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Abstract

Multidrug-resistant (MDR) pneumonia can be problematic and challenging to treat in an 
era of increasing resistance and limited treatment armamentarium. Multidrug-resistant 
pathogens are associated with increased morbidity and mortality, thus early empiric 
appropriate antibiotics are critical for survival. Many factors play a role in the selec-
tion, optimization, and duration of therapy that should be made on an individual basis. 
New technologies such as “rapid diagnostics” may provide the clinician with early phe-
notypic or genotypic result, thus improving early appropriate therapy. The increasing 
antibiotic resistance is a global threat to patients worldwide and is an economic burden. 
In the United States, drug-resistant bacteria cause approximately 2 million cases of ill-
nesses and contribute to 23,000 deaths each year. The inappropriate use of antibiotics has 
contributed to the healthcare burden that ranges from $27 to $42 billion annually. As a 
result, several governmental agencies have placed forth regulatory mandates to enforce 
antimicrobial stewardship programs in acute care hospitals. Education will be vital 
across all healthcare disciplines to ultimately ensure optimal prescribing and reduce the 
emergence of resistance.

Keywords: multidrug-resistant infections, intensive care unit, pneumonia,  
healthcare-associated infections, critically ill patients, antibiotic stewardship

1. Introduction

In this chapter, we will focus on the critically ill patients with Gram-negative pneumonia, the 

prevalence of multidrug resistance, factors associated with patients developing these resistance 

infections. Surveillance, infection control, and early detection by means of utilizing rapid diag-

nostics and other methodologies are important for early prevention of disease. The reader will be 

able to understand how and why the administration of early appropriate empiric antibiotics is 
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key for survival in the critically ill. We will emphasize on the importance of robust antimicrobial 

stewardship programs, which are in accordance with Centers for Disease Control and Prevention 

(CDC) core elements. New regulatory mandates from the Joint Commission (TJC) on antimicro-

bial stewardship programs will require hospitals to be compliant for accreditation. Finally, we 

will end the chapter with an outlook on future antibiotics in Phase III development to aid in the 

combat against multidrug-resistant (MDR) organisms.

2. Global resistance and global economic impact

The preantibiotic era is a reality for many parts around the world, especially among the 

developed countries, driven in part by antibiotic overuse and misuse. Increasing antibiotic 

resistance is a global threat to patients worldwide and an economic burden. According 

to the U.S. Centers for Disease Control and Prevention (CDC), each year in the United 

States, drug-resistant bacteria cause approximately 2 million cases of illnesses and con-

tribute to 23,000 deaths. A key driver has been the inappropriate use of antibiotics, which 

as an avoidable cost and burden to healthcare dollars, ranges from $27 billion to 42 billion 

annually [1, 2]. The Infectious Diseases Society of America (IDSA) white paper entitled 

“Bad Bugs, No Drugs” commented on the declining research investments in antimicrobial 

development, as did an update on this article from clinical infectious disease (CID) in 2009 

[3]. These papers identified certain Gram-negative bacteria that are particularly problem-

atic pathogens, which tend to “escape” the activity of many antibiotics. These problematic 

pathogens are known as, the “ESKAPE” pathogens, which include: Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aerugi-

nosa, Enterobacter species and can Clostridium difficile is also include to the list. In addition 

to the “ESKAPE” pathogens, the prevalence of C. difficile infection (CDI) has risen dramati-

cally in just the last 2 decades. Since 2001, surveillance data has shown a dramatic increase. 

The number of CDI cases (any diagnosis) per 10,000 hospital discharges increased from 

25.0 to 40.0, a 60% increase. However, over the next 4 years (2001–2005), a 92% increase 

was observed (from 40.0 to 76.9) [3–5]. The CDC has placed these resistant pathogens 

into three categories: urgent, serious, and concerning threat levels. Several recent efforts 
have attempted to raise awareness and focus attention on antibiotic overuse in healthcare 
including: the World Health Organization, the CDC, and White House. The White House 

issued executive order 13,676: combating antibiotic-resistant bacteria, which is a road-

map to guide the nation that was issued by President Obama on September 18, 2014. This 

executive order will implement the National Action Plan for Combating Antibiotic-Resistant 

Bacteria, a plan that intends to have major reductions in the occurrence of urgent and seri-

ous threating pathogens, including methicillin-resistant S. aureus (MRSA), carbapenem-

resistant Enterobacteriaceae (CRE), and C. difficile [6]. Recent studies have demonstrated 

that critically ill patients colonized with multidrug-resistant pathogens also have a high 

prevalence of being infected with that particular organism. In such, antimicrobial resis-

tance (AMR) as an independent risk factor also increases morbidity and mortality [7, 8].
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3. Prevalence of MDROs and risk factors in the critically ill

The CDC in 2013 published Antibiotic Resistance Threats in the United States. Regarding the 

level of concern, CDC has, for the first time, prioritized bacteria in this report into one of three 
categories: urgent, serious, and concerning (Table 1).

The CDC has placed carbapenem-resistant Enterobacteriaceae (CRE) as an urgent threat 

level. CRE confers resistance to last-line antibiotics such as carbapenems, by producing 

a β-lactamase enzyme called KPC (K. pneumoniae carbapenemase-producing). The CDC 

reports their laboratories have confirmed CRE in 44 states within healthcare facilities across 
the United States. CRE causes more than 9000 healthcare-associated infections (HAI) annu-

ally, among these the two most common types are carbapenem-resistant Klebsiella and car-

bapenem-resistant E. coli. The percentages of the United States CRE healthcare-associated 

infections for Klebsiella spp. and carbapenem-resistant Escherichia coli are 11 and 2%, respec-

tively. These serious infections contribute to roughly 600 deaths each year [5].

Urgent threats

Clostridium difficile

Carbapenem-resistant Enterobacteriaceae (CRE)

Drug-resistant Neisseria gonorrhoeae

Serious threats

Multidrug-resistant Acinetobacter*

Drug-resistant Campylobacter

Fluconazole-resistant Candida (a fungus)

Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs)*

Vancomycin-resistant Enterococcus (VRE)

Multidrug-resistant Pseudomonas aeruginosa*

Drug-resistant nontyphoidal Salmonella

Drug-resistant Salmonella Typhi

Drug-resistant Shigella

Methicillin-resistant Staphylococcus aureus (MRSA)*

Drug-resistant Streptococcus pneumoniae*

Drug-resistant tuberculosis*

Concerning threats

Vancomycin-resistant Staphylococcus aureus (VRSA)

Erythromycin-resistant Group A Streptococcus

Clindamycin-resistant Group B Streptococcus

Notes: *MDROs associated with pneumonia. Reproduced from CDC. Antibiotic resistance threats in the United States, 

2013 [5].

Table 1. CDC antibiotic resistance threats in the United States, 2013.
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The first case of K. pneumoniae carbapenemase-producing CRE was reported in North Carolina 

in 2001. Since then, cases have been reported in almost every state. Carbapenemase-producing 

CRE carries antimicrobial resistance genes on mobile plasmids that can move between organ-

isms, thus potentially facilitating a wider and more rapid spread. A clone known as K. pneu-

moniae sequence type 258 was responsible for this global dissemination, particularly in the 

United States. Knowing the genotype level aids in tracking the epidemiology worldwide [9]. 

Guh et al. conducted a 2-year surveillance period, which included 599 incident CRE cases 

that were reported across 7 Emerging Infections Program (EIP) sites (Georgia, Minnesota, 

Oregon, Colorado, Maryland, New Mexico, and New York). They concluded that the overall 

crude incidence CRE was 2.93 per 100,000 populations [10]. The overall CRE incidence may 

be underreported as many hospital laboratories may not preform confirmatory testing [11].

CRE is encountered in patients with extensive healthcare exposure. Patients can be hospital-

ized in an acute short stay hospital, residents of LTCFs (long-term care facilities), LTACHs 

(long-term acute care hospitals), or outpatients with recent healthcare exposure. These 

patients also frequently have multiple comorbidities, poor functional status, recent intrave-

nous antibiotic exposure (within 90 days), and indwelling devices (urinary catheter, mechani-

cal ventilation, indwelling lines). Patients that recover from their acute hospitalization are 

frequently discharged to LTCFs or LTACHs, thus contributing to a viscous cycle [10, 12]. 

LTACHs play an important role in the regional epidemiology of CRE. In a recent study, 30% 

of LTACH residents were colonized with K. pneumoniae carbapenemase-producing CRE. This 

represented a ninefold higher prevalence in LTACHs compared to intensive care unit (ICU) 

patients in acute short-stay hospitals in the same area. Various efforts to reduce the burden of 
CRE in LTACHs have had only a slight impact [13].

Common sites of infection include respiratory, bloodstream, -wounds, and urinary tract. 

Urine is the most common site for infection and colonization. Outcomes associated with CRE 

infections are poor with high mortality rates as high as 50% in some studies. Outcomes vary 

by the site of infection with blood stream infections carrying the highest mortality and urinary 

tract infection the lowest [10, 13].

According to the CDC, Acinetobacter in the United States causes approximately 12,000 health-

care-associated infections annually. Approximately 7000 of these infections are considered to 

be multidrug-resistant Acinetobacter at a staggering 63%, meaning at least three different classes 
of antibiotics no longer cures these infections, which contributes to 500 deaths per year. The 

CDC 2013 publication does not estimate long-term care hospitals or long-term care facilities in 

the prevalence statistics [10]. Others [14] have estimated that there may be as many as approxi-

mately 46,000 cases of Acinetobacter-related infections per year in the U.S. and approximately 

1 million cases per year globally. In the United States, a 2006–2007 report of 463 hospitals par-

ticipating in the National Healthcare Safety Network (NHSN) indicated that infections due to 

Acinetobacter baumannii accounted for 3% of all healthcare-associated infections (HAI). Focusing 

on the ICU, approximately 7% of all HAIs were associated with critically ill patients on mechan-

ical ventilation in the United States, which were caused by Acinetobacter [11].

A further concern is that the prevalence of resistance among Acinetobacter infections is 

increasing. Between 2000 and 2009, the percentage of imipenem-resistant A. baumannii 
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increased from ~5% to an approaching 40%, an increase that has been observed across most 

of U.S. states [15]. Acinetobacter is uniquely able to survive in hospital environments and 

to develop resistance to antibiotics. When combined these attributes result in both a high 
potential for endemicity and epidemicity, resulting in both hospital outbreaks and persis-

tent colonization [16]. Studies have indicated that key sources of Acinetobacter transmission 

within hospital units include the following: hands of hospital personnel, contamination 

of environmental surfaces and medical equipment, environmental shedding by colonized 

patients, procedures that result in a spray of contaminated fluids, and airborne particles are 
believed to play a role in transmission [17].

In critically ill patients, A. baumannii can invade through breaches in skin integrity or airway 

protection. This pathogen is associated with high mortality [18]. Debilitated patients in ICUs 

are especially prone to Acinetobacter infections [15]. High-risk patients include:

a) Severe underlying illness or comorbidities such as diabetes mellitus and chronic lung 

disease.

b) Circumstances of hospitalization, such as length of stay, high workload, and admission to 

units in the acute care center with high a density of infected.

c) Infection or colonization of specific sites, respiratory, urinary, gastrointestinal tracts, 
burns, or surgical wounds.

d) Exposure to prolonged antimicrobial therapy with broad-spectrum antibiotics, which in-

clude carbapenems, fluoroquinolones, aminoglycosides, third generation cephalosporins.

e) Administration of blood product transfusions, enteral feeding and contaminated parenteral 

solutions.

Common sites of infection include respiratory, bloodstream, skin and soft tissue and urine. 

Mortality associated with A. baumannii infections ranges from 7.8 to 23% in general hospital 

patients and from 10 to 43% in ICU patients. Bacteremia has the highest mortality, and in 

hematopoietic stem cell transplantation (HSCT) recipients, mortality rates associated with 

Acinetobacter bacteremia may reach up to 70% [19].

Extended spectrum β-lactamase (ESBLs) producing Enterobacteriaceae produce a hydro-

lytic β-lactamase enzyme that confers resistance to various penicillins, which also include 
extended spectrum cephalosporins. Given the resistance, clinicians’ remaining treatment 

option is a carbapenem antibiotic. Carbapenems are last-line antibiotics, and their use in 

ESBL infections has also contributing to additional resistance [20, 21]. In the United States, 

the CDC reports an estimated 140,000 healthcare-associated Enterobacteriaceae infections 

occur each year. The CDC also reports that approximately 26,000 of these infections are 

caused by ESBL-containing Enterobacteriaceae bloodstream infections, which contribute to 

1700 deaths. The total excess hospital charges per episode of ESBL-bacteraemia are roughly 

$40,000 per occurrence. ESBL-producing Klebsiella spp. and ESBL-producing E. coli are the 

most common and percentage resistant to extended spectrum cephalosporins are 23 and 

14%, respectively [5].
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Sequence type 131 (ST131) is a pathogenic clone of E. coli and it also frequently expresses a 

hydrolytic β-lactamase enzyme called CTX-M-type and has rapidly disseminated worldwide. 
E. coli expressing CTX-M-type enzymes containing ESBLs have been increasingly seen in the 
community [12, 22–26]. Residency of a long-term care facility has been recognized as a promi-

nent risk factor for acquisition of ESBL infections in the community. Various studies have also 

identified ESBL bacteremia as an independent risk factor from exposure to fluoroquinolones, 
first-generation cephalosporins, and finally, a previously known colonization history with an 
ESBL [25, 27]. Patients are 57% more likely to die from bloodstream infections associated with 

ESBL-producing Enterobacteriaceae than those with bloodstream infections caused by a non 

ESBL-producing strain [26].

In a study by Ha et al. [28], they concluded that significant risk factors associated with ESBL-
producing E. coli bacteremia were prior treatment with fluoroquinolones and cephalosporins, 
as previous studies have also demonstrated. Moreover, recent surgery, liver disease, and 

immunosuppressant use were also deemed as significant risk factors. The study resulted in an 
overall 30-day mortality rate of 14.9%. As described previously, the mortality rate was higher 

in patients with ESBL-producing E. coli than in those without ESBL bacteremia (22.1 vs. 12.2%; 

P = 0.02). A multivariate analysis in this study demonstrated an independent risk factor for 

mortality (odds ratio = 3.01, 95% confidence interval 1.45–6.28; P = 0.003) for ESBL bacteremia 

[26, 28].

P. aeruginosa is a common cause of healthcare-associated infections including pneumonia, 

bloodstream infections, urinary tract infections, and surgical site infections. P. aeruginosa can 

easily adapt to the environment it inhabits, this ability can lead to colonization, and ulti-

mately invade the human host defenses and cause serious infections. According to the CDC, 

approximately 7.1% of all healthcare-associated infections in the United States are caused by 

P. aeruginosa. This organism was the second most common cause of pneumonia in the hos-

pital setting, and the third most common cause of Gram-negative bloodstream infections [5]. 

Kollef et al. recently conducted a global prospective epidemiological study on the prevalence 

of P. aeruginosa causing Ventilator-associated pneumonia (VAP). They concluded that global 

incidence was 4.1%, and did not differ among countries significantly [29].

In 2013, the CDC’s National Healthcare Safety Network (NSHN) reported that 8% of all health-

care-associated infections are caused by P. aeruginosa. Among these 8% reported to the NSHN, 

approximately 13% were considered severe healthcare-associated infections caused by MDR 

P. aeruginosa. By definition, MDR is resistance to at least three different antibiotics classes 
(mainly antipseudomonal penicillins, aminoglycosides, cephalosporins, and carbapenems). 

Each year, approximately 51,000 healthcare-associated P. aeruginosa infections occur in the 

United States (according to the CDC). Of these infections, more than 13% are classified as 
multidrug-resistant (MDR) P. aeruginosa and contribute roughly to 400 deaths per year [5].

The true prevalence of multidrug-resistant P. aeruginosa is not well established, mainly because 

there are considerable different definitions used in the literature. Upon reviewing many stud-

ies, they tend to report on both MDR and “pan-drug resistant” P. aeruginosa infections. In 2011, 

a new standardized definition was proposed, which classified Pseudomonas as MDR, XDR, or 
pan drug-resistant (PDR) bacteria. MDR as described above is resistant to at least one antibiotic 
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in three or more classes. Extensively drug-resistant (XDR), resistance to all FDA-approved, sys-

temically active agents except for those known to be substantially more toxic than or inferior 

in efficacy to alternative agents when used to treat susceptible organisms [30]. Finally, PDR, 

defined, is resistant to all commercially available antibiotics in all classes. MDR P. aeruginosa 

should not be synonymous with carbapenem resistance, as multiple mechanisms of can contrib-

ute to resistance. Risk factors for multidrug-resistant (MDR) infections include the following: 

length of hospital stay, prior use of IV antibiotics, history of P. aeruginosa infection, or coloni-

zation within the previous year, bedridden in the intensive care unit, mechanical ventilation, 

history of chronic obstructive pulmonary disease, and malignant disease. Nseir et al. concluded 

that a new patient admission into a previously occupied ICU room with a patient that had either 

MDR P. aeruginosa or A. baumannii was at an independent risk factor for acquisition of those 

pathogenic organisms. Many studies have examined multidrug-resistant infections as an inde-

pendent risk factor for mortality, especially when combined with inappropriate antimicrobial 

therapy [31, 32].

4. Infection control

Environmental reservoirs may be unrecognized as the culprit for outbreaks or ongoing 

sporadic transmission. Recent studies suggest that the risk of acquiring multidrug-resistant 

pathogens such as Acinetobacter spp., Pseudomonas spp., vancomycin-resistant Enterococcus 

(VRE), MRSA, or C. difficile is increased if a new patient admission is placed in a room previ-

ously occupied by a colonized or infected patient with one of the above pathogens [33–38]. 

“Terminal cleans” have been utilized for multidrug-resistant Gram-negative organisms and 

may be integrated with infection control measures, along with surveillance to limit the hori-

zontal transmission of multidrug-resistant organisms.

Environmental survival times of infectious pathogens [39]:

a) MRSA survival time ranges from 7 days to >7 months

b) Acinetobacter survival time ranges from 3 days to >5 months

c) C. difficile survival is >5 months

d) Vancomycin-resistant Enterococcus ranges from 5 days to >4 months

e) E. coli from 2 h to 16 months

f) Klebsiella from 2 h to >30 months.

Environmental surfaces are routinely disinfected in hospitals based on infection control 

policies and procedures. Several factors dictate the type and frequency for these cleanings 

such as surface characteristics, intensity of people traffic, clinical risk, and patient turnover. 
Following a patient discharge that was known to be colonized or infected with a multidrug-

resistant pathogen, a terminal or deep cleaning may be performed. The cleaning regimen 
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is usually tailored with a disinfectant and strength of choice for that particular pathogen. 

This process usually includes initial removal of all detachable objects from the room, such 

as bedding and curtains. The terminal clean also includes wiping down any ventilation 

components on the ceiling or lighting. Finally, all other surfaces and sites are cleaned down-

ward toward the floor level, and all equipment and items that were removed from the room 
are wiped over with disinfectant before returning to the room. Automated technologies 

have been recently introduced and may offer enhanced decontamination. Although these 
technologies are automated they do not replace routine daily cleaning [39].

In the following study, terminal cleaning, combined with standard infection control polices 

resulted in 70–40% reduction in patients colonized with MDR Enterobacteriaceae. These results 

were attributed to the overall combined intervention. Universal decolonization has been con-

ducted in many ICUs; particularly, after the results of a landmark trial called REDUCE MRSA 

[33]. Huang et al. concluded that routine ICU practice and universal decolonization was more 

effective than targeted decolonization or screening [40]. The universal decolonization was 

effective at reducing rates of MRSA and bloodstream infection from any pathogen. In the 
treatment group, the number needed to treat (to prevent one) bloodstream infection was per 

99 patients. Other technologies have been explored such automated decontamination devices 

which include peroxide and UV light. As mentioned earlier, these automated technologies 

could possibly offer some improvement, but they should not replace routine daily cleaning. 
Common pitfalls for these techniques include additional training of staff, management and 
personnel oversight, logistical complexities, and costs of equipment. Future studies are war-

ranted to evaluate overall costs versus benefits [39].

The Affordable Care Act in 2015 mandated that the hospital-acquired condition (HAC) 
reduction program reduce hospital payments by 1% for hospitals performing at the lowest 

ranked 25% with regard to hospital-acquired conditions. These conditions include Catheter 

Associated Urinary Tract Infections (CAUTI) and Central Line Associated Bloodstream 

Infections (CLABSI). As of 2017, CMS has also added both CDI and MRSA to the program. 

Given that hospitals are now accountable for these conditions, it is imperative that they have 

robust infection control policies and procedures and have also successfully implemented anti-

microbial stewardship programs as defined by the Joint Commission Medication Management 
(MM) Standard MM.09.01.01 [41–43].

5. Surveillance

Surveillance systems allow the evaluation of the local and regional healthcare associated 

infections (HAI) and antimicrobial resistance (AMR) patters. Surveillance systems contribute 
to the early detection of HAI and new patterns of AMR, including identifying new clusters or 
outbreaks. Surveillance is a key component on a local, regional, national, and even on a global 

scale (WHO) for determining these patterns [44]. Knowing and identifying resistance patterns 
can help provide guidance to practitioners by means of antibiograms. Antibiograms give the 

clinician the most appropriate empiric antibiotic information choice while awaiting further 

confirmation by either phenotypic or genotypic means. The CDC will soon require hospitals 
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to report their antimicrobial use and resistance patterns into the National Healthcare Safety 
Network (NSHN). This tracking system is the nation’s most widely used for healthcare-asso-

ciated infection. This process will enable the CDC to benchmark hospitals and assess anti-

microbial use by measuring the Standardized Antimicrobial Administration Ratio (SAAR). 

The measurement is a ratio of observed-to-expected (O-to-E). Ratio values greater than 0, and 

a value of 1.0 suggests equivalency between the observed and predicted antimicrobial use. 

Values above 1.0 may indicate statistically significant excessive antimicrobial use [44]. In addi-

tion to the CDC, many hospital regulatory agencies such as the Joint Commission and CMS 

will be enforcing this element as part of complying with antimicrobial stewardship program 

mandates [42, 43].

6. Mechanisms of resistance

Microorganisms are tenacious at survival, they have been on the Earth for billions of years, 

and their sole existence is based on their ability to adapt to the environment. This ability 

for survival despite the introduction of antibiotics is best described antimicrobial resistance. 

The mechanisms of antimicrobial resistance are as follows: (a) enzymatic degradation of 

antibiotics via hydrolytic enzymes, (b) alteration of bacterial proteins or target sites, and (c) 

changes in membrane permeability to antibiotics either by penetration or by expulsion of 

the actual antibiotic from within the bacteria. Antibiotic resistance can be either plasmid or 

chromosomal mediated. One of the most important mechanisms of resistance to beta-lactams 

is enzymatic hydrolysis of the ring structure resulting in inactivity [45]. The chromosomal 

β-lactamases expression can either be depressed or induced or by the exposure to β-lactam 
antibiotics. Overcoming resistance to β-lactam antibiotics includes the coadministration of 
inhibitors to protect the ring structure, and the development of new antibiotics that are stable 

against enzymatic degradation. By adding a β-lactamase inhibitor to a β-lactam antibiotic, 
this allows the β-lactam to avoid enzymatic hydrolysis and perform its bactericidal effects. 
The following are examples of resistance [45]:

a) Efflux pumps (especially overexpression), which pump the drug out of the cell.

b) Changes in porin protein channels in outer membrane (decreased number or channel 

charge alteration), which decreases drug uptake.

c) Circumvent metabolic pathways.

d) Enzymatic hydrolysis, i.e., beta-lactamases in Enterobacteriaceae, and nonfermentative 

Gram-negatives (Acinetobacter).

e) Change in binding affinity of antibiotic for target, i.e., penicillin-binding proteins, DNA 
topoisomerases, and ribosomal targets.

Bacterial resistance to β-lactam antibiotics as mentioned earlier is mediated via β-lactamases; 
this mode is the primary mechanism of resistance. Ambler molecular classification is used to 
classify β-lactamases and is based on the amino acid sequence and divides the class into four 
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(A, B, C, and D). A, C, and D enzymes utilize serine for β-lactam hydrolysis and class B metal-
loenzymes require zinc bivalent metal ion, usually Zn2+ ions for substrate hydrolysis [46–48].

Example enzymes are as follows:

a) Class A enzymes TEM, SHV, ESBL, CTX-M, KPC, PC1, SME, IMI/NMC, GES/IBC.

b) Class B enzymes MP, VIM, SIM, GIM, SPM, NDM-1.

c) Class C enzymes AmpC, CMY.

d) Class D OXA superfamily (OXA-23, OXA-40 in US outbreaks).

Multidrug efflux mechanisms in bacteria contribute significantly to intrinsic and acquired 
resistance to many antibiotics. Whole genome sequencing has confirmed the broad distribu-

tion of these systems in Gram-negative as well as in Gram-positive bacteria. Multidrug efflux 
systems have given rise to high-level resistance to Gram-negatives, particularly when mul-

tiple mechanisms or resistances are simultaneously produced by a single isolate. The efflux 
system is mediated by transport proteins, which confer resistance antimicrobial agents. The 

tripartite efflux system in Gram-negative bacteria is necessary to expel the antibiotic to the 
outer medium. The system consists of (a) protein localized in the cytoplasmic membrane, (b) 

protein located in the periplasmatic space, and (c) a third protein located in the outer mem-

brane. These active transport proteins are grouped in families, which are based on their amino 

acid sequences and mechanisms. The most identified and studied multidrug efflux systems 
among Gram-negative bacteria are P. aeruginosa and E. coli [49].

7. Early detection

The surviving sepsis guidelines now recommend IV antibiotics to be started within 1 h of sep-

sis recognition and should include combination therapy (at least two classes of antibiotics to 

cover a known or suspected pathogen) for patients with septic shock. Combination therapy 

should not routinely be used for patients without shock. Many studies have demonstrated 

improved survival in early appropriate administration of antibiotics at the first presence of 
septic shock [50]. Kumar et al. concluded for each hour of delay of appropriate antimicrobi-

als resulted in a mean increase in mortality by 7.6%, with a range 3.6–9.9% [51]. Ferrer et al. 

published the results of a large population, which concluded that a delay in first antibiotic 
administration was associated with increased in-hospital mortality in patients with severe 

sepsis and septic shock [45]. It was also noted that there was a linear risk increase in mortal-

ity for every hour delay in antibiotic administration. Another study by Vazquez-Guillamet 

concluded that improved targeting in multidrug-resistant bacteria would have the greatest 

impact on reducing overall mortality. In their study, they calculated the number of patients 

needed to treat and found for every  four patients treated with appropriate antimicrobial 

therapy in severe sepsis and septic shock, it prevents one patient death [52]. The appropri-

ateness of early empiric antibiotics is driven by local hospital-resistance patterns. At times, 
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selection of the most appropriate empiric antimicrobial regimen may be difficult for the 
clinician based, appropriate history, comorbidities, risk factors for resistant pathogens, and 

the complexity of patient transitions of care. Clinicians for decades have depended on phe-

notypic testing that detects the activity of enzymes (i.e., hydrolysis of antibiotics such as 

beta-lactams in vitro) to provide definitive guidance on antimicrobial therapy. These tests 
provide the clinician pathogen identity with sensitivity, which may have a turn-around time 

of up to 72 h. As mentioned above, timing of appropriate antimicrobial therapy is key for 

patient survival in the critically ill, especially with septic shock. New technological advance-

ments in both phenotypic and genotypic testing (molecular tests that detect the resistance 

mechanisms of a specific gene) commonly known as “rapid diagnostics” will be able to pro-

vide detailed information within several hours versus current standards (48–72 h) [53–56].

See Tables 2 and 3.

Procalcitonin (PCT) is an inflammatory biomarker that is an acute phase reactant that reflects 
host response to bacterial infections. PCT synthesis is up regulated in the presence of bacterial 

toxins and certain bacterial pro-inflammatory mediators such as TNFα (tumor necrosis factor 
alpha), interleukin (IL)-1b, IL-6. PCT is neutral to cytokines that are normally released for viral 

Rapid nonnucleic acid–based tests and other phenotypic tests (MHT/CIM)

Manufacturer/product name Methodology Detection results Turnaround time

BioMérieux

Rapidec Carba -NP

Detects pH shifts by 

phenol red indicator that 

occurs when imipenem is 

hydrolyzed

Detects (w/o distinction) 
all three types of 

carbapenemases:

Class A: KPC

Class B: NDM/VIM/IMP
Class D: OXA

<2 h (after positive 

culture growth, ~24–48 h)

BioMerieux

MALDI-TOF MS

VItek—MS

(matrix-assisted laser 

desorption ionization time of 

flight mass spectrometry)

Detects change in native 

carbapenem mass

Provides bacterial (or 

fungal) identification 
at the species, genus, 

or group level (detects 

carbapenemase activity)

2–4 h

Modified Hodge test (MHT) CLSI suggested phenotypic 

confirmatory test.
Enhanced growth = (+) for 

carbapenemase production

No enhanced growth = 

(-) for carbapenemase 

production

Only confirms the presence 
of carbapenemases (does 

not identify specific 
carbapenemase (i.e., KPC 

vs. NDM)

18–24 h (after positive 

culture growth, ~24–48 h)

Carbapenemase Inactivation 

method (CIM)

Phenotypic confirmatory 
test

Only confirms the presence 
of carbapenemases (does 

not identify specific 
carbapenemase (i.e., KPC 

vs. NDM)

If results required within 

same day can be read 

after 6 h, but prefer 

reading results after 

12–24 h (after positive 

culture growth, ~24–48 h)

Table 2. Rapid diagnostic testing methodologies.
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infections such as interferon-γ. PCT concentrations are undetectable (less than 0.05 ng/mL). 
However, PCT is immediately released within 2–4 h upon exposure to bacterial toxins. The 

plasma half-life of PCT is approximately 24 h. Concentrations in the literature have varied for 

infected patients; however, as higher max concentrations of PCT are released during infection, 

this tends to correlate with a higher incidence of mortality. In the critically ill baseline PCT 

levels should be obtained with signs and symptoms of infection as a means of trending. A low 

PCT level or an ample decrease from baseline along with clinical review during the course of 

therapy should be interpreted to discontinue antimicrobial therapy. This methodology is part 

of an antimicrobial stewardship program, which reduces unnecessary antibiotics and also 

decreases duration. PCT has been proven to effective and safe in various critically ill patients. 
Many published studies have evaluated the utility of a PCT-guided strategy for determining 

the appropriate time to discontinue and/or de-escalate antibiotics in patients with varying 
severity of illnesses with documented infections. These studies have resulted in decreased 

unnecessary use of antibiotics [50].

Rapid nucleic acid–based tests (molecular test)

Manufacturer/

product name

Methodology Specimen type Organisms 

identified
Resistance 

mechanisms 

identified

Turnaround time

BioFire 

Diagnostics LLC/
Film Array® 

Blood Culture 

Identification 
Panel (BCID)

Multiplex PCR 

(detects 23 

bacterial species, 

four resistance 

mechanisms and 

Candida spp.)

Blood

Other FDA 

Cleared Panels: 

Respiratory, GI, 

Meningitis

Gram-positives:

Staph/Strep/

Enterococcus/

Listeria

Gram-negatives:

Enterobacteriaceae, 

Pseudomonas 

aeruginosa, and 

Acinetobacter 

species.

Fungus:

Candida spp.

mecA

vanA/vanB

bla
KPC

1 h (after blood 

culture positivity, 

~8–24 h)

Nanosphere/
Verigene®

Microarray 

(detects 15 

different Gram-
positive targets 

and 14 different 
Gram-negative 

targets (including 

nine resistance 

mechanisms)

Blood

Other FDA 

Cleared Panels: 

Respiratory, GI

Gram-positives:

Staph/Strep/

Enterococcus/

Listeria

Gram-negatives:

Enterobacteriaceae, 

Pseudomonas 

aeruginosa, and 

Acinetobacter 

species

mecA

vanA/vanB

IMP/KPC/NDM
OXA/VIM/
CTX-M ESBLs

2.5 h (after blood 

culture positivity, 

~8–24 h)

Cepheid

GeneXpert 
Carba R

“On demand” 

PCR

Rectal swabs Gram-negative:

Enterobacteriaceae,

Pseudomonas 

aeruginosa, and 

Acinetobacter 

species

IMP/KPC/NDM/
OXA*/VIM
*(Includes OXA-
48, OXA-181, 
OXA-232)

48 min (can test 

directly from 

clinical specimen)

Table 3. Rapid diagnostic testing methodologies.
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8. Treatment

As described earlier, prompt administration with appropriate empiric broad-spectrum anti-

biotics within 1 h of recognizing sepsis or septic shock has shown to improve survival. The 

surviving sepsis guidelines recommend initial selection of antimicrobial therapy to broad 

or “shot gun” approach. This approach ensures that the likely pathogen will be covered. 

If not, survival may decrease as much as fivefold for septic shock if the initial empiric regi-
men fails to cover the offending pathogen [50]. The choice of empiric antimicrobial therapy 

depends on factors related to clinical status, the patient’s history, and local epidemiologic 

factors (see below). Due to the high mortality associated with inappropriate initial therapy, 

empiric treatment choices should be broad initially, with constant evaluation to de-escalate 

the regimen once cultures and results have been determined. The guidelines also address 

several factors in determining the appropriate antimicrobial regimens:

a) The site of infection, pathogen profile, and antimicrobial pharmacokinetics and pharmaco-

dynamics (PK/PD) as it relates to penetration at the site.

b) Prevalence of pathogens in the community, hospital, and specific hospital locations, i.e., 
critical care unit by means of surveillance is an important determinant.

c) The resistance patterns of prevalent pathogens in the form of antibiograms or surveillance 
programs.

d) Status of the patient, i.e., immunocompromised patients such as HIV infection, splenec-

tomy, neutropenia, congenital defects of immunoglobulin, complement, or leukocyte 

dysfunction.

e) Age and patient comorbidities, the presence of invasive devices that compromise the host 

defenses [50].

Since majority of the patients with severe sepsis do have some form of immunocompromised 

status, the broad-spectrum antibiotics should be initiated [50]. Clinicians should assess these 

statuses of β-lactam and carbapenem resistance in their local communities. Physicians should 
also consider adding another Gram-negative coverage to cover Pseudomonas or Acinetobacter 

infections [57]. It holds true for covering for MRSA infections in patients with suspicion or 

risk factors for those infections. In patients who are immunocompromised with immuno-

suppressive medications, neutropenia, liver or renal failure, on total parenteral nutrition the 

coverage for the candida infection needs to be considered [58].

Dosing patients with severe sepsis and septic shock should be centered on pharmacokinetics/
pharmacodynamics (PK/PD) and drug properties as per the recommendation of surviving 
sepsis committee [50]. In most instances, the inability to achieve a therapeutic response can 

be attributed to the failure of optimizing PK/PD, i.e., failure of target attainment by means 
of reduced initial dosing or inadequate achievable troughs with subsequent dosing [59]. For 

optimum dosing for fluoroquinolones and aminoglycoside, it requires to optimize the peak 
plasma level. For aminoglycoside, it can be achieved by 5–7 mg/kg daily gentamicin dose or 
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equivalent. For fluoroquinolones, one should consider dosing for ciprofloxacin at 600 mg, 
every 12 hourly and for levofloxacin at 750 mg Q 24 hourly [60–62].

For vancomycin, trough levels of 15–20 mg/L have been advocated. In addition, drugs with a 
low volume of distribution such as vancomycin and colistin, a higher loading dose is suggested 

[63–65]. For the β-lactams, it is the time when the plasma concentration of the drug should be 
above the pathogen minimum inhibitory concentration (MIC) level. It is suggested to have 

the T > MIC (time above the minimum inhibitory concentration) of 60% and greater to have 

good efficacy, but among patients with sepsis a level of T > MIC of 100% may be needed. This 
is achieved by prolonging the infusion either as an extended or continuous infusion [50, 66].

In regard to the duration of antimicrobial therapy, per surviving sepsis guidelines, the dura-

tion of 7–10 days is adequate for most serious infections associated with sepsis and septic 

shock. In the 2016, management of adults with hospital-acquired and ventilator-associated 

pneumonia, 7 days are appropriate for those patients that respond to therapy early on and 

show clinical improvement (see below). Longer courses can be appropriate for patients who 

are slow responders or immunocompromised patients, and patients with MDR organisms, 

some fungal, or viral infections or MRSA [50]. Patients with endocarditis, osteomyelitis and 

larger abscesses may also require longer duration of therapy [50].

Multidrug-resistant pathogens are associated with increased morbidity and mortality and are 

certainly challenging to treat. We have described the surviving sepsis guidelines and recently 

published the 2016 Management of Adults With Hospital-acquired and Ventilator-associated 

Pneumonia: Clinical Practice Guidelines by the Infectious Diseases Society of America. These 

guidelines make recommendations for the diagnosis and treatment of Hospital-acquired 

pneumonia (HAP) and Ventilator-associated pneumonia (VAP) and are evidence-based 

derived from systematic literature reviews (Table 4).

Detailed pathogen recommendation is beyond the scope of this chapter, but we included an 

extensive review on Minocin IV. Minocin IV has an FDA approved indication for Acinetobacter 

spp. and not referenced in the guidelines above, but it has been used with success against 

Acinetobacter, including MDR and XDR strains. MINOCIN® (minocycline) [67] IV has been refor-

mulated, the new formulation contains magnesium sulfate heptahydrate and can be infused in 

as low as 100 mL to as high as 1000 mL over 60 min. It has a new pH of 4.5–6.0 when diluted.

Resistance to β-lactams has resulted in the resurrection of shelf toxic agents, i.e., the poly-

myxins. Tigecycline and sulbactam are not FDA approved for treatment of infections due to 

Acinetobacter. A recent meta-analysis evaluating the use of tigecycline against Acinetobacter 

infections disfavor its use due to an associated higher in-hospital mortality (OR = 1.57, 95% CI 

1.04–2.35; P = 0.03) [68].

Tetracyclines, as a class, have shown consistent in vitro activity against Acinetobacter [20, 21]. 

Increasing levels of multidrug resistance with Acinetobacter have led clinicians to reevalu-

ate certain tetracyclines with good in vitro activity. Studies of minocycline in Acinetobacter 

infections have shown clinical success ranging from 67 to 88% [21, 69–73]. Minocycline has 

approved breakpoints for Acinetobacter set forth by the Clinical and Laboratory Standards 

Institute (CLSI) [54]. These breakpoints are shown in Table 5.
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CLSI recommends separate Acinetobacter susceptibility results for minocycline since surro-

gate testing with other tetracyclines will underestimate susceptibility. Several retrospective 

studies have documented that lower mortality rates seen with combination therapy are used 

against MDR A. baumannii infections.

Minocycline IV has been used in combination therapy to achieve synergistic activity and 

to maximize antimicrobial activity in severely ill patients, or to prevent emergence of resis-

tance [74]. Minocycline and colistin combinations demonstrated bactericidal and synergistic 

A. Gram-positive antibiotics with 

MRSA activity

B. Gram-negative antibiotics with 

antipseudomonal activity: β-lactam–
based agents

C. Gram-negative antibiotics with 

antipseudomonal activity: non–β-
lactam–based agents

Glycopeptides

Vancomycin 15 mg/kg IV q8-12h
(Consider a loading dose of 25–30 

mg/kg × 1 for severe illness)

Antipseudomonal penicillins

Piperacillin-tazobactam 4.5 g IV q6h

Fluoroquinolones

Ciprofloxacin 400 mg IV q8h
Levofloxacin 750 mg IV q24h

OR OR OR

Oxazolidinones

Linezolid 600 mg IV q12h 

Cephalosporins

Cefepime 2 g IV q8h

Ceftazidime 2 g IV q8h 

Aminoglycosides

Amikacin 15–20 mg/kg IV q24h
Gentamicin 5–7 mg/kg IV q24h
Tobramycin 5–7 mg/kg IV q24h

OR OR

Carbapenems

Imipenem 500 mg IV q6hd

Meropenem 1 g IV q8h

Polymyxins

Colistin 5 mg/kg IV × 1 (loading 
dose) followed by 2.5 mg × (1.5 × 
CrCl + 30) IV q12h (maintenance 

dose)

Polymyxin B 2.5–3.0 mg/kg/d divided 
in 2 daily IV doses

OR

 Monobactams

Aztreonam 2 g IV q8h

Notes: Please refer to these guidelines for the compete table, HAP recommendations and detailed pathogen 

recommendations that can be found at: https://www.thoracic.org/statements/resources/tb-opi/hap-vap-guidelines-2016.
pdf

Table 4. Summary of recommendations for suggested empiric treatment options for clinically suspected ventilator-

associated pneumonia.

MIC (µg/mL) Interpretation

≤4.0 Susceptible (S)

8.0 Intermediate (I)

≥16.0 Resistant (R)

Table 5. Clinical and Laboratory Standards Institute MIC and disk breakpoints available for minocycline and Acinetobacter 

spp.

Multidrug-Resistant Gram-Negative Pneumonia and Infection in Intensive Care Unit
http://dx.doi.org/10.5772/intechopen.69377

91



activity against imipenem-resistant A. baumannii and MDR A. baumannii clinical isolates [75]. 

Combinations of minocycline plus meropenem and minocycline plus colistin were found to 

be synergistic in vitro against XDR A. baumannii. The package insert (PI) has an initial dose of 

200 mg, with subsequent doses of 100 mg administered over 60 min every 12 h. Minocycline 

is very lipophilic compared to other tetracyclines. It has a very unique pharmacokinetic/phar-

macodynamic profile (PK/PD) [67]:

a) Peak concentrations following 200-mg load (mean) = 4.18 μg/mL (range, 2.52–6.63 μg/mL).

b) Trough concentration of (1.4–1.8 μg/mL) with 100-mg dosing every 12 h.

c) These achievable peak and trough serum concentrations with standard human doses of 

minocycline intravenous exceed the mutant prevention concentration of 1 μg/mL, which 
has been reported with Acinetobacter.

d) Half-life of 15–23 h.

e) The mean concentration of minocycline in lung parenchyma has been reported to be 378% 

of that in plasma.

f) Urinary excretion 11%.

g) Renal dysfunction does not appear to alter the maximum serum concentrations of mino 

cycline.

h) Bactericidal activity in combination with carbapenems or colistin against A. baumannii.

9. Importance of antimicrobial stewardship programs, outcomes, and  

new regulatory mandate from the Joint Commission (7 CDC elements)

According to the World Health Organization (WHO), “Antimicrobial resistance threatens the 

effective prevention and treatment of an ever-increasing range of infections caused by bacte-

ria, parasites, viruses, and fungi.” The Centers for Disease Control and Prevention (CDC) has 

identified that 20–50% of all antibiotics prescribed in the U.S. acute care hospitals are either 
inappropriate or unnecessary. The CDC has also stated that “Antibiotics are among the most 

commonly prescribed medications in nursing homes. Up to 70% of long-term care facilities’ 

residents receive an antibiotic every year [76].”

White House held the antibiotic stewardship program in June, 2015, in which the Joint 

Commission participated along with more than 150 major healthcare organizations and other 

relevant organizations for helping to implement changes over the next 5 years to decrease 

the rate of emergence of antibiotic-resistant bacteria, to help detect the resistant strains, help 

preserve the efficacy of existing antibiotics, and also more importantly regulate to prevent the 
spread of resistant infections [76].

The Joint Commission has also developed the antimicrobial stewardship standard for hos-

pitals, critical access hospitals, nursing care centers, ambulatory care organizations, and 
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Official Publication of Joint Commission Requirements New Antimicrobial Stewardship Standard
Applicable to Hospitals and Critical Access Hospitals Effective January 1, 2017 Medication Management (MM)
Standard MM.09.01.01 The critical access hospital has an antimicrobial stewardship program based on current 

scientific literature.

1. Leaders establish antimicrobial stewardship as an 

organizational priority. (See also LD.01.03.01, EP 5)

Note: Examples of leadership commitment to an antimicrobial 

stewardship program are as follows:

• Accountability documents

• Budget plans

• Infection prevention plans

• Performance improvement plans

• Strategic plans

• Using the electronic health record to collect antimi-

crobial stewardship data

2. The critical access hospital educates staff and licensed 
independent practitioners involved in antimicrobial 

ordering, dispensing, administration, and monitoring 

about antimicrobial resistance and antimicrobial 

stewardship practices. Education occurs upon hire or 

granting of initial privileges and periodically thereafter, 

based on organizational need

3. The critical access hospital educates patients, and 

their families as needed, regarding the appropriate use 

of antimicrobial medications, including antibiotics. (For 

more information on patient education, refer to Standard 

PC.02.03.01)

Note: An example of an educational tool that can be used for 

patients and families includes the Centers for Disease Control 

and Prevention’s Get Smart document, “Viruses or Bacteria—

What’s got you sick? At https://www.cdc.gov/antibiotic-use/
community/pdfs/Viruses-or-Bacteria-Factsheet-Eng.pdf

4. The critical access hospital has an antimicrobial 

stewardship

multidisciplinary team that includes the following

members, when available in the setting:

• Infectious disease physician

• Infection preventionist(s)

• Pharmacist(s)

• Practitioner

Note 1: Part-time or consultant staff are acceptable as 
members of the antimicrobial stewardship multidisciplinary 

team

Note 2: Telehealth staffs are acceptable as members of the 
antimicrobial stewardship multidisciplinary team

5. The critical access hospital’s antimicrobial stewardship program includes the following CDC core elements:

• Leadership commitment: Dedicating necessary human, financial, and information technology resources.

• Accountability: Appointing a single leader responsible for program outcomes. Experience with successful pro-

grams shows that a physician leader is effective.

• Drug expertise: Appointing a single pharmacist leader responsible for working to improve antibiotic use.

• Action: Implementing recommended actions, such as systemic evaluation of on-going treatment need, after a set 

period of initial treatment (for example, “antibiotic time out” after 48 h).

• Tracking: Monitoring the antimicrobial stewardship program, which may include information on antibiotic 

prescribing and resistance patterns.

• Reporting: Regularly reporting information on the antimicrobial stewardship program, which may include infor-

mation on antibiotic use and resistance, to doctors, nurses, and relevant staff.

• Education: Educating practitioners, staff, and patients on the antimicrobial program, which may include informa-

tion about resistance and optimal prescribing. (See also IC.02.01.01, EP 1 and NPSG.07.03.01, EP 5)

Note: These core elements were cited from the Centers for Disease Control and Prevention’s Core Elements of Hospital Antibiotic 

Stewardship Programs (https://www.cdc.gov/antibiotic-use/healthcare/pdfs/core-elements.pdf)
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office-based surgery practices in standard with the following governmental and professional 
organizations: Centers for Medicare & Medicaid Services (CMS), the CDC, and the Society for 

Healthcare Epidemiology of America (SHEA) (Table 6).

10. Future pipeline in phase III development

There has been emergence and increase of MDR pathogens. Efforts have been made toward ade-

quate treatment, daily de-escalation regimen as well as antibiotic stewardship programs. The 

pipeline for the new drugs is still sparse. Table 7 illustrates the antibiotics that are in the phase 3 

trials. Only very few have an expected activity against the CDC urgent threat potential (Table 7).

11. Conclusion

Antimicrobial resistance has risen at threating levels within the past few decades and has contrib-

uted to an economic burden on healthcare expenditures. Several governmental agencies includ-

ing the WHO, CDC, and the White House are focused on combating antimicrobial resistance 

at various steps. Acquisition of multidrug-resistant organisms in patients has established an 

6. The critical access hospital’s antimicrobial stewardship 

program uses organization-approved multidisciplinary 

protocols (for example, policies and procedures).

Note: Examples of protocols are as follows:

• Antibiotic Formulary Restrictions

• Assessment of Appropriateness of Antibiotics for 

Community-Acquired Pneumonia

• Assessment of Appropriateness of Antibiotics for Skin and 

Soft Tissue Infections

• Assessment of Appropriateness of Antibiotics for Urinary 

Tract Infections

• Care of the Patient with Clostridium difficile (c. -diff)

• Guidelines for Antimicrobial Use in Adults

• Guidelines for Antimicrobial Use in Pediatrics

• Plan for Parenteral to Oral Antibiotic Conversion

• Preauthorization Requirements for Specific Antimicrobials

• Use of Prophylactic Antibiotics

7. The critical access hospital collects, analyzes, and 

reports data on its antimicrobial stewardship program

Note: Examples of topics to collect and analyze data on 

may include evaluation of the antimicrobial stewardship 

program, antimicrobial prescribing patterns, and antimicrobial 
resistance patterns

8. The critical access hospital takes action on improvement opportunities identified in its antimicrobial stewardship 
program. (See also MM.08.01.01, EP 6)

Adopted from https://www.jointcommission.org/assets/1/6/New_Antimicrobial_Stewardship_Standard.pdf.

Table 6. The New Joint Commission antimicrobial stewardship standard: MM.09.01.01.
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Drug name Development phase Company Drug class Expected activity against 

resistant Gram-negative 

ESKAPE pathogens?

Expected activity against 

a CDC urgent threat 

pathogen?4

Zabofloxacin Phase 3 Dong Wha 

Pharmaceutical Co. Ltd

Fluoroquinolone No No

S-649266 Phase 3 Shionogi Inc. Cephalosporin Yes Yes

Omadacycline Phase 3 Paratek Pharmaceuticals 

Inc.

Tetracycline Yes Possible

Lefamulin (BC-3781) Phase 3 Nabriva Therapeutics 

AG

Pleuromutilin No No

No

Imipenem/
cilastatin+relebactam 

(MK-7655)

Phase 3 Merck & Co. Inc. Carbapenem+novel beta-

lactamase inhibitor

Yes Yes

Iclaprim Phase 3 Motif Bio PLC Dihydrofolate reductase 

(DHFR) inhibitor

No No

Cadazolid Phase 3 Actelion Pharmaceuticals 

Ltd.

Quinolonyl- oxazolidinone No Yes

Taksta (fusidic acid) Phase 3 Cempra Inc. Fusidane No No

Carbavance (vaborbactam+ 

meropenem)

Phase 3 Rempex Pharmaceuticals 

Inc. (wholly owned 

subsidiary of the 

Medicines Co.)

Meropenem+novel boronic 

beta-lactamase inhibitor

Yes Yes

Baxdela (delafloxacin) Phase 3 Melinta Therapeutics 

Inc.

Fluoroquinolone Possible Possible

Eravacycline Phase 3 Tetraphase 

Pharmaceuticals Inc.

Tetracycline Yes Yes

Plazomicin Phase 3 Achaogen Inc. Aminoglycoside Yes Yes

Solithromycin Phase 3 Cempra Inc. Macrolide (fluoroketolide) No Yes

Source: Adopted with permission from: http://www.pewtrusts.org/~/media/assets/2016/05/antibiotics-currently-in-clinical-development.pdf. Full table for drugs in phase 
1 and phase 2 is available from this site.

Table 7. New antibiotics currently in clinical development.
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 independent risk factor for mortality. Clinical expertise, risk stratification, surveillance, infection 
control, and the use of rapid diagnostics may be key to early identification of resistant pathogens; 
furthermore, appropriate antimicrobial selection and dose optimization via PK/PD are critical in 
improving outcomes and survival. Various studies have demonstrated the correlation between 

survival and appropriate early initial antibiotics. Antimicrobial stewardship programs have been 

shown to reduce antimicrobial resistance and are now considered a regulatory mandate. CMS 

and TJC have developed guidance for accreditation as it relates to demonstrating an effective 
antimicrobial stewardship program, including developing publicly reportable measures.

In recent years, we have seen high-level resistance to last-line agents such as carbapenems. 

Inappropriate usage and a reduced antimicrobial pipeline have driven this crisis. Several 

companies are dedicated to the research and development of new antimicrobials for our 

armamentarium in combating multidrug-resistant organisms and preventing a preantibiotic 

era. Education will be vital across all healthcare disciplines, including to patients, as this will 

ultimately ensure optimal prescribing.
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