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Abstract

It has been observed that 5-HT excites the heart nerves in hard clam and regulates con-
traction and relaxation of the anterior byssus retractor muscle in the blue mussel. It is 
now known that 5-HT regulates several neurobehavioral systems such as mood, appetite, 
sleep, learning, and memory. It also plays critical roles in the physiological functions of 
peripheral organs involved in stress, growth, and reproduction in the animal kingdom. 
The present study reviews conserved 5-HT biosynthesis and its localization in the ner-
vous system, and its physiological contribution to regulate reproduction in bivalves. In 
the cytosol of neurons, tryptophan hydroxylase catalyzes hydroxylation of l-tryptophan 
to 5-hydroxytryptophan, which is converted to 5-HT by aromatic l-amino acid decarbox-
ylase. A 5-HT transporter and a monoamine oxidase reuptakes and metabolizes 5-HT 
to control the amount of released 5-HT in the nervous system and peripheral organs. 
Perikarya and fibers of 5-HT neurons are mostly located in the cortices and neuropil of 
ganglia, respectively, and innervate the gonad. However, distribution and 5-HT content 
differ among species and sexes and undergo seasonal variations associated with gonadal 
development. The present review pays a special attention to future research perspectives 
to better understand 5-HT regulation of reproduction in bivalves.

Keywords: gonad, nervous system, oocyte, serotonin biosynthesis, serotonin 
metabolism, reuptake, sperm
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1. Introduction

5-Hydroxytryptamine called serotonin (5-HT) is a transmitter substance of the nervous system 
in animal kingdom. From its first discovery in the 1940s, many laboratories have been direct-
ing their studies toward understanding the biology of 5-HT and its physiological functions on 

various biological systems especially on mammals as model organism [1–15]. However, 5-HT 

has been also identified in bivalves from the period of its first discovery and earlier studies on 
these animals have led to convince the neurobiologist that it acts as a neurotransmitter.

A brief bibliography of 5-HT discovery and its physiological functions is provided in Table 1. 

Rapport et al. [16] was the first who isolated a vasoconstrictor substance from the blood serum 
in a crystalline form and tentatively identified it as 5-HT in a creatinine sulfate complex [17]. 

Year Scientists Contribution to discovery of identification, localization, and 
characterization of 5-HT

References

1947 Rapport et al. Isolation of a substance from the blood serum that constricts blood 

vessels and contracts isolated intestinal strips

[16]

1948 Rapport et al. The substance contains an indole ring [42]

1949 Rapport Identification of chemical structure of 5-HT as a creatinine sulfate 
complex

[17]

1951 Hamlin and Fisher Synthesis of 5-HT [18]

1953 Twarog and Page Identification of 5-HT in the extract of the brain of mammals (dog, rat, 
and rabbit)

[19]

1953 Gaddum Assigning a role for 5-HT in normal cerebral function in mammals [43]

1953 Welsh 5-HT, in contrast to acetylcholine, excites the heart nerves in hard 

clam (Bivalvia, Mollusca) originating from visceral ganglion

[21]

1954 Amin et al. Localization of 5-HT in the central nervous system (brain) of 

mammals (dog)

[20]

1954 Wooley and Shaw Human schizophrenia might be due to 5-HT deficiency [44]

1954 Twarog 5-HT-mediated relaxation of byssus retractor muscle in the blue 

mussel (Bivalvia, Mollusca) is antagonist of acetylcholine contracting 

the muscle

[22]

1956 Hoyle and Lowy 5-HT is a putative neurotransmitter controlling contraction and 
relaxation of the anterior byssus retractor muscle in the blue mussel

[23]

1957 Brodie and Shore Assigning 5-HT function as a neurotransmitter [24]

1957 Welsh Identification of 5-HT in the extract of nervous system of various 
bivalve mollusks

[25]

1962 Falck et al. Development of Falck-Hillarp method to visualize monoamine-

containing cells as intense yellow-green fluorescence
[45]

1964 Dahlström and 

Fuxe

Identification of 5-HT cell bodies in the pons and midbrain, from 
where they project with their axons to the forebrain, medulla, and 

spinal cord

[46]

1968 Sweeney Identification and localization of 5-HT in whole body extract and in 
the nervous system of blue mussel using Falck-Hillarp’s method

[47]
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Within next 5 years, 5-HT has been synthesized [18], identified in the extract of mammalian 
brain [19], and localized in the brain of mammals [20]. Along with these studies on mam-

mals, Welsh [21], Twarog [22], and Hoyle and Lowy [23] demonstrated that 5-HT excites the 

heart nerves in hard clam (Mercenaria mercenaria), and regulates contraction and relaxation 

of the anterior byssus retractor muscle in the blue mussel (Mytilus edulis) that both belong to 

Bivalvia, Mollusca. These observations resulted in identification of 5-HT as a neurotransmit-
ter in the nervous system of mammals [24]. In the same year, Welsh [25] identified 5-HT in 
the nervous system of bivalves and demonstrated that 5-HT content in these animals is higher 

than other invertebrates and vertebrates [26]. Moreover, bivalves have served some advan-

tages to be used as experimental model: (A) they are small which is a great opportunity to 

conduct serial examinations on the whole organism, (B) they have a simple nervous system, 

(C) the nervous system is relatively large in size and easy to dissect ganglia and connectives, 

and (D) the nervous system contains high amount of 5-HT.

Serotonin regulates various neurobehavioral systems (such as mood, appetite, sleep, learning, 

and memory). However, studies have revealed that it also plays critical roles in physiological 

functions of peripheral organs such as stress and growth [3–5]. One of the major systems that 

5-HT contributes to is the regulation of reproduction. In both mammals and bivalves, it has 

been observed that 5-HT regulates reproductive endocrine system, oocyte maturation, and 

sperm motility [27–38].

Although 5-HT biosynthesis and its receptor structure have been reviewed in bivalves [39–41], 

there is a gap of review on physiological signaling of 5-HT in these animals. The present 

study reviews the biology of 5-HT in bivalves; particularly its contribution to reproduction. 

Biosynthesis pathway of 5-HT in the nervous system and cellular localization of 5-HT neurons 

in the nervous system are studied. Particular attention has then paid to 5-HT content and 
distribution of 5-HT neurons in the gonad. This study provides future perspectives that await 

investigation to better understand 5-HT network and signaling in bivalve reproduction.

2. Biosynthesis, metabolism, and reuptake of 5-HT in the nervous  
system

Hamlin and Fisher [18] were the first who synthesized 5-HT from tryptophan. A year later, 
Blaschko [50] suggested that 5-hydroxytryptophan (5-HTP) is the substrate for 5-HT. This 

Year Scientists Contribution to discovery of identification, localization, and 
characterization of 5-HT

References

1982 Matsutani and 

Nomura

Serotonin stimulates spawning in Yesso scallop (Bivalvia, Mollusca) [33]

1984 Hirai and Koide 5-HT stimulates oocyte maturation in surf clam [48]

1985 Osanai 5-HT regulation of the oocyte signaling required to undergo germinal 

vesicle breakdown

[49]

Species: Blue mussel, Mytilus edulis; hard clam, Mercenaria mercenaria; surf clam, Spisula solidissima; Yesso scallop, Patinopecten 

yessoensis.

Table 1. Bibliography of 5-hydroxytryptamine (serotonin, 5-HT): from discovery to physiological characterization.
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suggestion led to the discovery of an enzyme in mammalian kidney [51], later called aro-

matic L-amino acid decarboxylase (AADC) [52] that mainly decarboxylates 5-HTP to 5-HT 

[53]. In parallel, studies have shown that the extract of mammalian brain contains 5-HT [19], 

and administration of exogenous 5-HTP or tryptophan increases 5-HT level in the brain and 

peripheral organs [54, 55]. A year later, Welsh and Moorhead [56] observed that homogenates 

of ganglia of hard clam are capable of synthesizing 5-HT from 5-HTP, in vitro. Further studies 

using the blue mussel (Mytilus edulis) demonstrated presence of precursors of 5-HT (either 

tryptophan or 5-HTP) [57–59], and decarboxylation of 5-HTP to 5-HT [60, 61]. Thus, 5-HT 

biosynthesis in bivalves is similar to those of higher vertebrates. Although aforementioned 

studies have shown biosynthesis pathway of 5-HT and demonstrated that both nervous sys-

tem and peripheral organs contain 5-HT; however, it was still unknown where the 5-HT bio-

synthesis takes place and how it gets transferred to other organs.

In 1960s, Bertaccini [62] and Gal et al. [63] demonstrated that the brain contains 5-HT even 

after partial or complete removal of 5-HT in the gastro-intestinal tissues and the brain pro-

duces 5-HT after intracerebral injection of radioactive labeled tryptophan. It is worth noting 

that it has previously been shown that the intestine contains large amount of 5-HT [64]. These 

studies provided the scientists with very important information that the brain independently 

synthesizes 5-HT from L-tryptophan, and suggested that exogenous 5-HT administration 

incorporates to 5-HT contents in the nervous system. Next studies resulted in molecular iden-

tity of two major enzymes in 5-HT biosynthesis pathway: tryptophan hydroxylase (TPH) and 

AADC [6, 14, 65, 66] (Figure 1). In the cytosol of the nerve cells, TPH catalyzes hydroxylation 

of l-tryptophan to produce 5-HTP by incorporation of an atom of atmospheric oxygen into 

l-tryptophan and the other is reduced to water, in the presence of the cofactor agent, tetra-

hydrobiopterin. The pathway is rate-limiting step meaning that suppression of TPH activity 

results in stopping 5-HT biosynthesis. The AADC catalyzes conversion of 5-HTP to 5-HT 

which is not rate-limiting step. It has also been shown that the rate at which 5-HT is pro-

duced in the central nervous system highly depends on availability of tryptophan, trypto-

phan uptake into the brain, and dietary contents of tryptophan and other amino acids (such 

as tyrosine and phenylalanine) that compete with tryptophan uptake or transport carrier into 

the brain [8, 14, 67].

In the snail, it has been observed that certain nerves are capable of accumulating radioactive 

labeled 5-HT [68]. Using bivalves, Stefano and Aiello [69] observed that fluorescence intensity 
of 5-HT-immunoreactive (5-HT-IR) neurons increases in the blue mussel after administration 

of exogenous 5-HT. Thus, as in mammals, 5-HT biosynthesis in bivalve mollusks also takes 

place in the nervous system.

Further studies have shown that there are biological systems through which external 

amounts of the released 5-HT is regulated, as its rise may cause abnormal physiological func-

tions or might be lethal for cells. Reuptake and metabolism of 5-HT are key determinants 

to remove and/or inactivate significant amount of released 5-HT, respectively. Metabolism 
of 5-HT is mediated by monoamine oxidase (MOA) located in the outer membrane of mito-

chondria, and catalyzes the oxidative deaminative of 5-HT to 5-hydroxy-3-indolacetaldehyde 
(5-HIAL), which is further metabolized into 5-hydroxy-3-indolacetic acid (5-HIAA) by an 
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NAD+-dependent aldehyde dehydrogenase. In addition, an NADH-dependent aldehyde 

reductase or an NADPH-dependent alcohol-dehydrogenase converts 5-HIAL to 5-hydroxy-

tryptophol (5-HTOL) [6, 70] (Figure 1). In mollusks, small amount of MOA has been reported 

[71]. Boutet et al. [72] cloned MOA molecular structure in the Pacific oyster. Administration 
of MAO inhibitor leads to increase in the number and intensity of 5-HT-IR neurons in the 

blue mussel [69]. Thus, metabolism of 5-HT is active in bivalve mollusks. However, stud-

ies have demonstrated that 5-HT action at the synapse is mostly terminated by its reuptake 

across the presynaptic membrane [73–77].

Figure 1. Biosynthesis, metabolism and reuptake of 5-hydroxytryptamine (serotonin, 5-HT) in bivalves. In the cytosol of the 

5-HT neurons, tryptophan hydroxylase (TPH) catalyzes hydroxylation of l-tryptophan to produce 5-hydroxytryptophan 

(5-HTP) that becomes converted to 5-HT by aromatic l-amino acid decarboxylase (AADC). Conversion of l-tryptophan 

to 5-HTP is rate-limiting step meaning that suppression of TPH activity results in stopping 5-HT biosynthesis, however 

AADC-catalyzed conversion of 5-HTP to 5-HT is not rate-limiting pathway. The 5-HT vesicles are transferred to axon 

terminal and released to synaptic cleft. Reuptake and metabolism of 5-HT are key determinants to inactivate significant 
amount of the released 5-HT. In mollusks including bivalves, 5-HT reuptake from synaptic cleft is more than the 

enzymatic destruction. It is an ionic-coupled system and mediated by a serotonin transporter (SERT) that transports 

5-HT from synaptic cleft to the presynaptic 5-HT neuron. However, enzymatic destruction of 5-HT also exists which 

is mediated by monoamine oxidase (MOA) located in the outer membrane of mitochondria (Mt). The MOA catalyzes 

the oxidative deaminative of 5-HT to 5-hydroxy-3-indolacetaldehyde (5-HIAL) that is metabolized into 5-hydroxy-3-
indolacetic acid (5-HIAA) by aldehyde dehydrogenase (ALDH). Released 5-HT binds to its receptor(s) on the surface 

of a postsynaptic cell or postsynaptic neuron (not shown in the figure) to trigger intracellular signaling required for a 
cellular response, e.g., stimulation of oocyte and sperm maturation. The 5-HT receptors are mainly G-protein coupled 

receptor (5-HT1, 2, 4, 6, 5, and 7 receptors), which induce adenylate cyclase (AC) or phospholipase C signaling (PLC). However, 

the 5-HT3 receptor is a ligand-gated ion channel and regulates ionic influx.
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The 5-HT reuptake is also similar between mollusks and mammals. It is an ionic-coupled 

pathway mediated by a serotonin transporter (SERT) that transport 5-HT from synaptic cleft 

to the presynaptic neuron [9, 12, 78]. SERT first binds a Na+ ion, followed by 5-HT, and then 

a Cl– ion in the synaptic cleft and transport to presynaptic neuron. After releasing 5-HT, K+ 

efflux is involved in the translocation mechanism of SERT. This is an energy dependent pro-

cess and a Na+/K+ ATPase maintains the extracellular Na+ concentration as well as the intracel-

lular K+ concentration [79]. This mechanism results in the inactivation of 5-HT by removing 

it from the synaptic cleft. Studies have also shown that a 5-HT reuptake inhibitor (SRI) inter-

feres with SERT function to inhibit or suppress 5-HT reuptake [80, 81].

3. Anatomy of the nervous system in bivalves

3.1. Nervous system

In bivalves, the nervous system is bilaterally symmetrical, decentralized, and consists of cere-

bral ganglia (CG), pedal ganglia (PG), and visceral ganglia (VG). The ganglia are joined by a 

cerebral commissure, a visceral commissure, and cerebral-pedal, cerebral-visceral, and cerebral-

visceral-pedal connectives [82–86] (Figure 2). Each ganglion is surrounded by a perineurium. 

Figure 2. Anatomy of the nervous system in bivalves. It is decentralized and consists of bilaterally symmetrical cerebral 

ganglia (CG), pedal ganglia (PG), and visceral ganglia (VG). The locations of ganglia highly differ among species; however, 
they are connected by nerve connectives. The PG are absent in oysters (e.g., Pacific oyster, Crassostrea gigas, A). All parts 

of the nervous system exist in scallops (e.g., Yesso scallop, Patinopecten yessoensis, B) and clam species (e.g., Manila clam, 

Ruditapes philippinarum, C). Panels a, b, and c are representative schematics of intercommunicating ganglia in Pacific oyster 
[83], Yesso scallop (the authors), and soft-shell clam, Mya arenaria [89], respectively. In most bivalves, VG innervates the 

gonad. AM
a and p

, anterior and posterior adductor muscle; AMN, adductor muscle nerves; BN, bronchial nerves; CC, cerebral 

commissure; CPC, cerebral-pedal connective; CVC, cerebral-visceral connective; DG, digestive gland; F, foot; G, gonad; GN, 

gonad nerves; Gi, gills; K, kidney; M, mantle; P, labial palp; PN, pallial nerve; S
in
, incurrent siphon; S

ex
, excurrent siphon.
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The neuronal cell bodies “perikarya” are located at the cortices and the axonal processes lie at 

central core called “neuropil”.

The pairs of CG lie on the sides of esophagus and are connected by a cerebral commissure in 

bivalves. In oyster species, CG are less developed and positioned at the sharp angle anterior 

to the labial palp, gills, and digestive gland [83]. In mussel and clam species, CG are located 

anterior to the digestive gland, and beneath the anterior adductor muscle [82, 84]. In freshwa-

ter pearl mussel (Hyriopsis bialata), CG are fused [87]. In scallop species, the foot is positioned 

anterior to CG, and adductor muscle and digestive gland are located posterior to CG [82, 86]. 

Each CG consists of an anterior lobe and a posterior lobe [88]. The CG innervate the palps, 

anterior adductor muscle, and parts of mantle [83, 84, 86].

In most bivalves, the pairs of PG lie on the foot and are connected by a pedal commissure 

[84–86]. However, PG are absent in oyster species [83]. In soft-shell clam (Mya arenaria), the 

PG are fused [89]. In freshwater pearl mussel, PG are positioned in the visceral mass [87]. The 

PG innervate the foot [84, 86].

The paired VG are located on the ventral side of the adductor muscle, usually posterior to 

foot. In most bivalves, ganglia of VG are fused into a single organ [83, 89–91]. In scallop spe-

cies, VG consist of five lobes; two anterior lobes, a posterior lobe, and two lateral lobes [88, 

90]. There is an accessory ganglion that locates at the point of the lateral lobes. The CG and 

VG are joined by a pair of cerebral-visceral connective that pass through the digestive gland 

or gonad. The VG innervate various organs, including gonads, gills, hearts, sensory organs, 

posterior adductor muscle, and parts of mantle [83, 84, 86].

3.2. Anatomy and annual cycle of neurosecretory cells in bivalves

Rawitz [92] seems to be first who isolated pear- or club-shaped neurons from the European 
flat oyster (Ostrea edulis). The neurons are classified into unipolar, bipolar, and multipolar 
neurons (Figure 3) [93]. Illanes-Bucher [94] classified the neurosecretory cells into A1, A2, A3, 
and A4 in the blue mussel. The A1-type neurons are small (6–15 μm), unipolar, and nucleus is 
located opposite to the axonal cone. The A2-type nerve cells are large (20–30 μm), multipolar, 
and nucleus is eccentric. The A3-type nerve cells are large (20–25 μm), unipolar, and nucleus 
is eccentric. The A4-type nerve cells are medium in size (12–15 μm), apparently unipolar, 
and contain numerous vacuoles surrounded by neurosecretory granules. Blake [95] observed 

that the neurosecretory cycle of neurons in the CG of the Bay scallop (Argopecten irradians) 

appeared identical to that of the VG. The neurosecretory cells also undergo distinct annual 

cycle [96–99]. Seasonal changes in the activity of neurosecretory cells are also associated with 

gonadal development, and the cells release their products at maturity stage [96]. Moreover, 

number of active neurosecretory cells positively correlates with progress of the gonad devel-

opment in the Bay scallop [95], clam (Katelysia opima) [100], blue mussel [101], and green-

lipped mussel (Perna canaliculus) [102].

3.3. Identification and cellular localization of 5-HT

Cellular localization of 5-HT neurons and its quantitative bioassay in the nervous system and 

gonads provide us with highly satisfactory knowledge to elucidate ontogeny and  developmental 
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Figure 3. Cellular localization of 5-hydroxytryptamine (serotonin, 5-HT) in the nervous system (A–F) and gonad (G–J) 

of bivalves. (A) The 5-HT immunoreactive (5-HT-IR) cell bodies (arrows) and fibers (arrowheads) in the cortex (C) and 
neuropil (N) of cerebral ganglia (CG) (135×). (B) A few 5-HT-IR unipolar neurons with cell bodies (arrows) and their 
process in the CG (360×). (C) 5-HT-IR neurons (arrows) and fibers (arrowheads) in the visceral ganglion (380×). (D) a 
5-HT-IR multipolar neuron with its processes (arrows) in pedal ganglion (PG) (800×). (E) Pear-shaped unipolar 5-HT-IR 
neurons and fibers in cortex (C) and neuropil (N) of PG. The arrowheads show long process of (the axon) of a 5-HT-IR 
neuron that runs toward commissure (CM) (315×). CVPC is cerebral-visceral-pedal connective. (A)–(C) [103], (D) and 

(E) [104] show localization of the 5-HT neurons in Mytilus galloprovincialis. (F) A schematic of localization of the 5-HT 

neurons in Yesso scallop, Patinopecten yessoensis (■) [105] and great scallop, Pecten maximus (Δ) [90]. (G) and (H) the 

5-HT-IR fibers in the testis of Mya arenaria and Venus verrucosa, respectively. The 5-HT-IR fibers (Sf) are seen in the testis 
containing spermatogonia (Spg) at early stage II of the development (I). The 5-HT-IR fibers (arrows) originated from 
cerebral-visceral connective (yellow asterisk) surround acini full of sperm (black asterisk) (H). (I) and (J) The 5-HT-IR 

fibers in the ovary of M. arenaria and V. verrucosa, respectively. The 5-HT-IR fibers (Sf) surround the ovary containing 
post-vitellogenic oocytes (Ov) (I). The 5-HT-IR fibers (arrow) surround the wall of the follicles filled with mature oocytes 
(asterisk) (J). Scale bar G and I = 100 μm [106] and H and J = 20 μm [91].
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biology of 5-HT biosynthesis, release, and reuptake, and to understand 5-HT regulation 

of reproduction in bivalves.

3.3.1. 5-HT in the nervous system of bivalves

Welsh [25] was the first who identified 5-HT in the nervous system of the hard clam using a 
paper chromatography method. Then, Welsh and Moorhead [26, 56, 107] used a spectrofluo-

rometric method to measure 5-HT in over 60 species from 11 different phyla that includes 7 
bivalve species (Table 2) [108]. They reported that (A) the nervous system of bivalves con-

tains much higher 5-HT than that of other invertebrates. In the phylum Annelida, 5-HT is 

measured 0.1–10.4 μg/g wet in the nerve cords. In the phylum of Arthropoda, 5-HT is mea-

sured from <1.0 μg/g wet in the nerve cords, ventral ganglia, and green ganglia. In verte-

brates, 5-HT is measured 0.3–2.6 μg/g wet in different parts of cat brain [109]. (B) Content of 

5-HT is higher in the nervous system than the peripheral organs. (C) Content of 5-HT differs 
among various parts of the nervous system. It is higher in the ganglia than the connective 

nerves. In addition, they observed that 5-HT content is slightly lower in VG than those of CG 

and PG (10 vs. 15 μg/g wet) in the blue mussel. (D) The blood does not contain 5-HT. The 
authors suggested that 5-HT is produced in the nervous system: in cell bodies or synaptic 

region of neurons.

Species Notes Nervous system Gonad Reference

Brown mussel

Perna perna

M: HPLC-ED

V: pg/mg wet (mean ± 

SEM)

Jul.: Resting stage

Sep.: Developmental 

stage I–II

Mar.: Maturation stage 

IIIA

Apr.: Egg-laying stage

5-HT

74 ± 16 (PG), 51 ± 7 (CG) 
(Jul.)

115 ± 20 (PG), 61 ± 6 (CG) 
(Sep.)

293 ± 54 (PG), 63 ± 7 (CG) 
(Mar.)

302 ± 47 (PG), 150 ± 9 (CG) 
(Apr.)

5-HIAA

79 ± 22 (PG), 56 ± 30 (CG) 
(Jul.)

122 ± 30 (PG), 11 ± 1 (CG) 
(Sep.)

166 ± 46 (PG), 46 ± 12 (CG) 
(Mar.)

56 ± 16 (PG), 83 ± 40 (CG) 
(Apr.)

5-HT

8.7 ± 0.6 (Jul.)
31 ± 5.7 (Sep.)
142 ± 49.6 (Mar.)
142 ± 14.3 (Apr.)
5-HIAA

188 ± 36 (Jul.)
443 ± 70 (Sep.)
29 ± 6 (Mar.)
51 ± 5 (Apr.)

[110]

Pacific lion's paw 
scallop

Nodipecten 

subnodosus

M: HPLC

V: ng/mg dry (mean 

± SD)

I: Resting stage

II: Initial development 

stage

III: Maturing stage

IV: Mature stage

V: Partially spent stage

VI: Fully spent stage

5-HT

I: ND (O), 0.35 ± 0.63 (T)
II: ND (O), 0.87 ± 0.94 (T)
III: 0.04 ± 0.07 (O), 0.65 ± 
0.72 (T)
IV: 0.12 ± 0.19 (O), 2.04 ± 
2.18 (T)
V: ND (O), 0.42 ± 0.56 (T)
VI: ND (O), ND (T)

[111]
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Species Notes Nervous system Gonad Reference

Surf clam

Spisula solidissima

M: HPLC

V: ng/g wet (mean ± 

SEM)

I. Active stage

II. Ripe stage

III. Spawning stage

IV: Spent stage

* shows P < 0.05 compared 
to stages I and IV

5-HT

I: 625 ± 100 (O), 550 ± 
100 (T)
II: 175 ± 50* (O), 225 ± 
65 (T)
III: 350 ± 95* (O), 500 ± 
150 (T)
IV: 1050 ± 250 (O), 575 ± 
400 (T)

[112]

Peruvian scallop

Argopecten 

purpuratus

M: Spectrofluorometer
V: ng/mg wet (mean ± 

SEM)

It is a hermaphroditic 

species

VG innervates mainly 

the female portion of the 

gonad

CG and PG innervate 

mainly the male portion 

of the gonad

* shows P < 0.05 
compared to before 

spawning

5-HT

CG + PG + VG

29.4 ± 4.3 (before spawning)
17.9* ± 0.6 (after sperm 
release)

22.5 ± 0.5 (after oocyte 
release)

21.3* ± 2.3 (24 h after 
spawning)

CG + PG

107.3 ± 12.9 (before 

spawning)

63.6 ± 2.1* (spawned)
100.0 ± 16.3 (unspawned)
VG

50.7 ± 4.3 (before spawning)
51.8 ± 5.1 (spawned)
53.3 ± 12.4 (unspawned)

5-HT

Ovary portion of gonad

1.0 ± 0.03 (before spawning)
0.6* ± 0.02 (after sperm 
release)

0.5* ± 0.05 (after oocyte 
release)

0.7 ± 0.15 (24 h after 
spawning)

Testis portion of gonad

1.7 ± 0.15 (before 
spawning)

0.8* ± 0.05 (after sperm 
release)

0.7* ± 0.09 (after oocyte 
release)

1.2 ± 0.05 (24 h after 
spawning)

[113]

Atlantic deep-sea 

scallop

Placopecten 

magellanicus

M: HPLC-ED

V: pg/mg wet (mean ± 

N.D.)

Samples of March

CG + PG + VG

5-HTP: 1650 ± 715
5-HT: 1150 ± 525
5-HIAA: 180 ± 90

5-HTP: 2035 ± 520
5-HT: 1000 ± 180
5-HIAA: 90 ± 15

[114]

Atlantic deep-sea 

scallop

Placopecten 

magellanicus

M: HPLC-ED

V: pg/mg wet (mean ± 

N.D.)

Samples of March–May

CG + PG + VG

5-HT: 1483 ± 828
5-HT: 791 ± 408 [115]

Peruvian scallop

Argopecten 

purpuratus

M: Spectrofluorometer
V: ng/mg wet (mean ± 

SEM)

5-HT

CG + PG + VG

48.3 ± 7.2 (0 d)
46.2 ± 9.7 (0.5 d)
40.0 ± 5.6 (1 d)
37.9 ± 3.5 (7 d)
44.5 ± 5.7 (14 d)
39.0 ± 6.0 (21 d)
47.2 ± 6.2 (28 d)
63.3 ± 12.6 (35 d)

5-HT

Gonad ovary (O) or testis 

(T) portion

1.3 ± 0.02 O, 6.8 ± 0.5 T 
(0 d)
0.7 ± 0.03 O, 2.2 ± 0.7 T 
(0.5 d)
0.7 ± 0.02 O, 2.5 ± 0.5 T 
(1 d)
1.5 ± 0.34 O, 3.0 ± 0.5 T 
(7 d)
1.6 ± 0.02 O, 4.8 ± 0.4 T 
(14 d)
1.4 ± 0.03 O, 4.6 ± 1.3 T 
(21 d)
1.0 ± 0.04 O, 4.4 ± 0.4 T 
(28 d)
1.1 ± 0.01 O, 4.9 ± 0.9 T 
(35 d)

[116]
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Species Notes Nervous system Gonad Reference

Great scallop

Pecten maximus

M: HPLC-ED

V: ng/g.p. (mean ± SEM)

Samples of mature 

individuals (3-year old)

CG + PG

330 (Jul., 1991)
405 (Aug., 1991)
510 (Nov., 1991)
510 (Dec., 1991)
180 (Jan., 1992)
270 (Feb. 1992)
240 (beginning of Mar., 
1992)
210 (middle of Mar., 1992)
180 (end of Mar., 1992)
225 (Apr., 1992)
300 (May, 1992)
300 (June, 1992)
VG

350 (Jul., 1991)
410 (Aug., 1991)
550 (Nov., 1991)
405 (Dec., 1991)
290 (Jan., 1992)
350 (Feb. 1992)
290 (beginning of Mar., 
1992)
200 (middle of Mar., 1992)
315 (end of Mar., 1992)
350 (beginning of Apr., 
1992)
450 (middle of Apr., 1992)
350 (beginning of May, 
1992)
425 (end of May, 1992)
425 (June, 1992)

[90]

California mussel

Mytilus californianus

M: HPLC-ED

V: nM/ganglia pair 

(mean ± SEM)

Samples of mature 

individuals in 

March–May

0.09 ± 0.02 (CG)
0.22 ± 0.05 (PG)
0.41 ± 0.07 (VG)

[117]

Blue mussel

Mytilus edulis

M: HPLC-ED

V: nM/g.p. (mean ± SEM)

Samples of mature 

individuals in 

March–May

0.04 ± 0.01 (CG)
0.06 ± 0.003 (PG)

[117]

Gaper clam

Tresus capax

M: HPLC-ED

V: nM/g.p. (mean ± SEM)

Samples of mature 

individuals in 

March–May

0.70 ± 0.11 (CG)
0.39 ± 0.06 (PG)
0.48 ± 0.06 (VG)

[117]

Cockle clam

Clinocardium nuttallii
M: HPLC-ED

V: nM/g.p. (mean ± SEM)

Samples of mature 

individuals in 

March–May

0.22 ± 0.01 (PG)
0.24 ± 0.04 (VG)

[117]
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Species Notes Nervous system Gonad Reference

Bent-nose clam

Macoma nasuta

M: HPLC-ED

V: nM/g.p. (mean ± SEM)

Samples of mature 

individuals in 

March–May

0.20 ± 0.06 (CG)
0.15 ± 0.004 (VG)

[117]

Blue mussel

Mytilus edulis

M: Spectrofluorometer
V: μg/g wet (mean ± 
SEM)

*, **, and *** show P < 

0.005, P < 0.001, and P 

< 0.05 compared to Jan, 
respectively

2 CG + 2 PG + 2 VG
25.10 ± 2.71 (Jan.)
26.96 ± 2.11 (Feb.)
32.17 ± 3.85 (Mar.)
41.98 ± 1.22* (Apr.)
48.15 ± 1.02** (May)
53.13 ± 1.71** (Jun.)
51.74 ± 3.14** (Jul.)
57.28 ± 2.49** (Aug.)
48.90 ± 1.13* (Sep.)
44.80 ± 1.51* (Oct.)
35.71 ± 2.70*** (Nov.)
28.97 ± 2.64 (Dec.)

[118]

Blue mussel

Mytilus edulis

M: Spectrofluorometer
V: ng/ganglion pair 

(mean ± SD)

5-HT

123 ± 12 – 252 ± 34 (PG)
[119]

Blue mussel

Mytilus edulis

M: Spectrofluorometer
V: μg/g wet (mean ± 
N.D.)

5-HT

5.4–8.6 (PG, Mar.)
26.2-42 (PG, Apr.)

[120]

Fingernail clam

Sphaerium sulcatum

M: Spectrofluorometer
V: ng/individual (mean 

± N.D.)

13.4 ± 2.5 (whole body 
extracts)

[47]

Ocean quahog

Arctica islandica

M: Spectrofluorometer
V: μg/g wet

5-HT

CG + PG + VG

20

[26]

Atlantic jackknife 

clam

Ensis directus

M: Spectrofluorometer
V: μg/g wet

5-HT

CG + PG + VG

21-39

[26]

Soft-shell clam

Mya arenaria

M: Spectrofluorometer
V: μg/g wet

5-HT

CG + PG + VG

22

[26]

Hard clam

Venus mercenaria

M: Spectrofluorometer
V: μg/g wet
26 assays during 16 
months

5-HT

CG + PG + VG

30–40

[26, 107]

Atlantic surf clam

Spisula solidissima

M: Spectrofluorometer
V: μg/g wet

5-HT

CG + PG + VG

8.0–14.3
Ganglia connectives

2.2

[26]

Atlantic deep-sea 

scallop

Placopecten 

magellanicus

M: Spectrofluorometer
V: μg/g wet

5-HT

36 (VG)
[26]
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Following development of cellular and molecular methods, 5-HT has been localized in 

the nervous system and gonad of several bivalve species (Table 3). Firstly, Falck-Hillarp’s 

method has been used to localize 5-HT in fingernail clam (Sphaerium sulcatum) [47], blue mus-

sel [69], and Yesso scallop [88]. In this method, histological sections are exposed to gaseous 

formaldehyde or glyoxylic acid to visualize monoamine containing neurons [45, 121, 122]. 

In all examined bivalve species, 5-HT-IR neurons are observed in CG, PG, and VG (Table 3). 

However, the Falck-Hillarp’s method is not always useful as 5-HT fluorescence tends to faint 
rapidly. In addition, catecholamines neurons show similar intensity to that of 5-HT neurons 

at high concentrations [123]. In 1978, Steinbusch et al. [124] developed a rat monoclonal anti-

body against a 5-HT-bovine serum albumin conjugate to localize 5-HT in nervous system. 

Further studies have used monoclonal or polyclonal antibody against 5-HT to localize 5-HT-

IR neurons in the nervous system and peripheral organs of bivalves (Table 3). The advantage 

of immunohistochemistry method using antibodies against 5-HT is to describe morphology 

of 5-HT neurons, and to localize 5-HT distribution within different parts of nervous system, 
precisely. The 5-HT-containing neurons are mostly unipolar, although their sizes may differ 
among species (Table 3). Using an electron microscopy, it has been observed that 5-HT-IR 

neurons are often in close connection with each other, but without indication of gap junctions 

or other specialized junctions. The neurons possess numbers of granular vesicles (100–180 nm 
in Mediterranean mussel) containing 5-HT that concentrated at the cell periphery [104, 125]. It 

has confirmed that 5-HT-IR fibers are the axon or axon terminals of 5-HT containing neurons 
that transport 5-HT to peripheral organs. Within the nervous system, 5-HT-IR fibers seem to 
be synaptic region, an area where release and reuptake of 5-HT occur.

In general, studies on bivalves show that 5-HT-IR neurons are mostly located in the cortices, 

and 5-HT-IR fibers are located in the neuropil of CG, PG, and VG (Table 3). In Yesso scallop, 

5-HT-IR neurons are located in the cortices of the right side of the left lobe and in the left side 

of the right lobe in anterior lobe (AL) of CG, while they are located throughout their cortices in 

PG and the posterior lobe (PL) of CG [105] (Figure 3). In the great scallop [90], distribution of 

5-HT-IR neurons in the posterior lobe of CG slightly differs compared to Yesso scallop. In VG, 
5-HT-IR neurons are restrictively scattered in the accessory lobe of scallop species [90, 105, 115] 

or at the roots of branchial nerves in clams [89]. Large numbers of 5-HT-IR fibers have also 
been observed in the cerebral-pedal, and cerebral-visceral-pedal connectives [90, 103], sug-

gesting that 5-HT transports from CG to VG [69, 89, 90, 105]. Comprehensive  overview of 

Species Notes Nervous system Gonad Reference

Blue mussel

Mytilus edulis

M: Spectrofluorometer
V: μg/g wet

5-HT

15 (CG)
15 (PG)
10 (VG)

[26]

Abbreviation: CG, cerebral, cerebral-pleural or cerebroid ganglion; d, day; g.p., ganglia pair; HPLC-ED, high-performance 

liquid chromatography coupled with electrochemical detection; M, methods; N.D., not determined; O, ovary; PG, pedal 

ganglion; T, testis; SD, standard deviation; SEM, standard error of mean; V, values; VG, visceral ganglion.

Table 2. Identification of 5-hydroxytryptophan, (5-HTP), serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic 
acid (5-HIAA) in the nervous system and gonad of bivalve mollusks.
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Species Methods Cerebral ganglia Visceral ganglia Pedal ganglia Gonad Reference

Fingernail clam

Sphaerium 

sulcatum

Histochemistry using 

a paraformaldehyde-

induced fluorescence 
method

5-HT-IR unipolar 

cells (μm length) are 
located in the cortices 

at the dorsal and 

anteriomedial surfaces 

of the ganglion. 5-HT-

IR fibers are located 
in the anterior pallial 

nerve, the CVC, CC, 

and CPC

No traces of 5-HT-IR 

neurons are observed 

in the VG. 5-HT-IR 

fibers are observed

5-HT-IR fluorescences 
are uniformly 

distributed in the 

cytoplasm of unipolar 

neurons (10–25 
μm length). Green-
yellow fibers extend 
throughout neuropil 

and across the PC

[47]

Blue mussel

Mytilus edulis

Histochemistry using 

a paraformaldehyde-

induced fluorescence 
method

5-HT-IR neurons 

(9–14 μm d.) are 
only located in the 

cortex. Fluorescence 

is observed in the 

perikarya

A few 5-HT-IR neurons 

(11–14 μm d.) are 
located in the cortex 

and neuropil. 5-HT-IR 

fibers are observed in 
the CVC

[69]

Yesso scallop

Patinopecten 

yessoensis

Histochemistry using a 

glyoxylic acid-induced 

fluorescence method

Fluorohistochemical 

reaction is detected in 

the neuropil, and its 

tendency is higher than 

PG and VG

Fluorohistochemical 

tendency is high in the 

accessory ganglia

Fluorohistochemical 

reaction is detected 

in the neuropil close 

to CPC

Muscles of the 

gonoduct stretched 

under the epithelium 

in the gonad

[88]

Yesso scallop

Patinopecten 

yessoensis

Immunohistochemistry 

using a rat monoclonal 

5-HT antibody against 

a 5-HT-bovine serum 

albumin conjugate (coded 

YC5/45 HL, Sera-Lab, UK)

5-HT-IR neurons are 

distributed in the AL 

(right side of the left 

lobe and left side of 

the right lobe), and 

throughout the cortex 

in PL

ND 5-HT-IR neurons are 

distributed throughout 

the cortex

[105]

Mediterranean 

mussel

Mytilus 

galloprovincialis

Immunogold labeling 

of nerve cells using an 

anti-5-HT raised in rabbits 

against formaldehyde 

cross-linked 5-HT-bovine 

serum albumin 

(Immunonuclear, Incstar 

Co, Stillwater, MN)

5-HT-IR unipolar 

neurons are mostly 

located in the cortex 

with a few numbers in 

the neuropil. 5-HT-IR 

fibers are seen in the 
CC and CVPC

5-HT-IR neurons are 

unipolar and located 

in the cortex. Number 

of 5-HT-IR neurons is 

lower than CG.5-HT-IR 

fibers are seen in the 
visceral commissure 

and CVC

Large numbers of 

5-HT-IR unipolar 

neurons and a few 

bipolar or multipolar 

are clustered in the 

cortex. 5-HT-IR 

fibers are observed in 
neuropil

[103, 104, 125, 

126]
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Species Methods Cerebral ganglia Visceral ganglia Pedal ganglia Gonad Reference

Great scallop

Pecten maximus

Immunohistochemistry 

using an anti-5-HT 

polyclonal antibody 

(coded, PS10, TEBU)

5-HT-IR neurons are 

mostly located in the 

cortex: 10 or 20–25 μm 
d. 5-HT-IR fibers are 
seen in the CVC

A small number of 

5-HT-IR neurons are 

seen in VG, restricted 

to ACL at the base of 

CVC

5-HT-IR neurons are 

mostly located in the 

cortex with size of 10 
μm d. (small cells) or 
20–25 μm d. (large 
cells)

5-HT-IR fibers 
surround periphery 

of gonadal lobules 

(acini) and in the 

subepithelial layer of 

the gonoducts

[90]

Atlantic deep-sea 

scallop

Placopecten 

magellanicus

Immunohistochemistry 

using a rabbit anti-5-HT 

antibody (Incstar Co., 

Stillwater, MN)

5-HT-IR neurons are 

widely distributed over 

the anterior surface and 

only sparsely over the 

posterior surface. 5-HT-

IR fibers are located in 
neuropil

5-HT-IR neurons are 

mainly distributed in 

the accessory ganglia. 

5-HT-IR neurons and 

fibers are far fewer than 
CG and PG

5-HT-IR neurons are 

unipolar (5–15 μm d.) 
and located along the 

medial, dorsal, and 

ventral margins, of the 

anterior surface of each 

PG. 5-HT-IR fibers are 
located in neuropil

5-HT-IR fibers 
occasionally surround 

periphery of acini at 

early gametogenesis. 

After spawning, 5-HT-

IR fibers abundantly 
surround the empty 

germinal acini

[115]

Surf clam

Spisula solidissima

Immunohistochemistry 

using a rabbit anti-5-HT 

antibody (Incstar Co., 

Stillwater, MN)

5-HT-IR fibers 
surrounds periphery 

of gonadal lobules 

(acini) in males and 

females throughout 

reproductive cycle. 

The 5-HT-IR fibers 
are interrupted or 

expelled from each 

acinus after spawning

[112]

Warty venus

Venus verrucosa

Immunohistochemistry 

using a rabbit anti-5-HT 

antibody (Biogenesis, UK)

5-HT-IR oval perikarya 

are clustered at the 

roots of the branchial 

nerves in the cortex. 

They are unipolar 

(15–25 μm d.). 5-HT-IR 
fibers are located in the 
neuropil

5-HT-IR fibers 
are observed at 

the periphery of 

the follicle and 

seminiferous acini 

filled with mature 
oocytes and sperm, 

respectively

[91]

Soft-shell clam

Mya arenaria

Immunohistochemistry 

using a rabbit polyclonal 

anti-5-HT antibody 

(Sigma-Aldrich Co. LLC.)

Largest number of 

5-HT-IR cells scattered 
throughout the cortex

5-HT-IR cells are 

symmetrically 

restricted to clustered 

population called 

“glomeruli”

5-HT-IR cells are 

symmetrically 

distributed in the 

cortex

Early spermatogenesis 

stage in males and 

post-vitellogenic stage 

in females

[89, 106]
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Species Methods Cerebral ganglia Visceral ganglia Pedal ganglia Gonad Reference

Freshwater pearl 

mussel

Hyriopsis bialata

Immunohistochemistry 

using a rabbit polyclonal 

anti-5-HT IgG (Zymed 

Laboratories, San 

Francisco, CA or Sigma-

Aldrich Co. LLC.)

5-HT-IR neurons are 

large (10 × 30 μm d.) 
and located at the 

periphery of CG. 

5-HT-IR fibers are 
occasionally detected

5-HT-IR perikarya 

are large (10 × 30 
μm d.) and located 
in the cortex of VG. 

5-HT-IR fibers are 
mostly observed in the 

neuropil. Expression 

of 5-HT-IR fibers or 
neurons is higher in 

females than males

5-HT-IR neurons are 

large (10 × 30 μm d.) 
and located at the 

periphery of PG

[87, 127]

Abbreviations: 5-HT-IR, serotonin-immunoreacted; ACL, accessory lobe; AL, anterior lobe; CC, cerebral commissure; CPC, cerebral-pedal connective; CVC, cerebral-

visceral connective; CVPC, cerebral-visceral-pedal connective; PC, pedal commissure; d., diameter; ND, no 5-HT-IR neurons or fibers are detected; PL, posterior lobe.

Table 3. Cellular localization of 5-hydroxytryptamine (serotonin 5-HT) in the nervous system and gonad of bivalve mollusks.
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 cellular localization of 5-HT indicates that localization and distribution of 5-HT-IR neurons 

may differ among subclasses of bivalve, for instance between Heterodonta (genus Mya, 

Ruditapes, and Venus) and Pteriomorphia (genus Pecten, Patinopecten, and Mytilus) (Table 3). 

It might be due to differences in location of various parts of nervous system in the body to 
innervate peripheral organs.

Using histochemistry or immunohistochemistry methods, studies have shown that a few 

5-HT-IR neurons are located in the cortex and neuropil of VG compared to those of the CG or 

PG, for instances in the blue mussel [47, 69, 128], Mediterranean mussel (Mytilus galloprovin-

cialis) [103], great scallop [90], Atlantic deep-sea scallop (Placopecten magellanicus) [115], and 

soft-shell clam [89]. Matsutani and Nomura [105] reported no 5-HT-IR neurons in the VG of 

the Yesso scallop. Although VG contain a few 5-HT-IR neurons, they are usually rich in 5-HT-

IR fibers. These studies confirm the Welsh and Moorhead’s observation that 5-HT content 
differs among various parts of the nervous system.

Studies used spectrofluorometric method [26, 47, 56, 118–120] or electrochemical detection 

coupled with a high-performance liquid chromatography (HPLC-EC) to study 5-HT content 

in the nervous system of bivalves [90, 110, 114, 115, 117] (Table 2). Results confirm aforemen-

tioned differences in 5-HT content among various parts of the nervous system, for instance 
it is higher in the CG than the VG of gaper clam (Tresus capax) and bent-nose clam (Macoma 

nasuta) [117]. In addition, the metabolite of 5-HT (5-HIAA) is detected in the nervous system 

of the brown mussel (Perna perna) [110] and Atlantic deep-sea scallop [114], suggesting that 

metabolism of 5-HT takes place in the nervous system.

Welsh and Moorhead [56] observed that in vitro 5-HT synthesis by the nerve tissues under-

goes a seasonal variation and suggested seasonal variation of amine oxidase. Further studies 

have shown that 5-HT content in the nervous system undergoes seasonal variation along with 

gonadal development in bivalves (Table 2). Content of 5-HT increases in the nervous system 

from early gonadal development to maturity stage in the brown mussel [110] and decreases 

following spawning in Peruvian scallop (Argopecten purpuratus) [113]. York and Twarog [120] 

reported that 5-HT in the PG of blue mussel is higher in April than March. It has also observed 

that 5-HT content in the whole nervous system of the blue mussel increases from April to 

October [118]. As the blue mussel spawns from late spring to late summer [129, 130], these 

data suggest that 5-HT content increases during spawning. 5-HT content also correlates with 

the content of its metabolite (5-HIAA), suggesting that metabolism of 5-HT is in parallel to its 

biosynthesis in the nervous system [110].

3.3.2. 5-HT in the gonad of bivalves

Localization of 5-HT in the gonad has studied in a few species of bivalves (Table 3). Using 

method of Falck-Hillarp, Sweeney [47] and Matsutani and Nomura [88, 105] observed the 

5-HT-IR fibers in the gonoduct and epithelium around gonad in the Fingernail clam and Yesso 
scallop, respectively, and suggested that the 5-HT-IR fibers originate from CVC to innervate 
the gonad. Further studies using antibodies against 5-HT confirmed existence of 5-HT-IR 
fibers in the gonad of Yesso scallop [105], great scallop [90], Atlantic deep-sea scallop [115], 

surf clam [112], warty venus [91], and soft-shell clam [106]. These studies clearly indicated 
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that the nervous system innervation of the gonads is mostly emerged from VG or derived 

from CVC. The 5-HT-IR fibers surround periphery of collecting tubes and of gonadal lobules 
(acini) in males and females filled with sperm and oocytes, respectively (Figure 3).

As seasonal-dependent 5-HT content in the nervous system, distribution of 5-HT fibers also 
changes in the gonad throughout reproductive cycle [91, 106, 112, 115] (Figure 3; Tables 2 

and 3). Generally, the 5-HT-IR fibers are occasionally observed around the germinal acini, and 
extensively distributed around the collective tubes at early developmental stage. However, the 

5-HT-IR fibers around the acini are more frequent at maturity stage [112]. After spawning, the 

5-HT-IR fibers still exist around collecting tubes, and are abundant around gamete empty acini.

Using spectrofluorometric or HPLC-EC method, 5-HT content has been measured in the 
gonad of the Atlantic deep-sea scallop [114, 115], surf clam [112], Pacific lion's paw scallop 
(Nodipecten subnodosus) [111], and brown mussel [110]. Matsutani [131] reported a tendency 

toward an increase and a decrease of 5-HT content in the testis and ovary of Japanese scal-

lop (Chlamys farreri nipponensis) during spawning, respectively. It has shown that 5-HT con-

tent increases from early developmental stage of the gonad to maturity stage in males and 

females [110, 111]. In surf clam, Masseau et al. [112] reported that changes in 5-HT content are 

uncertain in males during testicular development and after spawning. However, in females, 

5-HT is high at early development stage, decreases at maturity stage and spawning, and 

then increases after spawning. They also reported that 5-HT content does not differ between 
males and females when they are compared at similar gonadal development stage. Klouche 

et al. [110] pooled the data of males and females in brown mussel, as there are no differences 
between sexes, and observed that 5-HT content increases toward maturation of gonad. In 

Peruvian scallop, 5-HT content decreases in the male and female portions of gonad follow-

ing spawning [113, 116]. Observed differences in 5-HT content among studies may repre-

sent inter-species differences associated with 5-HT regulation of reproduction that might also 
be different between sexes. Klouche et al. [110] reported that the gonadal content of 5-HT 

metabolite (5-HIAA) in brown mussel is high at early development and become decreased at 

maturity stage. As 5-HT content is high at maturity, these suggest that 5-HT-dependent repro-

duction associates with decreasing 5-HT inactivation mediated by its metabolism.

A few studies show 5-HT content in both nervous system and gonad, for instance in the 

Peruvian scallop [113, 116] and brown mussel [110]. Results show higher 5-HT content in the 

nervous system than gonadal tissue as 5-HT content is lower in connective nerves than 5-HT 

neurons [26, 56].

Croll et al. [115] observed that distribution of 5-HT-IR neurons and fibers is similar between 
juvenile and adult in the Atlantic deep-sea scallop or between sexes in the surf clam [112]. 

However, abundance or distribution of 5-HT neurons and 5-HT content may differ between 
sexes. Martínez and Rivera [116] observed that 5-HT content is higher in the male portion 

than female portion of the gonad of the Peruvian scallop. Expression of 5-HT-IR fibers or neu-

rons has been seen to be higher in the VG of females than that of males [127]. These studies 

may suggest inter-sex difference in 5-HT biosynthesis or inter-sex difference in 5-HT regula-

tory function of reproduction.
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4. Conclusion and future research perspectives

The essential components of 5-HT biosynthetic pathway are highly conserved in the animal 

kingdom. The 5-HT biosynthesis from the essential amino acid L-tryptophan is catalyzed by 

TPH, which convert L-tryptophan to 5-HTP, and by AADC, which convert 5-HTP to 5-HT. 

All precursors of 5-HT are identified in the nervous system of bivalves. In mammals, there are 
two isoforms of TPH (TPH1 and TPH2), which are predominantly expressed in the periph-

eral organs and in the nervous system, respectively. However, TPH1 is the primary form and 
expresses earlier in neural development [132, 133]. Molecular sequence of the gene encoding 

AADC has also been identified and localized in mammals [134, 135]. It has a non-specific 
tissue distribution and is expressed in wide range of cell types [66]. In bivalves, molecular 

identity, localization, and characterization of TPH and AADC are unknown. These studies 

will provide us with satisfactory information to better understand ontogeny of 5-HT neu-

rons in the nervous system and to elucidate developmental biology of 5-HT regulation of 

reproduction.

It has been seen that the first 5-HT-IR neurons appearing within the nervous system corre-

spond to the location of the CG and apical ganglion (AG) during the late trochophore stage: 

30–32 h postfertilization in blue mussel [136], 24 h postfertilization in surf clam [137], and 

27 h postfertilization in the Bay mussel (Mytilus trossulus) [138]. Kreiling et al. [137] reported 

that the 5-HT-IR neurons appear in VG of surf clam at 48 h postfertilization. Following 72 h 
postfertilization, the 5-HT-IR neurons emerging from the CG and AG extend their processes 

to the VG, through which connections of the 5-HT-IR neurons between CG/AG and VG are 

formed at 96 h postfertilization. During the embryonic development, the size of the 5-HT area 
in the CG/AG and VG increases from 24 h to 96 h postfertilization, which is associated with 
an increase in 5-HT content. Cann-Moisan et al. [139] reported that 5-HT content undergoes 

variation throughout the larval and postlarval stages. It rises from 2 d to 27 d postfertilization 
(15–50 pg/μg of protein, respectively); however, it decreases to less than 1 pg/μg of protein 
after 55 d postfertilization. These indicate that 5-HT neurons form at the embryonic stage, 

and 5-HT content increases from embryonic development to metamorphosis, and decreases 

after metamorphosis. Voronezhskaya et al. [138] observed that 5-HT-IR neurons innervate the 

peripheral organs in the postmetamorphic stage, suggesting that 5-HT biosynthesis undergoes 

developmental variation. This might be related to the availability of the 5-HT precursors or 

inactivation mechanisms of 5-HT. However, further studies are required to investigate devel-

opment of 5-HT fibers in the gonad through developmental stage.

As animals lost the ability to synthesize tryptophan, there possess developed biological mech-

anisms through which animals obtain tryptophan from their diets. Thus, 5-HT biosynthe-

sis highly depends on dietary factors including availability of tryptophan and competitive 

uptake or transport of tryptophan with other amino acids (such as tyrosine and phenylala-

nine) into the 5-HT neurons. Studying nutritional effects on 5-HT biosynthesis will lead to bet-
ter understanding of physiological relationships between seasonal variation in 5-HT content 

and gonadal development. In addition, it can help us to investigate the impacts of parental 

nutrition on gamete maturation and fertility in bivalves. These studies can provide us with 
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knowledge to better understand 5-HT controls of feeding behaviors such as appetite and sati-
ety, which have been demonstrated in mammals [140].

Mechanisms of 5-HT inactivation in the nervous system and peripheral organs of bivalves 

are poorly understood. It requires molecular identity, localization, and characterization of 

SERT and MOA. In this regard, several types of SERT and MOA inhibitors are available 

[80, 114, 141] that provide us with useful tools to elucidate molecular signaling that control 

5-HT reuptake and metabolism. A few studies show that selective 5-HT reuptake inhibitors 

modulate 5-HT-induced spawning in bivalves. Fong [142] and Fong et al. [143, 144] reported 

spawning of Zebra mussel treated with selective 5-HT reuptake inhibitors (fluvoxamine, 
fluoxetine, zimelidine, and paroxetine). Both males and females are capable of releasing 
their gametes after treatment with fluvoxamine at 10−7 and 10−6 M, respectively. Following 

treatment with fluoxetine, 100% of males have spawned at 10−4 to 10−5 M, however spawn-

ing has induced in 50–60% of females at 10−5 M. Zimelidine induces spawning in 100 and 
60–70% of males and females at 10−4 M. Paroxetine induces spawning in 50 and 20% of males 
and females at 10−6 and 10−5 M, respectively. Considering spawning of males and females at 

10−3 M 5-HT, these results indicate that selective 5-HT reuptake inhibitors stimulate spawn-

ing in Zebra mussel at concentrations lower than that of 5-HT. Further examinations have 

revealed that mianserin and cyproheptadine interfere with fluvoxamine-, fluoxetine-, and 
zimelidine-induced spawning [144] suggesting that antagonists of 5-HT2 receptor block 

stimulatory function of selective 5-HT reuptake inhibitors in spawning. Inhibition of 5-HT 

reuptake may increase the synaptic 5-HT concentrations, which in turn activate postsynaptic 

5-HT receptor to induce spawning. It is also possible that selective 5-HT reuptake inhibitors 

act as ligands at postsynaptic receptor rather than inhibition of SERT. Overall, these studies 

suggest that 5-HT transport plays a key role in reproduction; however, the mechanisms of 

action are largely unknown.

So far, histochemistry and immunohistochemistry methods have been employed to local-

ize the 5-HT neurons and fibers, and spectrofluorometric and HPLC-EC methods have been 
used to identify 5-HT content in the nervous system and gonad of various bivalve species. 

Successful implication of various mammalian monoclonal or polyclonal antibodies indi-

cates that 5-HT structure is highly conserved through evolution across the animal kingdom. 

However, mechanisms through which 5-HT acts on a biological system may differ. The pres-

ent review shows that 5-HT content highly differs in the nervous system and gonad of bivalve 
species. The inter-species differences in 5-HT content might be related to capability of nervous 
system to synthesize 5-HT, differences in 5-HT inactivation or 5-HT transport from nervous 
system to the gonad. In the latter case, 5-HT content in the gonad may correspond to 5-HT 
concentration that requires to stimulate spawning. The present review shows that 5-HT con-

centration to induce spawning highly differs between sexes, and among species. It is worth 
to note that tissue sampling, extraction procedure, and analytical method affect the results of 
5-HT content. In addition, 5-HT content undergoes seasonal variation and change following 

spawning.
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