
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 4

Efficient Heuristics for Scheduling with Release and
Delivery Times

Nodari Vakhania

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69223

Abstract

In this chapter, we describe efficient heuristics for scheduling jobs with release and
delivery times with the objective to minimize the maximum job completion time. These
heuristics are essentially based on a commonly used scheduling theory in Jackson’s
extended heuristic. We present basic structural properties of the solutions delivered
by Jackson’s heuristic and then illustrate how one can exploit them to build efficient
heuristics.

Keywords: combinatorial optimization, heuristic algorithm, scheduling theory, time
complexity, approximation algorithm

1. Introduction

The combinatorial optimization problems have emerged in late 40s of last century due to a rapid

growth of the industry and new arisen demands in efficient solution methods. Modeled in

mathematical language, a combinatorial optimization problem has a finite set of the so-called

feasible solutions; this set is determined by a set of restrictions that naturally arise in practice.

Usually, there is an objective function in which domain is the latter set. One aims to determine

a feasible solution that gives an extremal (minimal or maximal) value to the objective function,

the so-called optimal solution. Since the number of feasible solutions is typically finite, theoret-

ically, finding an optimal solution is trivial: just enumerate all the feasible solutions calculating

for each of them the value of the objective function and select any one with the optimal

objective value. The main issue here is that a brutal enumeration of all feasible solutions might

be impossible in practice.

There are two distinct classes of combinatorial optimization problems, class P of polynomially

solvable ones and NP-hard problems. For a problem from class P, there exists an efficient

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

(polynomial in the size of the problem) algorithm. But no such algorithm exists for an NP-hard

problem. The number of feasible solutions of an NP-hard optimization problem grows expo-

nentially with the size of the input (which, informally, is the amount of the computer memory

necessary to represent the problem data/parameters). Furthermore, allNP-hard problems have

a similar computational (time) complexity, in the sense that if there will be found an efficient

polynomial-time algorithm for any of them, such an algorithm would yield another polyno-

mial-time algorithm for any other NP-hard problem. On the positive side, all NP-hard prob-

lems belong to the class NP that guarantees that any feasible schedule to an NP-hard problem

can be found in polynomial time. It is believed that it is very unlikely that an NP-hard problem

can be solved in polynomial time (whereas an exact polynomial-time algorithm with a reason-

able real-time behavior exists for a problem in class P). Hence, it is natural to think of an

approximation solution method.

Thus, approximation algorithms are most frequently used for the solution of NP-hard prob-

lems. Any NP-hard problem has a nice characteristic, that is, any feasible solution can be

created and verified in polynomial time, like for problems in class P. A greedy algorithm creates

in this way a single feasible solution by iteratively taking the next “most promising” decision,

until a complete solution is created. These decisions are normally taken in a low-degree

polynomial/constant time. Since the total number of iterations equals to the number of objects

in a given problem instance, the overall time complexity of a greedy algorithm is low. Like-

wise, heuristic algorithms reduce the search space creating one or more feasible solutions in

polynomial time. Greedy and heuristic algorithms are simplest approximation algorithms. It is

easy to construct such an algorithm for both polynomial andNP-hard problems. It may deliver

an optimal solution to a problem from calls P, but it is highly unlikely that a heuristic optimal

algorithm may exist for an NP-hard problem. A greedy algorithm reduces the potential search

space by taking a unique decision for the extension of the current partial solution in each of the

n iterations. A simplest heuristic algorithm is greedy, though there are more sophisticated

heuristic algorithms that use different search strategies. In general, an approximation algo-

rithm may guarantee some worst-case behavior measured by its performance ratio: the ratio of

the value of objective function of the worst solution that may deliver the algorithm to the

optimal objective value (a real number greater than 1).

Scheduling problems are important combinatorial optimization problems. A given set of requests

called jobs are to be performed (scheduled) on a finite set of resources calledmachines (or processors).

The objective is to determine the processing order of jobs on machines in order to minimize or

maximize a given objective function. Scheduling problems have a wide range of applications from

production process to computer systems optimization.

Simple greedy heuristics that use some priority dispatching rules for the for taking the deci-

sions can be easily constructed and adopted for scheduling problems. An obvious advantage

of such heuristics is their rapidness, and an obvious disadvantage is a poor solution quality.

The generation of a better solution needs more computational and algorithmic efforts. A Global

search in the feasible solution space guarantees an optimal solution, but it can take inadmissible

computational time. A local (neighborhood) search takes reasonable computational time, and the

solution which it gives is locally best (i.e., best among all considered neighbor solutions).

Heuristics and Hyper-Heuristics - Principles and Applications66

Simulated annealing, tabu-search, genetic algorithms, and beam search are examples of local

search algorithms (for example, [16, 22, 23, 25]). These algorithms reduce the search space, and

at the same time, their search is less restricted than that of simple heuristic (dispatching)

algorithms, giving, in general, better quality solutions than simple greedy algorithms. Global

search methods include (exact) implicit enumerative algorithms and also approximative algo-

rithm with embedded heuristic rules and strategies (for example, [1, 20, 29, 38, 4]). Normally,

global search algorithms provide the solutions with the better quality than the local search

algorithms, but they also take more computer time.

This chapter deals with one of the most widely used greedy heuristics in scheduling theory.

The generic heuristic for scheduling jobs with release and delivery times on a single machine to

minimize the maximum job completion time is named after Jackson [21] (the heuristic was

originally proposed for the version without release times, and then it was extended for the

problem with release times by Schrage [30]). Jackson’s heuristic (J-heuristic, for short), itera-

tively, at each scheduling time t (given by job release or completion time), among the jobs

released by time t schedules one with the largest delivery time. This 2-approximation heuristic

is important on its own right, and it also provides a firm basis for more complex heuristic

algorithms that solve optimally various scheduling problems that cannot be solved by a

greedy method.

In this chapter, we give a brief overview of heuristic algorithms that are essentially based on J-

heuristic. Then, we go into the analysis of the schedules created by J-heuristic (J-schedule),

showing their beneficial structural properties. They are helpful for a closer study of the related

problems, which, in turn, may lead to better solution methods. We illustrate how the deduced

structural properties can be beneficially used by building an adaptive heuristic algorithm for

our generic scheduling problem with a more flexible worst-case performance ratio than that of

J-heuristic.

The next section consists of four subsections. In Section 2, we first describe our basic schedul-

ing problem, Jackson’s heuristic, other related heuristics, and real-life applications of the

scheduling problem. In Section 3, we study the basic structural properties of the schedules

constructed by Jackson’s heuristic. In Section 4, we derive a flexible worst-case performance

estimation for the heuristic, and in Section 5, we construct a new adaptive heuristic based on

Jackson’s heuristic. Section 6 concludes the chapter with final remarks.

2. Preliminaries

2.1. Problem formulation

Our generic single-machine scheduling problem can be described as follows. We have n jobs

from set J and a single machine. Job j∈ J is characterized by its release time rj, a time moment

when it becomes available. Once a released job is assigned to the machine, it takes pj time units

of uninterrupted processing time on that machine. Here, we have a basic restriction that the

machine can process no more than one job at any time moment. Once job j completes its

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

67

processing on the machine, it still needs a (constant) delivery time qj for its full completion (the

jobs are delivered by an independent unit and this takes no machine time). We wish to

minimize the maximum job full completion time.

The problem is known to be strongly NP hard (Garey and Johnson [13]). According to the

conventional three-field notation introduced by Graham et al. [18], the above problem is

abbreviated as 1jrj;qjjCmax: in the first field, the single-machine environment is indicated, the

second field specifies job parameters, and the third field specifies objective criteria.

The problem has an equivalent formulation 1jrjjLmax in which delivery times are interchanged

by due dates and the maximum job lateness Lmax, that is, the difference between the job comple-

tion time and its due date is minimized (due date dj of job j is the desirable time for the

completion of job j).

We may note that, besides job lateness, there are other due-date-oriented objective criteria. A

common one is the number of late jobs, where job is late if it completes behind its due date. Here,

the number of late jobs is to be minimized. In the feasibility version of the problem, one looks

for a schedule with no late job. Obviously, if in an optimal solution of the minimization

version, the maximum job lateness is no more than 0, then it is a feasible solution of the

feasibility version as well; otherwise (the maximum job lateness is positive), there exists no

feasible solution to the feasibility version. Vice versa, an algorithm for the feasibility problem

can be used to solve the minimization version: we iteratively increase due dates of all jobs until

we find a feasible schedule with the modified due dates. Note that the min-max job lateness

obtained in this way depends on the maximum job processing time pmax and n so that we will

need to apply a feasibility algorithm OðnpmaxÞ times. But by using binary search, the cost can

be reduced to OðlogðnpmaxÞÞ.

Given an instance of 1jrj;qjjCmax, one can obtain an equivalent instance of 1jrjjLmax as follows.

Take a suitably large constant K (no less than the maximum job delivery time) and define due

date of every job j as dj ¼ K � qj. Vice versa, given an instance of 1jrjjLmax, we may create an

equivalent instance of 1jrj;qjjCmax by introducing job delivery times, qj ¼ D� dj, taking a

suitably large constant D (any number larger than the maximum job due date would work).

It can be easily seen by the equivalence of these instances (if the makespan for the version

1jrj;qjjCmax is minimized, the maximum job lateness in 1jrjjLmax is minimized, and vice versa,

see Bratley et al. [2] for more details). Because of the equivalence, both above formulations

might be used interchangeably.

2.2. Description of J-heuristic

Now, we describe Jackson’s greedy heuristic (J-heuristic) in detail that works on n scheduling

times (at every scheduling time, the next job is scheduled on the machine). Initially, the earliest

scheduling time is set to the minimum job release time. Iteratively, among all jobs released by a

given scheduling time, a job with the maximum delivery time is scheduled on the machine

(ties might be broken by selecting any longest available job). Once a job completes on the

Heuristics and Hyper-Heuristics - Principles and Applications68

machine, the next scheduling time is set to the maximum between the completion time of that

job and the minimum release time of a yet unscheduled job.

Since the heuristic always schedules an earliest released job every time, the machine becomes

idle and it creates no gap that can be avoided. The time complexity of the heuristic is

Oðn log nÞ as at every n scheduling times, the search for a maximal element in an ordered list

is carried out.

The heuristic is easily expendable for multiprocessor and preemptive scheduling problems

with release and delivery (due) times. For m identical parallel processor case, a ready job with

the largest tail (or smallest due date) is repeatedly determined and is scheduled on the

processor with the minimal completion time ties being broken by selecting the processor with

the minimal index. For the sake of conciseness, we below refer to that processor as the active

one.

Multiprocessor J-heuristic

U :¼ J; t :¼ min{rjjj∈U}

while U 6¼ ∅ do

begin

find job j� ∈ {j∈Ujrj ≤ t} with the largest delivery time qj� and schedule it at time t on the

corresponding active processor; U :¼ U\{j�};

update the current active processor and set t to the maximum between the completion time

of that processor and minimal job release time in set U

end

We illustrate a 3-processor J-schedule in Figure 1 for eight jobs with the parameters as speci-

fied in the table as follows:

As it can be seen in Figure 1, J-heuristic creates idle time intervals (the gaps) on all three

processors constructing an optimal schedule with makespan 54. Note that job 7 realizes the

maximum objective value 54 being scheduled on processor 2 (we call such job the overflow job

r1 ¼ 0 p1 ¼ 4 q1 ¼ 30

r2 ¼ 0 p2 ¼ 5 q2 ¼ 25

r3 ¼ 5 p3 ¼ 3 q3 ¼ 20

r4 ¼ 8 p4 ¼ 6 q4 ¼ 15

r5 ¼ 8 p5 ¼ 10 q5 ¼ 22

r6 ¼ 15 p6 ¼ 2 q6 ¼ 5

r7 ¼ 20 p7 ¼ 4 q7 ¼ 30

r8 ¼ 25 p8 ¼ 7 q8 ¼ 10

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

69

as we define a bit later), the completion time of processor 2 is 24 (that of job 7), whereas the full

completion time of job 7 is 54.

For preemptive version of J-heuristic, every currently executed job is interrupted at the earliest

time moment when a more urgent jobs get released. It is well-known and also easily seen that

the preemptive version of J-heuristic delivers an optimal solution for the corresponding pre-

emptive scheduling problem.

2.3. Overview of related heuristics

As mentioned earlier, J-heuristic turned out to be highly flexible in the sense that its different

modifications have been used for the solution of different scheduling problems. Potts [27] has

proposed an extension of the heuristic. His algorithm repeatedly applies J-heuristic OðnÞ times

Figure 1. A 3-processor J-schedule. Zig-zag lines represent gaps, and the numbers within the circles are job full comple-

tion times.

Heuristics and Hyper-Heuristics - Principles and Applications70

and obtains an improved approximation ratio of 3=2 at the cost of an increase by a factor of

OðnÞ time complexity. Hall and Shmoys [19], also based on J-heuristic, have developed another

4/3-approximation polynomial-time algorithm with the same time complexity of Oðn2 log nÞ

for the version of our problem 1jrj;qjjCmax with precedence relations. Garey et al. [14] have

modified the heuristic as another more sophisticated Oðn log nÞ heuristic for the feasibility

version of this problem with equal-length jobs (in the feasibility version, job due dates are

replaced by deadlines and a schedule in which all jobs complete by their deadlines is looked

for). This result was extended to the version of problem 1jrj;qjjCmax with two possible job

processing times in an Oðn2 log nÞ algorithm described in [34]. For another relevant criterion,

an Oðn3 log nÞ algorithm that minimizes the number of late jobs with release times on a single

machine when job preemptions are allowed was proposed in [35]. Without preemptions, an

Oðn2 log nÞ algorithm for the case when all jobs have equal length was proposed in [37].

Multiprocessor version of J-heuristic has been used as a basis for the solution of multiprocessor

scheduling problems. For example, for the feasibility version with m identical machines and

equal-length jobs, algorithms with the time complexities Oðn3 log log nÞ and Oðn2mÞ were

proposed in Simons [31] and Simons and Warmuth [32], respectively. Using the J-heuristic as

a schedule generator, an Oðqmaxmn log nþOðmνnÞÞ algorithm for the minimization version of

the latter problem was proposed in [33], where qmax is the maximum job delivery time and

ν < n is a parameter. With the objective to minimize the number of late jobs on a group of

identical processors, an Oðn3 log n log pmaxÞ non-preemptive algorithm for equal-length jobs

was proposed in [36].

J-heuristic can be efficiently used for the solution of shop scheduling problems. Using

J-heuristic as a schedule generator, McMahon and Florian [24] and Carlier [5] have proposed

efficient enumerative algorithms for 1jrj;qjjCmax. Grabowski et al. [17] use the heuristic for the

obtainment of an initial solution in another enumerative algorithm for the same problem.

The problem 1jrj;qjjCmax naturally arises in job-shop scheduling problems as an auxiliary

problem for the derivation of strong lower bounds. By ignoring the potential yet unresolved

conflicts on all the machines except a selected machineM, the corresponding disjunctive graph

defines an auxiliary instance of problem 1jrj;qjjCmax on machine M, where every task o to be

performed on that machine is characterized by an early starting time (defined by the early

completion times of its predecessor-tasks) that is set as its release time ro and the tail or the

delivery time qo (determined by the processing times of the predecessor-tasks of task o). In

multiprocessor job-shop scheduling problems, a single machine is replaced by a group of

parallel machines, and the corresponding multiprocessor version of problem 1jrj;qjjCmax is

derived. For the purpose of a lower bound, preemptive version of the above problems with

release and delivery times might be considered and preemptive J-heuristic can then be applied.

For relevant studies on a classical job-shop scheduling problem, see, for example, Carlier [5],

Carlier and Pinson [6], Brinkkotter and Brucker [3], and more recent works of Gharbi and

Labidi [15] and Della Croce and T’kindt [12] and for multiprocessor job-shop scheduling

problem with identical machines, see Carlier and Pinson [7]. This approach can also be

extended for the case when parallel machines are unrelated [38].

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

71

J-heuristic can also be useful for parallelizing the computations in scheduling job shop [26] and

also for the parallel batch scheduling problems with release times [10].

2.4. Some other applications

Besides the above-mentioned applications in multiprocessor, shop, and batch scheduling

problems, our problem has numerous immediate real-life applications in various production

chains, CPU time sharing in operating systems (jobs being the processes to be executed by the

processor), wireless sensor network transmission range distribution (where jobs are mobile

devices with their corresponding ranges that can be modeled as release and due dates), and

important transportation problems such as traveling salesman’s and vehicle routing problems

with time windows. The reader may wish to have a look at reference [28] for an extensive

overview of the variations of the vehicle routing problem, and we also refer to [11, 41] for more

recent related work.

Our scheduling problem can be used for the solution of the latter transportation problems. Let

us first describe these problems briefly. There are, say, n customers or cities and one special

location called depot. The distances between any pair of locations are known. The goods are to

be distributed from depot to the customers using one or more (identical) vehicles. There are

certain restrictions on how this distribution should be done that define set of all feasible

solutions to the problem. A general notion is a tour carried out by a vehicle that initiates at

depot, visits some of the customers, and returns to depot. All customers must be served, i.e.,

every customer is to be included in exactly one tour. There may be additional restrictions such

as vehicle capacity constraints and customer requests. And another basic constraint, which

relates these transportation problems with our scheduling problem, is that every customer can

be served only within a certain time interval, whereas there is also a valid time interval given

for the depot.

A common objective is to minimize the total service/travel time of all the vehicles. Whereas in

the basic setting, it is straightforward to find a feasible solution, with time windows, this task is

not obvious, in fact, there may exist no feasible solution. If it exists, then one aims to minimize

the number of used vehicles and then construct the corresponding number of tours with the

objective to minimize total service time.

Associating with every customer and the depot a unique job and with the corresponding time

window the release and due dates of that job, we arrive at a corresponding scheduling

problem, an instance of 1jrjjLmax. Let us consider the feasibility version of this problem (in

which a solution with no positive lateness is looked for). Note that if there is no feasible

solution to that feasibility version, then there exists no feasible solution to the corresponding

vehicle routing problem with a single vehicle. Then, we may consider the feasibility problem

with two identical machines P2jrjjLmax and so on, with k identical machines PkjrjjLmax, until a

feasible solution is found. We may use a binary search within the interval ½1, m� instead when

an upper limit m on the maximum number of vehicles is known (otherwise, we set m to a

sufficiently large magnitude). In case, there exists a feasible solution for k ¼ m, once the

minimum k is found, the corresponding k tours minimizing the total travel time might be

constructed.

Heuristics and Hyper-Heuristics - Principles and Applications72

3. The structure of J-schedules

Previous section’s brief survey clearly indicates importance of our scheduling problem and the

power and flexibility of J-heuristic as well. Whenever the direct application of J-heuristic for

the solution of the problem is concerned and the solution quality is important, the worst-case

bound of two may not be acceptable. Besides, J-heuristic may not solve the feasibility version

of our problem even though there may exist a feasible solution with no positive maximum

lateness. To this end, there are two relevant points that deserve mentioning. On the one hand,

the practical behavior of the heuristic might be essentially better than this worst-case estima-

tion [40]. On the other hand, by carrying out structural analysis of J-schedules, it is possible to

obtain a better, more flexible worst-case bound, as we show in the next section. In this section,

we introduce some basic concepts that will help us in this analysis.

Let us denote by σ, the schedule obtained by the application of J-heuristic to the originally

given problem instance (as we will see later, this heuristic can also be beneficially applied to

some other derived problem instances). Schedule σ, and, in general, any J-schedule, may

contain a gap, which is its maximal consecutive time interval in which the machine is idle. We

shall assume that there occurs a 0-length gap ðcj, tiÞ, whenever job i starts at its earliest possible

starting time (that is, its release time) immediately after the completion of job j; here, tj (cj,

respectively) denotes the starting (completion, respectively) time of job j.

Let us call a block, a maximal consecutive part of a J-schedule, is consisting of the successively

scheduled jobs without any gap in between (preceded and succeeded by a gap).

Now, we give some necessary concepts from [33] that will help us to expose useful structural

properties of the J-schedules.

Given a J-schedule S, let i be a job that realizes the maximum job lateness in S, i.e.,

LiðSÞ ¼ maxj{LjðSÞ}. Let, further, B be the block in S that contains job i. Among all the jobs in B

with this property, the latest scheduled one is called an overflow job in S (we just note that not

necessarily this job ends block B).

A kernel in S is a maximal (consecutive) job sequence ending with an overflow job o such that

no job from this sequence has a due date more than do. For a kernel K, we let rðKÞ ¼ mini∈K{ri}.

It follows that every kernel is contained in some block in S, and the number of kernels in S

equals to the number of the overflow jobs in it. Furthermore, since any kernel belongs to a

single block, it may contain no gap.

If schedule σ is not optimal, there must exist a job less urgent than o, scheduled before all jobs

of kernel K that delays jobs in K (see Lemma 1 a bit later). By rescheduling such a job to a later

time moment, the jobs in kernel K can be restarted earlier. We need some extra definitions to

define this operation formally.

Suppose job i precedes job j in ED-schedule S. We will say that i pushes j in S if ED-heuristic will

reschedule job j earlier whenever i is forced to be scheduled behind j.

Since the earliest scheduled job of kernel K does not start at its release time (see Lemma 1 below),

it is immediately preceded and pushed by a job lwith dl > do. In general, wemay have more than

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

73

one such a job scheduled before kernel K in block B (one containing K). We call such a job

an emerging job for K, and we call the latest scheduled one (job l above) the live emerging job.

Now, we can give some optimality conditions for J-schedules. The proofs of Lemmas 1 and 2

can be found in references [33, 39], respectively. Lemma 4 is obtained as a consequence of

Lemmas 1 and 2, though the worst-case bound of two was also known earlier.

Lemma 1. The maximum job lateness (the makespan) of a kernel K cannot be reduced if the earliest

scheduled job in K starts at time rðKÞ. Hence, if a J-schedule S contains a kernel with this property, it is

optimal.

From Lemma 1, we obtain the following corollary:

Corollary 1. If schedule σ contains a kernel with no live emerging job EðσÞ ¼ ∅ð Þ, then σ is optimal.

Observe that the conditions of the Lemma 1 and Corollary 1 are satisfied for our first problem

instance of Figure 1. We also illustrate the above-introduced definitions on a (1-processor)

problem instance of 1jrj;qjjCmax with 11 jobs, job 1 with p1 ¼ 100, r1 ¼ 0, and q1 ¼ 0. All the

rest of the jobs are released at time moment 10, have the equal processing time 1, and the

delivery time 100. These data completely define our problem instance.

The initial J-schedule σ consists of a single block, in which jobs are included in the increasing

order of their indexes. The earliest scheduled job 1 is the live emerging job which is followed

by jobs 2–11 scheduled in this order. It is easy to see that the latter jobs form the kernel K in

schedule σ. Indeed, all the 11 jobs belong to the same block, job 1 pushes the following jobs,

and its delivery time is less than that of these pushed jobs. Hence, job 1 is the live emerging job

in schedule σ. The overflow job is job 11, since it realizes the value of the maximum full

completion time (the makespan) in schedule σ, which is 110þ 100 ¼ 210. Therefore, jobs 2–11

form the kernel in σ.

Note that the condition in Lemma 1 is not satisfied for schedule σ as its kernel K starts at time

100 which is more than rðKÞ ¼ 10. Furthermore, the condition of Corollary 1 is also not

satisfied for schedule σ, and it is not optimal. The optimal schedule S� has the makespan 120,

in which the live emerging job 1 is rescheduled behind all kernel jobs.

From here on, we use TS for the makespan (maximum full job completion time) of J-schedule S

and T� (L�max, respectively) for the optimum makespan (lateness, respectively).

Lemma 2. Tσ � T�
< pl Lσmax � L�max < pl

� �

, where l is the live emerging job for kernel K∈ σ.

For our problem instance and the corresponding schedule σ, the above bound is almost

reached. Indeed, Tσ � T� ¼ 210� 120 ¼ 90, whereas pl ¼ 100 (l ¼ 1).

Note that Lemma 2 implicitly defines a lower bound of Tσ � pl derived from the solution of the

non-preemptive J-heuristic, which can further be strengthen using the following concept. Let

the delay for kernel K∈ σ, δðK;lÞ be cl � rðKÞ (l (o, respectively) stands again for the live

emerging (overflow, respectively) job for kernel K). Then, the next lemma follows from the

observation that δðK;lÞ is another (more accurate than pl) estimation for the delay of the earliest

scheduled job of kernel K.

Heuristics and Hyper-Heuristics - Principles and Applications74

Lemma 3 L� ¼ Tσ � δðK;lÞ (LoðσÞ � δðK;lÞ, respectively) is a lower bound on the optimal job

makespan T� (lateness L�max, respectively).

Lemma 4 J-heuristic gives a 2-approximate solution for 1jrj;qjjCmax, i.e., T
σ=T� < 2.

Proof. If there exists no live emerging job l for K∈σ, then σ is optimal by Corollary 1. Suppose

job l exists; clearly, pl < T� (as l has to be scheduled in S� and there is at least one more (kernel)

job in it). Then, by Lemma 2,

Tσ=T� < ðT� þ plÞ=T
� ¼ 1þ pl=T

� < 1þ 1 ¼ 2: ð1Þ

□

4. Refining J-heuristic’s worst-case estimation

From Lemma 2 of the previous section, we may see that the quality of the solution delivered by

J-heuristic is somehow related with the maximum job processing time pmax in a given problem

instance. If such a long job turns out to be the live emerging job, then the corresponding forced

delay for the successively scheduled kernel jobs clearly affects the solution quality. We may

express the magnitude pmax as a fraction the optimal objective value and derive a more

accurate approximation ratio. It might be possible to deduce this kind of relationship priory

with a good accuracy. Take, for instance, a large-scale production where the processing time of

an individual job is small enough compared to an estimated total production time T.

If this kind of prediction is not possible, we can use the bound from Lemma 3 by a single

application of J-heuristic and represent pmax as its fraction κ (instead of representing it as a

fraction of an unknown optimal objective value). Then, we can give an explicit expression of

the heuristic’s approximation ratio in terms of that fraction. As we will see, J-heuristic will

always deliver a solution within a factor of 1þ 1=κ of the optimum objective value. Alterna-

tively, we may use a lower bound on the optimal objective value L� from Lemma 3 (as T� may

not be known). Let κ > 1 be such that pl ≤T
�=κ, i.e., κ ≤T�=pl. Since L� is a lower bound on T�

(L� ≤T�), we let κ ¼ L�=pl, and thus we have that κ ≤T�=pl, i.e., κ ¼ L�=pl is a valid assignment.

Then, note that for any problem instance, κ can be obtained in time Oðn log nÞ.

Theorem 1 Tσ=T� < 1þ 1=κ, for any κ ≤T�=pl.

Proof. By Lemma 2,

Tσ=T� < ðT� þ plÞ=T
� ¼ 1þ pl=T

�
≤ 1þ 1=κ: ð2Þ

□

In the previous section’s example, we had a very long live emerging job that has essentially

contributed in the makespan of schedule σ. The resultant J-schedule gave an almost worst-

possible performance ratio from Lemma 4 due to a significant intersection δðK;lÞ (close to the

magnitude pl). We now illustrate an advantage of the estimation from Theorem 1. Consider a

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

75

slightly modified instance in which the emerging job l remains moderately long (a more typical

average scenario). A long emerging job 1 has processing time p1 ¼ 10, release time r1 ¼ 0, and

the delivery time q1 ¼ 0. The processing time of the rest of the jobs is again 1. Latter jobs are

released at time 5 and also have the same delivery times as in the first instance. The J-schedule

σ has the makespan 120. The lower bound on the optimum makespan defined by Lemma 2 is

hence 120 � 10 ¼ 110.

The approximation provided by J-heuristic for this problem instance can be obtained from

Theorem 1. Based on Theorem 1, we use the lower bound 115 on T� and obtain a valid

κ ¼ T�=pl ¼ 115=10 ¼ 11:5 and the resultant approximation ratio 1 þ 1/11.5. Observe that for

our second (average) problem instance, J-heuristic gave an almost optimal solution.

5. An adaptive 3/2-approximation heuristic

In Section 2, we have mentioned two Oðn2lognÞ heuristic algorithms from references [19, 27]

solving for our generic problem with the approximation ratios 3/2 and 4/3, respectively. In the

previous section, we have described a more flexible approximation ratio that was obtained by

a single application of J-heuristic.

In this section, we propose an OðnlognÞ heuristic that gives approximation ratio 3/2 for a large

class of problem instances, which we will specify a bit later. This algorithm, unlike the above-

mentioned algorithms, carries out a constant number of calls to J-heuristic (yielding thus the

same time complexity as J-heuristic). Recall that the initial J-schedule σ is obtained by a call of

J-heuristic for the originally given problem instance. By slightly modifying this instance, we

may create alternative J-schedules with some desired property. With the intention to improve

the initial J-schedule σ, and more generally, any J-schedule S, jobs in kernel K ¼ KðSÞ can be

restarted earlier.

To this end, we activate an emerging job e for kernel K, that is, we force job e and all jobs

scheduled after kernel K to be scheduled behind K (all these jobs are said to be in the state of

activation for K). Technically, we achieve this by increasing the release times of all these jobs to

a sufficiently large magnitude, say, rðKÞ ¼ maxj∈K{rj}, so that when J-heuristic is newly

applied, neither job e nor any job scheduled after K in S will surpass any job in K, and hence

the earliest job in kernel K will start at time rðKÞ.

We call the resultant J-schedule a complementary to S schedule and denote it by Sl. Thus, to create

schedule Sl, we just increase rl to rðKÞ and apply the heuristic again to the modified instance.

Our OðnlognÞ heuristic first creates schedule σ, determines kernel K ¼ KðσÞ, and verifies if

there exists the live emerging job l; if there is no l, then σ is optimal (Corollary 1). Otherwise,

it creates one or more complementary schedules. The first of these complementary schedules is

σl. If job l remains to be an emerging job in schedule σl, then the second complementary

schedule ðσlÞl, obtained from the first one by activating job l for kernel KðσlÞ, is created. This

operation is repeatedly applied as long as the newly arisen overflow job, that is, the overflow

job in the latest created complementary schedule is released within the execution interval of

Heuristics and Hyper-Heuristics - Principles and Applications76

job l in schedule σ (job l is activated for the kernel of that complementary schedule). The

algorithm halts when either l is not an emerging job in the newly created complementary

schedule or the overflow job in that schedule is released behind the execution interval of job l

in schedule σ. Then, the heuristic determines the best objective value among the constructed

J-schedules and halts.

Theorem 2 The modified heuristic has the performance ratio less than 3=2.

Proof. In an optimal schedule S�, either (1) job l remains to be scheduled before the overflow

job o of schedule σ (and hence before all jobs of kernel K ¼ KðσÞ) or (2) l is scheduled after job o

(and hence after kernel K).

Let E be the set of emerging jobs in schedule σ not including the live emerging job l. In case (1),

either σ is already optimal or otherwise E 6¼ ∅, and some job(s) from set E are scheduled after

kernel K in an optimal schedule S� (so that job l and the jobs in K are rescheduled, respectively,

earlier). Let P ¼ PðEÞ be the total processing time of jobs in E. Since job l stays before kernel K,

Tσ � T� < P (this can be seen similarly as Lemma 2). Let (real) α be such that P ¼ αpl. Since

schedule S� contains jobs of set E and job l, T�
≥αpl þ pl ¼ ð1þ αÞpl. We have

Tσ=T� < ðT� þ αplÞ=T
� ¼ 1þ αpl=T

�
≤ 1þ αpl=ðð1þ αÞplÞ ¼ 1þ α=ð1þ αÞ: ð3Þ

Hence, if α ≤ 1 (i.e., P ≤ pl), then Tσ=T� < 3=2.

Suppose now P > pl. Then, T
� > 2pl and using again Lemma 2

Tσ=T� < ðT� þ plÞ=T
� < 1þ pl=ð2plÞ ¼ 3=2: ð4Þ

It remains to be considered in case (2) when job l is scheduled after (all jobs from) kernel K in

schedule S�. We claim that schedule S� is again “long enough,” i.e., T� > 2pl. Indeed, consider

the J-schedule σl. If σl is not optimal, then there exists an emerging job in Sl. Similarly as above,

in schedule S�, either (2.1) job l remains before KðσlÞ or (2.2) l is scheduled after KðσlÞ.

In case (2.2), lmust be an emerging job in σl. If the overflow job in kernel KðσlÞ is released after

time moment pl, then T� > 2pl as job l is scheduled after the jobs in KðσlÞ in schedule ðσlÞl.

Otherwise, suppose the overflow job in schedule σl is released within time interval ð0;plÞ (note

that it cannot be released at time 0 as otherwise would have originally been included ahead job

l by J-heuristic). Without loss of generality and for the purpose of this proof, assume l is an

emerging job in schedule σl, as otherwise the latter schedule already gives a desired approxi-

mation, similarly as in case (1). Because of the same reason, either schedule ðσlÞl gives a desired

approximation or otherwise job l remains to be an emerging job (now, ðσlÞl), and the heuristic

creates the next complementary schedule ððσlÞlÞl. We repeatedly apply the same reasoning to

the following created complementary schedules as long as the overflow job in the latest created

such schedule is released within time interval ð0;plÞ. Once the latter condition is not satisfied,

job l will be started at time moment, larger than pl in the corresponding complementary

schedule. Hence, its length will be at least 2pl. Moreover, an optimal schedule S� must be at

least as long as 2pl unless one of the earlier created complementary schedules is optimal.

Hence, one of the generated complementary schedules gives a desired approximation.

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

77

In case (2.1), if there is no emerging job in σl, then we are done. Otherwise, let E0 be the set of

emerging jobs in σl not including job l. Then similarly as for case (1), there are two sub-cases

PðE0Þ ≤ pl and PðE0Þ > pl, in each of which a desired approximation is reached. The theorem is

proved.

As to the time complexity of the modified heuristic, note that, in the worst-case, the overflow

job in every created complementary schedule is released no later than at time pl. Then, the

algorithm may create up to n� 1 complementary schedules, and its time complexity will be

the same as that of the earlier-mentioned algorithms. However, it is clear that very unlikely, in

an instance of 1jrj;qjjCmax , an “unlimited” amount of jobs are released before time pl (that

would be a highly restricted instance). In average, however, we normally would expect a

constant number of such jobs, which, more restrictively, must be overflow jobs in the created

complementary schedules (not belonging to kernel KðσÞ). In this case, our heuristic will obvi-

ously run in time OðnlognÞ. We have proved the following result:

Theorem 3. The modified heuristic runs in time OðnlognÞ for any problem instance of 1jrj;qjjCmax in

which the total number of the arisen overflow jobs in all the created complementary schedules released

before time pl is no more than a constant κ (more brutally, for any instance in which the total number of

jobs released before time pl is bounded by κ).

6. Conclusion

We have described efficient heuristic methods for the solution of a strongly NP-hard schedul-

ing problem that, as we have discussed, has a number of important real-life applications. We

have argued that it is beneficial as an analysis of the basic structural properties of the schedules

created by J-heuristic for the construction of efficient heuristic methods with guaranteed worst-

case performance ratios. As we have seen, not only J-heuristic constructs 2-optimal solutions in

a low-degree polynomial time, but it is also flexible enough to be served as a basis for other

more efficient heuristics. The useful properties of J-schedules were employed in our flexible

worst-case performance bound of Section 4 and in the proposed, in Section 5, heuristic algo-

rithm with an improved performance ratio. The latter heuristic is adaptive in the sense that it

takes an advantage of the structure of an average problem instance and runs faster for such

instances.

We believe that J-schedules possess further useful yet undiscovered properties that may lead to

the disclosure of yet unknown insights of the structure of the related problems with release

and delivery times. This kind of study was reported in recently published proceedings [8, 9]

for the case of a single processor and two allowable job release and delivery times. It still

remains open whether basic properties described in these works can be generalized for a

constant number of job release and delivery times and for the multiprocessor case. At the same

time, some other yet not studied properties even for a single processor and two allowable job

release and delivery times may exist. The importance of such a study is emphasized by the fact

that the basic single-machine scheduling problem is strongly NP-hard and that the version

with only two allowable job release and delivery times remains NP hard [8].

Heuristics and Hyper-Heuristics - Principles and Applications78

Author details

Nodari Vakhania

Address all correspondence to: nodari@uaem.mx

Center of Research and Science, UAEMor, Mexico

References

[1] Adams J, Balas E, Zawack D. The shifting bottleneck procedure for job shop scheduling.

Management Science. 1988;34:391–401

[2] Bratley P, Florian M, Robillard P. On sequencing with earliest start times and due-dates

with application to computing bounds for (n/m/G/Fmax) problem. Naval Research Logis-

tics Quarterly. 1973;20:57–67

[3] Brinkkotter W, Brucker P. Solving open benchmark instances for the job-shop problem by

parallel head–tail adjustments. Journal of Scheduling. 2001;4:53–64

[4] Carballo L, Vakhania N, Werner F. Reducing efficiently the search tree for multiprocessor

job-shop scheduling problems. International Journal of Production Research 2013;51(23–

24):7105–7119. DOI: 10.1080/00207543.2013.837226

[5] Carlier J. The one-machine sequencing problem. European Journal of Operations

Research. 1982;11:42–47

[6] Carlier J, Pinson E. An algorithm for solving job shop problem. Management Science.

1989;35:164–176

[7] Carlier J, Pinson E. Jackson’s pseudo preemptive schedule for the Pm=ri;qi=Cmax problem.

Annals of Operations Research 1998;83:41–58

[8] Chinos E, Vakhania N. Polynomially solvable and NP-hard special cases for scheduling

with heads and tails. In: Recent Advances in Mathematics and Computational Science.

(MCSS 16). Barcelona, Spain 2016. pp. 141–145. Available from: http://www.wseas.us/e-

library/conferences/2016/barcelona/MCSS/MCSS-17.pdf

[9] Chinos E, Vakhania N. Scheduling jobs with two release times and tails on a single machine.

International Journal of Mathematical Models andMethods in Applied Sciences 2016;10:303–

3089. Available from: http://www.naun.org/main/NAUN/ijmmas/2016/a782001-aan.pdf

[10] Condotta A, Knust S, Shakhlevich NV. Parallel batch scheduling of equal-length jobs with

release and due dates. Journal of Scheduling. 2010;13:463–477

[11] Del Ser, Javier (Ed.). A harmony search approach for the selective pick-up and delivery

problem with delayed drop-off. In Harmony Search Algorithm. Berlin Heidelberg:

Springer; 2016. pp. 121–131

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

79

[12] Della Croce F, T’kindt V. Improving the preemptive bound for the single machine

dynamic maximum lateness problem. Operations Research Letters. 2010;38:589591

[13] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of NP-

completeness. San Francisco: Freeman; 1979

[14] Garey MR, Johnson DS, Simons BB, Tarjan RE. Scheduling unit–time tasks with arbitrary

release times and deadlines. SIAM Journal on Computing. 1981;10:256–269

[15] Gharbi A, Labidi M. Jackson’s semi-preemptive scheduling on a single machine. Com-

puters & Operations Research. 2010;37:2082–2088

[16] Glover F. Tabu-search: A tutorial. Interfaces. 1990;20:74–94

[17] Grabowski J, Nowicki E, Zdrzalka S. A block approach for single-machine scheduling

with release dates and due dates. European Journal of Operational Research.

1986;26:278–285

[18] Graham RL, Lawler EL, Lenstra JL, Rinnooy Kan AHG. Optimization and approximation

in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics.

1976;5:287–326

[19] Hall LA, Shmoys DB. Jacksons rule for single-machine scheduling: Making a good heu-

ristic better. Mathematics of Operations Research 1992;17:22–35

[20] Ivens P, Lambrecht M. Extending the shifting bottleneck procedure to real-life applica-

tions. European Journal on Operations Research. 1996;90:252–268

[21] Jackson JR. Scheduling a production line to minimize the maximum tardiness. Los

Angeles, CA: Management Science Research Project, University of California; 1955

[22] Kirkpatrick S, Gelant CD, Vecchi MP. Optimization by simulated annealing. Science.

1983;220:924–928

[23] Lawton G. Genetic algorithms for schedule optimization. AI Expert. 1992;23–27

[24] McMahon G, Florian M. On scheduling with ready times and due dates to minimize

maximum lateness. Operations Research. 1975;23:475–482

[25] Ow PS, Morton TE. Filtered beam search in scheduling. International Journal of Produc-

tion Research. 1988;26:35–62

[26] Perregaard M, Clausen J. Parallel branch-and-bound methods for the job-shop scheduling

problem. Annals of Operations Research. 1998;83:137–160

[27] Potts CN. Analysis of a heuristic for one machine sequencing with release dates and

delivery times. Operations Research. 1980;28:1436–1441

[28] Toth P, Vigo D, editors. Vehicle Routing Problem (SIAM Monographs On Discrete Math-

ematics and Applications, vol. 386). Philidelphia, PA: SIAM; 2002

[29] Schutten JMJ. Practical job shop scheduling. Annals of Operations Research. 1998;83:

161–177

Heuristics and Hyper-Heuristics - Principles and Applications80

[30] Schrage L. Obtaining optimal solutions to resource constrained network scheduling

problems, unpublished manuscript (March 1971)

[31] Simons B. Multiprocessor scheduling of unit-time jobs with arbitrary release times and

deadlines. SIAM Journal of Computing. 1983;12:294–299

[32] Simons B, Warmuth M. A fast algorithm for multiprocessor scheduling of unit-length

jobs. SIAM Journal of Computing. 1989;18:690–710

[33] Vakhania N. A better algorithm for sequencing with release and delivery times on

identical processors. Journal of Algorithms. 2003;48:273–293

[34] Vakhania N. Single-machine scheduling with release times and tails. Annals of Opera-

tions Research. 2004;129:253–271

[35] Vakhania N. Scheduling jobs with release times preemptively on a single machine to

minimize the number of late jobs. Operations Research Letters. 2009;37:405–410

[36] Vakhania N. Branch less, cut more and minimize the number of late equal-length jobson

identical machines. Theoretical Computer Science. 2012;465:49–60

[37] Vakhania N. A study of single-machine scheduling problem to maximize throughput.

Journal of Scheduling. 2013;16(4):395–403

[38] Vakhania N, Shchepin E. Concurrent operations can be parallelized in scheduling multi-

processor job shop. Journal of Scheduling. 2002;5:227–245

[39] Vakhania N, Werner F. Minimizing maximum lateness of jobs with naturally bounded job

data on a single machine in polynomial time. Theoretical Computer Science. 2013;501:7281

[40] Vakhania N, Perez D, Carballo L. Theoretical expectation versus practical performance of

Jackson’s Heuristic. Mathematical Problems in Engineering. 2015;2015: ID 484671. DOI:

http://dx.doi.org/10.1155/2015/484671

[41] Vakhania N, Hernandez JA, Alonso-Pecina F, Zavala C. A Simple heuristic for basic

vehicle routing problem. Journal of Computer Science Technology Updates. 2016;3

(2):38–44. DOI: http://dx.doi.org/10.15379/2410-2938.2016.03.02.04

Efficient Heuristics for Scheduling with Release and Delivery Times
http://dx.doi.org/10.5772/intechopen.69223

81

