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1. Preamble

Uncertainty is beyond awareness our indisputable decision-maker. A meeting announced to 

start at 12:00 may implicitly be understood to start in the time interval 12:00–12:01. Hence, 

we should have arrived at 12:01, at the latest. Alternatively, the interval could be 12:00–12:05. 

The communicated uncertainty of the start of the meeting is clearly ambiguous: accustomed 

to analog clocks discretized in 5-minute intervals, the latter is plausible, but used to digital 
clocks the former makes more sense. A meeting scheduled at 12, however, means something 

quite different to most of us. In that case, it can start as late as 12:30. The invisible practice in 
everyday life is to communicate uncertainty through a vaguely perceived precision, suggest-

ing random variability. It is more often than not confused with accuracy, or systematic devia-

tion (see Figure 1).

Results repeated within ±1% variation tell nothing about the range of possible errors or uncer-

tainty. An entirely deterministic algorithm has perfect precision. This is normally the situation 

Figure 1. Illustrations [1] of precision (left) and accuracy (middle) of four samples (●), and corresponding schematic 
probability density for the population of all possible outcomes (right), often utilized in uncertainty quantification.
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of scientific modeling, before uncertainties are considered. The precision usually thought of as 
random variability for any given set up is often re-interpreted as the total variability between 

known different situations. That is a dubious strategy to assign numbers of uncertainty. 
Without extensive consideration, it is generally impossible to assess whether or not the consid-

ered history is representative for the current problem. For instance, errors in modeling of fluid 
flow velocities and electromagnetic fields at nearly singular points in space or time, such as 
sharp corners, or deficiencies in describing collective phenomena like resonances, are usually 
far too complex to be understood by studying examples only. An extensive analysis based on 

a large or even infinite set of hypothetical variations is required. The widely practiced intuitive 
assessment of uncertainty exemplified above, based on experience and communicated with 
precision, jeopardizes decision-making: uncertainties of this kind are subjective and encourage 

different interpretations. Invalid uncertainty assessment is also a major cause of false rejection 
of modeling as a general tool, depriving us all means for making educated guesses through 

scientific model prediction of important matters, like future weather conditions and risk of 
major nuclear power accidents.

1.1. The goal

Uncertainty quantification targets objective association of quantitative traceable numbers rep-

resenting uncertainty to modeling, simulation, and calculation results. By applying a well-

documented and widely accepted method with known performance, for the last 20–30 years 
of so, such a methodology has been established and widely recognized for measurement 

models, to the extent a quantitative assessment of uncertainty now almost always is required 

for measurement apparatus. It is not yet so for scientific modeling, as the advanced computa-

tions in modern science and technology generally are far more difficult to analyze than mea-

surement models. The uncertainty should predict the range of possible modeling errors, but 

without exaggeration. If so, modeling results and observations are consistent, which means no 

more than they are not contradictory. Expressed in terms of conventional mathematical sta-

tistics developed by Fisher [2] and Popper [3], the hypothesis that the model accurately repro-

duces observations cannot be falsified. These perspectives, outlined in the early 20th century 

while studying, e.g., crop growth in agriculture and demography, still hold well for modern 

uncertainty quantification addressing complex applications, such as nuclear power genera-

tion, fatigue testing, etc. Mathematical statistics is indeed the genesis of most uncertainty 

quantification approaches and techniques utilized today.

The mere evaluation of uncertainty is, however, not automatically of any value. Unwarranted 

assumptions of uncertainties entering the evaluation are deceiving. Respecting what is not 

known is usually far more important than accurately describing what is known. Lack of knowl-

edge tends to increase the uncertainty and often leads to ambiguity, an important ingredient 

in qualitative science. In quantitative science addressed here though, any lack of well-defined 
information is normally defied by bold simplifying assumptions, simply because current meth-

odologies require complete knowledge. Closing the gap of ambiguity in this way reflects willful 

ignorance [4]. Therefore, it is important to consider alternative  hypotheses of uncertainty. For 

instance, parameter correlations are very rarely known, but nevertheless have a major influence 
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on the evaluated uncertainty. In this respect, it is important to view the model with all of its 
parameters as one composite unit. The hypothesis touched upon above, stating that the model 

reproduces observations, implies that propagated parameter errors combine coherently, accord-

ing to the behavior of the deterministic model equations. Correlations are thus essential com-

ponents of uncertainty, as they may attenuate or amplify contributions from different uncertain 
parameters by means of destructive or constructive interference. If such effects are not taken 
into account, uncertainty quantification may evolve into con artistry.

1.2. The preparation

In many respects and for good reasons, methods of uncertainty quantification (UQ) [5] are in 

their infancy. The need of viable and credible UQ methods is rapidly increasing, with higher 
utilization of advanced computations. The excess computational power at disposal for UQ 
is unfortunately not increasing nearly as rapidly as the total resources. The reason is simple. 

Most computational models are discretized in space and time, truncated, or simplified by 
neglecting minor but complicated contributions. Such approximations cannot be traced to 

lack of knowledge or ability, but are often required to enable computation. As soon as the 

resources increase, eliminating these model reductions as much as possible is most logical 

and desirable. Weather forecasting [6] illustrates the principle. Proper propagation of distur-

bances requires comparable resolution in space and time. Reducing the unit cell of analysis 

from 10 km × 10 km down to 5 km × 5 km to render more detailed forecasts increases the 

computational load no less than 24 = 16 times. Even so, the unit cell will still be larger than 

desired. Additional resources will therefore mainly be spent on improvements of the deter-

ministic model formulation in the future, leaving a relatively small fraction to be spent on 

improved UQ. However, with model samples that can be evaluated independently in differ-

ent computer kernels, the challenge of improved UQ by additional sampling translates into 
an economical issue. Then it does not compete with the advancement of computer architec-

ture required to solve the dependent deterministic equations.

UQ combines several advanced mathematical disciplines and can be applied to a plethora 
of disparate applications not only in technology and science, but also in econometrics and 

for risk assessment. This makes the subject exceedingly difficult to master, but also hard to 
understand and learn by studying examples. Physical modeling usually provides the basis 

for setting up the underlying deterministic model. Major simplifications as well as coarse 
assumptions are common. For instance, Navier-Stokes equations of fluid flow may require 
both physical and mathematical idealizations like continuous media and differentiability, as 
well as neglect of higher-order turbulence contributions. Already at this first stage, contribu-

tions to uncertainty are building up. Finite element methods (FEMs) discretize physical fields 
in space and time caused by fixed (solids) or moving (fluids) matter. Signal processing tech-

niques such as temporal sampling, digital filtering, and state space formulations for Kalman 
filtering and model prediction control convert infinite-dimensional continuous physical dif-
ferential models to finite systems of difference equations, suitable for computers. Numerical 

methods then provide the means for solving these equations, with maximum efficiency and 
minimum error. Preferably with known error estimates, which may be re-phrased in terms 
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of uncertainty in the proceeding UQ. Knowledge of computer science is needed for efficient 
programming and maintaining numerical precision throughout the calculation, but also for 

managing large complex software modules. The studied system may also exhibit critical 

properties. The chaotic nature of weather forecast models is one example. More than 50 years 

ago, Lorenz assessed an absolute upper prediction horizon of about two weeks [6]. Explained 

by “the butterfly effect” [6, p. 206], this limit is still believed to be accurate: Even the slightest 

possible change in initial conditions may render a monumental change in the forecast after 

some time, which clearly is a major complication for credible UQ. Understanding these pre-

paratory stages is crucial, as they accommodate many sources of uncertainty.

1.3. Overview

Uncertainty quantification can now be addressed. Statistics of all kinds of uncertain quantities 
are then propagated in two possible directions, as explained in Figure 2 (adapted from Ref. [7]).

Fundamentally, statistics of populations rather than finite samples drawn from them are propa-

gated, which avoids sampling variance, the principal complication addressed in mathematical sta-

tistics with statistical inference [2]. There are thus two generic types of uncertainty1 to some extent 

corresponding to accuracy and precision, respectively:

• Epistemic uncertainty, i.e., unknown and unpredictable systematic but repeatable errors 

due to lack of knowledge and imperfect simplifications.

1Errors are realized uncertainty. The uncertainty predicts the range of possible errors. Such errors are unknown, other-

wise we would eliminate them. Their analysis requires a concept like uncertainty.
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Figure 2. Uncertainty quantification (UQ) and model calibration, or inverse UQ. Identifying or matching the model 
against identification data often requires simplified surrogate models. The model should be checked or validated before 
it is utilized for prediction comprising a best estimate and its uncertainty.
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• Aleatoric uncertainty, i.e., non-repeatable errors of a statistical nature. Typically, the vari-

able outcome of finite random draws (sampling variance).

Applications of UQ are typically concerned with epistemic uncertainty due to imperfect 
modeling, calculation and signal processing, finite discretization (FEM) as well as inaccu-

rate boundary and initial conditions, etc. Mathematical statistics, on the other hand, focuses 

on aleatoric uncertainty due to finite statistical sampling. In the latter case, modeling has an 
entirely different character. The quantities of interest are usually not a result of a complex 
model implemented in a large computer program but rather directly observable, like mean 

and variance of some measure of performance, frequency, length, or response time. In that 
case, the uncertainty due to the variability of small observation sets presumably dominates 

over model errors.

1.4. Some common tools

Bayesian approaches [8] make the difference between epistemic and aleatoric uncertainties 
almost invisible. Generalizing observed frequencies of observation to also include other kinds 

of knowledge requires a shift of perspective from experimental testing, to the observer and 

his/her degree of belief. Since our belief rarely is complete or totally absent, this still has the 

appearance of probability, but is conceptually different. Nevertheless, belief is the enabler 
for unifying epistemic and aleatoric uncertainty consistently within the same framework 

of UQ. Our belief often refers to a model’s track record, or how it has performed in differ-

ent situations over a long period of time. That may be difficult to assess quantitatively, but 
could in principle be made with multimodel calibration. Only independent data sets/model 
results must be included, as dependencies will underestimate the uncertainty severely. Worth 

emphasizing is also that any piece of prior information available before the uncertainty is quan-

tified must reflect some kind of knowledge or experience. Any reduction of uncertainty due to 
a guessed prior is purely hypothetical and deceptive.

Random sampling reduces the difference between the practices of UQ and mathematical sta-

tistics even further by introducing sampling variance of finite random ensembles, making it a 
primary target to control in both fields. The basic motivation for random sampling is its sim-

plicity, while a severe drawback is the added sampling variance. Much larger ensembles than 

the computational power allows for may be required. The obvious work-around is to substi-

tute the full model with a much less demanding approximate surrogate model, which allows 

for excessive sampling. The surrogate is often affine, i.e., linear in uncertain parameters and 

obtained with traditional linear regression. Aleatoric sampling errors are then exchanged with 

presumably smaller epistemic ones. Alternatively, the sampling variance may be reduced 

by imposing deterministic components in the random sampling methodology, like stratified 
sampling, perhaps combined with latin-hypercube [9] or orthogonal sampling exclusion rules. 

It is indeed possible to extend these amendments of determinism into entirely deterministic 
sampling, as in the unscented Kalman filter [10]. The sampling variance is then completely(!) 

exchanged with sampling errors due to imperfections of the reproducible sampling rule [11]. 

Just knowing the modeling error is entirely reproducible is of great value when differential 
changes are of primary interest, as in product development.
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Model calibration or inverse UQ is an inverse problem usually requiring an implicit solution. 
The high complexity of the full model normally prohibits ubiquitous trial-and-error search 

and steepest descent methods like the Newton-Raphson method [12], to minimize the model 

prediction error. Just as for excessive random sampling, surrogate models are often utilized. 

In this case though, the iterative character of many inverse solutions requires even higher 

computational efficiency. The maximum likelihood method is perhaps the most common 
approach to inverse propagation of uncertainty. Virtually all methods require complete sta-

tistical information. That is a major issue since available information normally is incomplete. 

Just like Bayesian estimation can be invalidated by faulty prior distributions, inappropriate 

assumptions of unknown calibration data statistics may invest far too much credibility in the 

calibrated model, making it likely to fail any validation test. What is particularly detrimental 

is the ubiquitous assumptions of uncorrelated calibration errors. Allowance of incomplete sta-

tistical information in model calibration is therefore one of the most urgent tasks to address in 

future development of model calibration, to remedy overconfident faulty model predictions.
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