of

DRP in obtaining pore structure with a high resolution have made it an effective method to

research properties of rock core. Based on DPR, static elastic and electrical properties can be

simulated by the numerical methods, such as finite element and finite difference methods

[8–10]. The lattice Boltzmann method had been used to simulate the transport of fluid in pore

space for revealing the effects of micro-factors on permeability [11–13]. Besides, the research on

the acoustic wave and the nuclear magnetic resonance can be efficiently conducted by the

numerical simulation methods on the basis of digital rock model [14, 15]. However, since only

matrix and pore [7, 16] can be segmented and taken as the effective contents, it is impossible to

set up the distribution of chemical multi-components in conventional models. Therefore, little

attention has been paid to the numerical research on the TN properties. Actually, the reaction

between TN and material contents filling in matrix and pore will play a significant role in the

study of thermal neutron transport. Accordingly, a new method has been proposed to con-

struct a digital rock model including not only the three-dimensional pore structure, but also

the material components. Thus, the transport of neutrons in the new models, considering the

reactions between them and the components, can be simulated by the Monte Carlo method

(MCM) for revealing the relationship between TN properties and the anisotropy of pore

structure. Based on these results, the effects of the anisotropy on the evaluation of porosity

can be further analysed through the neutron transport testing along different directions of the

new models.

We use two categories of digital core samples obtained by micron X-ray CT [7, 17]. One group

of rock image volumes is constructed from the carbonate (pure limestone) sample with the

density of 2.63 g�cm�3. The other group is constructed from the pure sandstone with the

density of 2.42 g�cm�3. The physical resolution of all digital core samples is 2.2046 μm per

pixel, and the utilized facility is ultra XRM-L200. After cropping, we can get fourteen 400� 400

� 400 carbonate cubes and a 400 � 400 � 400 sandstone cube for further property simulations.

The composition of chemical elements in a real rock is so complicated that only the main

elements can be considered in our research. Therefore, CaCO3 and H2O are set to represent

the chemical components of matrix and pore-filling fluid in carbonate, respectively (pure

limestone), whereas SiO2 and H2O are set to be the chemical components of matrix and pore-

filling fluid in sandstone, respectively. In both cases, these chemical contents are evenly distributed

in their own space respectively.

For transport of thermal neutrons, the macroscopic reaction cross-section (MRCS) of poly-

atomic molecule can be written as
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Σ ¼
ρNA

A

Xn

i ¼ 1

liσi ð1Þ

where Σ is the macroscopic reaction cross-section, cm�1; ρ is the density of molecule, g�cm�3;

NA is the Avogadro constant, 6.02 � 1023; σi is the reaction cross-section of the ith atom for

thermal neutron in the molecule, barn (10�24 cm2); A is the molecular weight; n is the category

number of atoms in the molecule and li is the number of the ith atom in the molecule.

Table 1 shows the reaction cross-section of 1
1H, 126 C, 168 O, 2814Si and

40
20Ca, where the first column

is the abundance of primary elements, and the last column is the element abundance of their

isotopes. Obviously, the abundance of the primary elements is the maximum and is commonly

higher than 92%. Thus, it is reasonable for us to consider only these primary elements in our

research. The density for the components CaCO3, SiO2 and H2O can be set to the value of 2.71,

2.65 and 1.00 g�cm�3, respectively, when the pressure is one standard atmosphere. MRCS of

CaCO3, SiO2 and H2Owill be: ΣCaCO3
¼ 0.27, ΣSiO2

¼ 0.20, ΣH2O ¼ 1.52 cm�1. Due to containing

more hydrogen, MRCS of pore-filling fluid (H2O) is much larger than that of matrix (CaCO3

and SiO2). It is clear that porosity will have a significant influence on the transmission of

incident neutrons [18], if the contents and the composition of rock model can keep unchanged.

The transmittance will decrease with the increase of porosity, which can accordingly cause the

change of the intensity of detected thermal neutron.

Figure 1 shows the two examples of the carbonate and the sandstone core sample, respectively.

From Figure 1(b) and (d), it can be observed that the pore space is homogeneous in the

sandstone core in YZ, XZ and XY planes, whereas the pore space is heterogeneous in a

carbonate core in the three orthogonal planes. The cracks can observed in XZ and XY planes

of the carbonate core (Figure 1(b)), but not in the YZ plane, which further demonstrates that its

pore space is strongly anisotropic.

Neutrons can be classified into different types according to the energy level [19, 20], such as cold

neutron, thermal and epithermal neutron. The energy of thermal neutrons involved in our

Element Cross-section

(n, total) (n, elastic) (n, nonelastic) (n, gamma) Abundance (%)

1
1H 2.076834e þ 1 2.043633e þ 1 / 3.320126e � 1 99.99

12
6 C 4.742600e þ 0 4.739240e þ 0 3.360000e � 3 3.360000e � 3 98.93

16
8 O 3.852000e þ 0 3.851810e þ 0 1.900000e � 4 1.900000e � 4 99.76

28
14Si 0.000000 0.000000 0.000000 0.000000 92.22

40
20Ca 2.399990e � 3 0.000000 2.399990e � 3 0.000000 96.94

Table 1. Reaction cross-section of H, C, O, Si and Ca for thermal neutron and the corresponding natural abundance of

isotopes.
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research is 0.0253 eV. In each simulation, these thermal neutrons will irradiate the constructed

new models from a vertical direction of one surface plane. On another side of the model, we use

array detectors to only receive the neutrons with the energy from 0.0250 to 0.0256 eV in order to

record those unreacted thermal neutrons. Many parallel thermal neutron beams will randomly

emit from the source (the green part in Figure 2) with the energy of 0.0253 eV for each neutron.

The total amount of emitted neutrons is about 40 million moving from the source towards the

Figure 1. 3D reconstructed pore structure of digital core based on micron X-ray CT. The total size of the dataset is 400 �

400 � 400 voxels with the edge length being 2.2046 μm. (a) The pore space of carbonate core, where the blue part is the

pore structure; (b) the surface of the carbonate; (c) the pore distribution of sandstone, where the blue part is the pore

structure; (d) the surface of the sandstone.
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model. For the neutrons irradiating the core, some of them will react with the core model mostly

via elastic scattering, which may change their energy and moving direction during these reac-

tions. Meanwhile, those unreacted thermal neutrons can directly pass through the sample model

and reach to the array detectors; therefore, their distribution can be recorded for further analysis

and imaging. On the basis of above fact, we use the neutron transmission imaging method to

obtain the distribution of difference of counts in YZ, XZ and XYplanes.

2. Methods

2.1. Reconstruction of core with X-ray CT

The method to reconstruct the digital rock model is based on micron meter X-ray CT imaging.

Wilhelm Röntgen firstly found the X-ray in 1895, and X-ray CT was invented by Hounsfield

and Cormack in 1979. Generally, the practical application of X-ray CTwas in medical fields for

scanning bone. Rapidly, it had spread into many fields [21], such as materials research and

rock physics, as a non-destructive technique [17, 22]. For those monochromatic X-rays passing

through the medium, some of them will react with the medium, which leads to the energy

attenuation. Different components are of different attenuation coefficients, the transport pro-

cess can be represented as below

I ¼ I0e
�
Ð
μ sð Þds ð2Þ

where I0 is the initial intensity of X-ray; I is the detected intensity after passing through the

medium and μ(s) is the local attenuation coefficient along the transport paths. The components

of a substance can be identified by measuring the attenuation coefficient of X-ray in experi-

ments. For a cylindrical rock sample with diameter of a few millimetres or less, the resolution

of X-ray CT can reach a few micron, or even better. The reconstruction of the new model used

in our research can be divided into three steps including image acquisition, image processing

and three-dimensional (3D) reconstruction. With micron X-ray CT instrument, lots of raw

radiographs (as shown in Figure 3(a)) can be obtained through scanning a real rock sample,

Figure 2. Model of thermal neutron irradiating core samples. The cube in the middle is the core sample; the plane on the

left is the 50� 50 array detector; the neutron source (square surface source) is at the right end of the lines. The detector, the

model and the source are supposed to be in a straight line, and all of them are set under normal atmosphere. Moreover,

they are of the same size in sections perpendicular to the line.
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such as carbonate or sandstone core. Then, the radiographs will experience a series of

processing before reconstruction, including noise reduction, smoothing, cropping and segmen-

tation [7]. After that, the segmented binary data (400 � 400) with matrix and pore voxels

(Figure 3(b)) can be achieved for each radiograph. Based on the binary data, the three-dimen-

sional digital rock model can be reconstructed, which can allow us to consider both the pore

structures, but also the material components, during the numerical simulation. The chemical

component of pore-filling fluid is only water (H2O), whereas the component of matrix is only

CaCO3 for carbonate and SiO2 for sandstone, respectively. Therefore, these different compo-

nents will not anymore be considered as a uniform mixture according to the ratio of elements

like that in the traditional methods. Instead, they are unevenly distributed in their own space

in a form of completely separated.

The scale of the model should be optimized before simulation in order to reduce the consumption

of time and computer memory. Therefore, we have utilized the representative elementary volume

(REV) [23] method to implement the optimization by investigating the variety of porosity with

the scale. The scale of REV can be determined when the porosity stops changingwith the increase

of model size. REV scale will give us the minimum elementary volume used to represent the

whole sample in simulation. Actually, the specific REV is 400 � 400 � 400 voxels in our research.

2.2. Lattice gas automata

The lattice gas automata (LGA) are derived from the cellular automata by improving the

evolution and introducing the collision of particles. The complete discrete LGA model, named

as the Hardy, Pomeau and de Pazzis (HPP) model, was introduced in 1973 to simulate the two-

dimensional (2D) fluids flow through dividing the computational field into square lattices. For

Figure 3. (a) Cross-sectional view of carbonate image with voxel of 2.2046 μm; (b) binary image with the blue areas

representing the pore space and grey representing the matrix.
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all LGA model, the discrete particles with unit mass and velocity are supposed to compose the

fluid, they will move in the lattice following some local rules. At each step, the discrete

particles will move forward one lattice unit to their neighbouring node along their headed

directions. Then, they will undergo collisions following the rules that must conserve mass and

momentum. Therefore, the local continuity and momentum conservation conditions can be

satisfied for incompressible fluids in LGA. Due to the square shape of discrete lattice, the

lattice tensor will be anisotropic in the HPP model, which may cause disagreement with the

description of the Navier-Stokes Equation (NSE), and lead to some unreasonable simulating

results consequently. A hexagon lattice was introduced in the Frisch, Hasslacher and Pomeau

(FHP) model to simulate the viscous flow, which has six neighbouring nodes at each site for

the particles to move after collision. With such lattices, the FHP model has successfully solved

the asymmetric problem that is inherent in the HPP model.

In LGA, the evolution of distribution function of particle density can be used to describe the

collision and streaming of particles, as follows:

f i xþ ei, tþ 1ð Þ ¼ f i x, tð Þ þΩ f i x, tð Þ
� �

ð3Þ

where the fi(x, t) represents the distribution function at node x, at time t, and moving along the

direction i with the velocity of ei. The Ω represents the local rules utilized to control the

redistribution of particles.

Based on the simple rules, the NSE for flow of an incompressible fluid could be retrieved at

macro scale from the evolution of particle. Later, the improvement of FHP by introducing the

rest particles makes the LGA method more reasonable for simulation of fluid flow.

2.3. Lattice Boltzmann

As a powerful and flexible approach for mesoscopic numerical simulation, especially in mono-

phase and multi-phase fluid flow in porous medium, the lattice Boltzmann method (LBM) has

been developed to a series of discrete space models including the two-dimensional model with

multi-speed, since 1988. In the two-dimensional model (D2Q9), the square lattice with nine

velocity vectors is used in discrete space of the computational domain and each node has eight

neighbouring lattice nodes. At each time step, a particle at a node described by the distribution

function of particle density moves to a neighbouring node, meanwhile, some particles move to

this node together and undergo a collision at next time step to form a new distribution of

particles.

The time evolution of LBM equation can be written as

f i xþ ei, tþ 1ð Þ � f i x, tð Þ ¼ �
1

τ

f i x, tð Þ � f
eq
i x, tð Þ

� �

, i ¼ 0, 1, 2, 3,…, 8 ð4Þ

where the fi(x, t) is the distribution function of particle density at lattice site x, time t, moving

along the direction i with the velocity of ei. The τ is relaxation time and fi
eq(x, t) is the

equilibrium distribution of particles.
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It was proved that the Navier-Stokes equation (NSE) can be derived from the time evolution of

LBM in a mesoscopic scale using multi-scale and Champman-Enskog expansion technology

with definition of density and momentum as the function of particle distribution and unit

velocity vector, respectively.

ρ x, tð Þ ¼
X

b

i¼0

f i x, tð Þ, ρu x, tð Þ ¼
X

b

i¼0

f i x, tð Þei ð5Þ

2.4. Monte Carlo method

The simulation for researching the transport and scatter of thermal neutrons in the model is

conducted by the Monte Carlo method [24, 25] in our research. As a random or statistical

method, the Monte Carlo method (MCM) is widely used in many physics fields, especially in

nuclear physics. MCM has been proved that it can realistically model the experiment of

nuclear physics [24, 25]. In this research, we focus on revealing the effects of elastic scattering

on the transport of thermal neutron in the digital rock model. The neutrons moving in the

medium will undergo several collisions to lose energy. Between every two collisions, they are

supposed to transport along a straight line without loss of energy. Usually, it is composed of

five key steps to determine the states during collisions, including setting up the initial state,

locating the position, identifying atomic nucleus, determining collision type and measuring

the direction and energy of neutrons after collision.

As described in Section 2.1, the constructed digital model, based on X-ray CT, consists of 400 �

400 � 400 pixel cubes containing the matrix and the pore space inside. Therefore, the model can

give the projected image of 400� 400 pixels in the YZ plane. In the image, the value of each pixel

is porosity calculated with the 400 cubes along the X direction of the pixel. Thus, the projected

image of porosity in the YZ plane can be used for a further analysis in our research. In the same

way, the projected image of porosity in XZ and XY planes can be obtained, respectively. The

same colour bar has been applied in the figures of both porosity image and the counts difference

to eliminate the effects of the data magnitude, as shown in Figure 4. Accordingly, we can

conveniently calculate the similarity between them in these figures by comparing each other.

The pictures can be taken as two-dimensional matrices through converting them into grayscale,

thus, the similarity between them can be computed by Eq. (6), as follows:

r ¼

X

m

X

n
Amn � A
� �

Bmn � B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

X

n
Amn � A
� �2

� �

X

m

X

n
Bmn � B
� �2

� �

r ð6Þ

where r represents the calculated similarity, Amn is the element value of matrix A, Bmn is the

element value of matrix B, A is the average value of all elements in A and B is the average value

of elements in B.

2.5. Neutron imaging method

The elements of a material can be efficiently identified by the neutron transmission imaging

method, which is generally taken as a non-destructive detection method in the past decades.
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Figure 4. Thermal neutron imaging of the core. The similarity of (a) and (b) is 0.8385; the similarity of (c) and (d) is 0.7322;

the similarity of (e) and (f) is 0.8063. The resolution of (b), (d) and (f) is 17.6368 μm.
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Hydrogen is the most effective neutron moderator, which mainly distributes in the pore-filling

fluid (for example, water) as constituents of the rock. Therefore, the elastic scattering between

thermal neutrons and hydrogen will mostly occur in the pore space. Thus, we can research the

pore structure through detecting the neutron. The attenuation of monochromatic (single wave-

length) neutron beam transporting in medium can be expressed as Eq. (7) [26, 27]

I ¼ I0e
�μτ ð7Þ

where I is the intensity of neutron beam transporting in medium, I0 is the initial intensity of

incident neutron beam, μ is the attenuation coefficient, cm�1 and τ is the sample thickness.

For the method, the key steps in simulation will be implemented following this process: pure

matrix model without pore space, such as pure carbonate or sandstone, was first irradiated by

TN beam to obtain the reference background. Then, the reconstructed digital rock (as shown in

Figure 1) was put into the same environment for conducting the numerical experiment of

simulating the transport of TN beam along directions of X-, Y- and Z-, respectively. Conse-

quently, we can obtain the count difference through subtracting the simulated data of the

reconstructed model, from that of the pure matrix model. Finally, we will image the distribu-

tion of count difference to further analyse the pore structure.

3. Results

3.1. TN imaging of the model

Firstly, the carbonate model is selected for the numerical experiment. TN beam will irradiate

the model along directions of X, Y and Z, respectively. The porosity images in YZ, XZ and XY

planes have been, respectively, plotted in Figure 4(a), (c) and (e). Correspondingly, the count

difference has been plotted in Figure 4(b), (d) and (f). As shown in Figure 4, the similarity of

Figure 4(a) vs. (b), Figure 4(c) vs. (d) and Figure 4(e) vs. (f) can be calculated by Eq. (6), which

can quantitatively verify that the new method is effective. The obvious count difference in

Figure 4(b) can be observed in the middle and right part of the YZ plane, which is consistent

with Figure 4(a). It is clear that the distribution of pore space in Figure 4(d) is uniform in the

XZ plane of the model. A crack has been measured in Figure 4(f) in the XYplane. Therefore, it

is intuitively observed that the distribution of porosity will obviously vary in different planes

of the same model, according to Figure 4(b), (d) and (f). This observation can further demon-

strate that the carbonate model has strong heterogeneity and anisotropy.

Ten cores were selected from the fourteen 400 � 400 � 400 carbonate model. For each core, we

have conducted the numerical experiments and data processing along different directions, the

corresponding count difference (CD) has been obtained, as shown in Figure 4(b), (d) and (f).

On basis of this fact, the total count difference (TCD) and porosity can be calculated for each

core. Relationship between TCD and total porosity has been constructed through linear fitting.

The following equations are the relationship in different direction:
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Along X� direction : φ
t
¼ 1:62546589556� 10�7

x� 5:02730504255319� 10�4 ð8Þ

Along Y� direction : φ
t
¼ 1:62519532496� 10�7

x� 5:73821908133962� 10�4 ð9Þ

Along Z� direction : φ
t
¼ 1:62543339256� 10�7

x� 4:24629774524067� 10�4 ð10Þ

where x represents the TCD obtained by the simulation along a given direction and φt is the

real total porosity of rock core. We have obtained three relationships between φt and x along X,

Y and Z directions, respectively, they are Eqs. (8)–(10). All the three fittings have the squared

correlation coefficient R2 ¼ 0.99, which can demonstrate the reliability of them. It is clear that

all the three equations are in good agreement with the simulated data. To verify the validity of

the equations, they are utilized to predict porosity of the rest core samples. The TCD obtained

along the X-direction will be substituted into Eqs. (8)–(10) to compute porosity of each core.

The predicted results are shown in Table 2.

In Table 2, the first column is TCD obtained along the X-direction, and the second column is

the real porosity of each core. The relative errors of predicted results with the three equations

have been show in the next three columns, respectively. From the last three columns, it is

observed that the relative errors of the predicted porosity will have small difference varying

with the directions of neutron transport, when porosity is calculated by the three equations

with the same simulated data. Therefore, it is reasonable to deduce that the linear relationship

between TCD and porosity will be affected by the anisotropy, which is a contrast to the

conventional conclusion.

The neutron transmission image in Figure 4 intuitively shows the distribution of pores, cracks

and fractures in rock. On the basis of this fact, the heterogeneity and anisotropy of the model

can be analysed with these images. In our research, the scale of array detectors will gradually

vary from 4 � 4 to 400 � 400 for revealing the effects of resolution. It is the edge length of each

detector in the array that can decide the resolution. Therefore, a variable range of resolution

from 2.2046 to 220.46 μm can let us conveniently investigate the effects of the resolution on

evaluation of anisotropy. Moreover, we repeat the numerical experiments on the carbonate

core as shown in Figure 1 along the X-direction and record the results with the detector array

of different resolution. Thus, a series of images with different resolutions can be obtained

through processing the results, as shown in Figure 5. By comparing Figure 4(a) with Figure 5,

Counts difference (x) Real porosity Relative error X (%) Relative error Y (%) Relative error Z (%)

33,2780 0.053464516 0.23 0.08 0.38

66,1348 0.108629469 �1.50 �1.58 �1.43

309,735 0.049879859 �0.07 �0.23 0.08

426,181 0.068628984 0.21 0.09 0.32

Table 2. Prediction of the porosity.
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it is clear that a higher resolution does not always lead to a better image, which means that there

is a critical resolution for the neutron imaging. Besides, the similarity (correlation coefficient)

between the original model and the detected image has been computed by Eq. (6) under different

resolutions. Figure 6(a) shows the calculated results, where the upper points and line represent

the carbonate, the lower points and line represent the sandstone, the abscissa is the resolution

and the ordinate is the similarity. According to Figure 6(a), it is observed that the similarity will

be gradually improved with the increase of the resolution, then reach at the maximum resolution

and rapidly decrease after that. Accordingly, we have developed a new equation to relate the

resolution to the similarity as follows:

y ¼ Axaebx
a

� B ð11Þ

where x represents the resolution of array detector and y represents the similarity and A, B, a, b

are constant parameters with related to the porous medium.

Specifically, the relation between the similarity and the resolution in Figure 6(a) can be written as

Carbonate core : y ¼ 14:67x�0:2554e�1:951x�0:2554

� 1:923, R2 ¼ 0:971 ð12Þ

Sandstone core : y ¼ 0:1285x0:9649e�0:0877x0:9649

þ 0:3025, R2 ¼ 0:984 ð13Þ

Obviously, Eq. (11) is suitable for both carbonate and sandstone, although they have different

material compositions and pore distributions.

For the carbonate core, the simulation has been repeated eight times by modifying the amount

of the emitted TN. Figure 6(b) shows the effect of the resolution on the similarity under

different intensities of emitted neutron. From Figure 6(b), it is observed that the effect of the

resolution on the similarity is similar with that in Figure 6(a), although the amount of emitted

TN is different in each repeat. In order to make it clear, the rectangular zone is enlarged and is

shown in the lower right of Figure 6(b). We can see that the peak of similarity will vary with

the number of emitted TN. Generally, the peak will increase with increasing the TN number.

However, the trend will stop when the TN number is more than 40 million. Moreover, it is

Figure 5. Detection results of carbonate core with different resolution. (a) is a image with resolution 110.23 μm; (b)

resolution 17.6368 μm; (c) resolution 2.2046 μm.
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Figure 6. The resolution and the number of thermal neutrons emitted in each simulation.
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observed that the peak only appears in a range of the resolution from 10 to 20 μm. Currently,

the maximum physical resolution for array detector is about 15 μm [20]. However, based on

our results under the condition of 40 million TN, the optimum resolution of array detectors

should be set to 17.6368 μm for carbonate in our research.

3.2. Simulations for electrical transport properties

In order to investigate the electrical transport properties, LGA has been applied to simulate the

current flow in digital rock samples virtually saturated with oil and water, for revealing the

relationship between resistivity index and water (oil) saturation (I-Sw) at a pore scale. Based on

the digital core, we use LGA to research the variation of the resistivity with the saturation for

investigating the origin of the non-Archie I-Sw relation. The simulated results indicate that I-

Sw relation is a non-linear function in a log-log plot, which is a contrast to the Archie’s formula.

With the decreasing of water saturation and porosity, the I-Sw relation will gradually turn

towards the abscissa (water saturation axis), which means a non-Archie phenomenon appears

in a low saturation zone. In this case, Archie’s formula is valid only when the water saturation

is in a high zone. Therefore, a new equation has been developed to describe the non-Archie I-

Sw relation based on this study, which can be used to improve the accuracy of saturation

calculation in reservoir evaluation. The calculated results with the new equation have shown

that it may fit the data of laboratory measurements very well.

Figure 7. The non-linear relation of I-Sw for water saturation from 0.1 to 1.
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In Figure 7, the horizontal axis is the water saturation. The vertical axis is the resistivity index.

The range of the water saturation applied in the numerical simulation is set to span from 0.1 to

1 to further investigate the widely changing of the I-Sw relation. Figure 7 shows I-Sw relation

obtained by the virtual experiments of LGA on the digital rock models, with decreasing water

saturation to below 0.3. In this figure, the non-linear I-Sw relation can be obviously observed,

especially when the water saturation is less than 0.3. In a log-log plot, I-Sw relation will

gradually drop off towards the abscissa with decreasing Sw. Therefore, it is reasonable to

deduce that the Archie exponent n is a function of Sw, instead of a constant in Archie’s theory.

3.3. Simulation of fluid flow by LBM

The numerical experiments involved in this study are modelling the flow of Newtonian fluid

in a three-dimensional channel with rigid boundaries at the top and bottom. For a stationary

flow driven by a constant horizontal pressure gradient, if the velocity is sufficiently low to

neglect the inertia terms, the NS equation can be simplified to Darcy’s law, i.e.

Q ¼ K∇P=μ ð14Þ

where Q is the volume flow rate in unit of m/s, K is the permeability of the medium in unit of

m2 and μ is the dynamic viscosity of the fluid.

Single-phase flow in pore space has been simulated by LBM with a digital rock of 400 � 400 �

400 voxels. The distribution of fluid velocity is plotted in Figure 8. In order to clearly show the

distribution inside the rock, only slices had been chosen to draw in the figure.

Based on the simulations, the absolute permeability can be calculated with Eq. (3). After

comparing the results with experimental data, it is proved the feasibility and validity of LBM

Figure 8. Velocity distribution profile of 3D digital rock model.
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in the research of simulating fluid transport properties at the pore scale. Moreover, the phe-

nomenon of oil-water two-phase flow can be simulated by introducing the Shan-Chen potential

model.

4. Discussion

On the basis of the digital core, LGA was utilized to simulate the variation of resistivity with

the saturation for revealing the origin of the non-Archie I-Sw relation. The simulated results

further verify that I-Sw relation is a non-linear function in a log-log plot, which is a contrast to

Archie’s formula. Furthermore, we have proved that Archie’s formula is valid only when the

water saturation is in a high zone, and the exponent n is a function of Sw, instead of a constant

in Archie’s theory. Moreover, the flow of single-phase Newtonian fluid in a three-dimensional

digital rock had been implemented with LBM for calculating the absolute permeability. The

good agreement between the calculated results and the experimental data has further proved

the validity of LBM in research of fluid flow in pore space.

A new method has been developed to reconstruct a digital rock model based on the data from

scanning a real rock with micron X-ray CT, which can simultaneously take into account both the

pore structure and the material components. MCM is used to simulate the transport of TN in

medium at a pore scale. After analysing the results, we have further investigated the effect of

anisotropy on the porosity calculation. According to the results, it is proved that the method of

TN imaging can intuitively show the distribution of pore, cracks and fractures inside a rock.

Moreover, we have found that the linear relationship between TCD and total porosity can be

slightly affected by the anisotropy. Therefore, porosity may have a little difference if the data of

different directions are utilized, when we use the neutron method to evaluate porosity of porous

media. In the new model, the distribution of chemical elements of different components is

supposed to be uniform in their space, such as in matrix or in pore space. Hydrogen, as the most

effective neutron moderator, mainly distributes in pore-filling fluids, such as water, oil and

natural gas. Thus, the content and distribution of these substances in rock can be quantitatively

investigated with the neutron method. The results of our researchmay offer an evident to support

the anisotropic analysis of pore structure with the neutron method. Furthermore, the distribution

of substances containing hydrogen-4 is of great interest in many research fields, which is mainly

detected by the neutron radiography at present. Accordingly, our new method may be a signifi-

cant reference for them due to its flexible ability in handling complex pore structure and compo-

nents distribution. Besides, we have found that a higher resolution of array detector cannot

always lead to a better neutron image, when we research the pore connectivity and distribution

with TN transmission. A critical resolution for the optimum image can be determined with our

method, under the condition of a suitable TN number emitted in each simulation.
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