
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 7

The Impact of Bioinformatics on Vaccine Design and
Development

Ribas‐Aparicio Rosa María,
Castelán‐Vega Juan Arturo, Jiménez‐Alberto Alicia,
Monterrubio‐López Gloria Paulina and
Aparicio‐Ozores Gerardo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.69273

Abstract

Vaccines are the pharmaceutical products that offer the best cost‐benefit ratio in the pre‐
vention or treatment of diseases. In that a vaccine is a pharmaceutical product, vaccine 
development and production are costly and it takes years for this to be accomplished. 
Several approaches have been applied to reduce the times and costs of vaccine develop‐
ment, mainly focusing on the selection of appropriate antigens or antigenic structures, 
carriers, and adjuvants. One of these approaches is the incorporation of bioinformatics 
methods and analyses into vaccine development. This chapter provides an overview of 
the application of bioinformatics strategies in vaccine design and development, supply‐
ing some successful examples of vaccines in which bioinformatics has furnished a cutting 
edge in their development. Reverse vaccinology, immunoinformatics, and structural vac‐
cinology are described and addressed in the design and development of specific vaccines 
against infectious diseases caused by bacteria, viruses, and parasites. These include some 
emerging or re‐emerging infectious diseases, as well as therapeutic vaccines to fight can‐
cer, allergies, and substance abuse, which have been facilitated and improved by using 
bioinformatics tools or which are under development based on bioinformatics strategies.

Keywords: reverse vaccinology, immunoinformatics, structural vaccinology, 
computational strategies, vaccine
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1. Introduction

The success of vaccination is reflected in its worldwide impact by improving human and 
veterinary health and life expectancy. It has been asserted that vaccination, as well as clean 
water, has had such a major effect on mortality reduction and population growth [1, 2]. 

In addition to the invaluable role of traditional vaccines to prevent diseases, the society 
has observed remarkable scientific and technological progress since the last century in the 
improvement of these vaccines and the generation of new ones. This has been possible by 
the fusion of computational technologies with the application of recombinant DNA tech‐
nology, the fast growth of biological and genomic information in database banks, and the 
possibility of accelerated and massive sequencing of complete genomes [3–5]. This has aided 

in expanding the concept and application of vaccines beyond their traditional immunopro‐
phylactic function of preventing infectious diseases, and also serving as therapeutic prod‐
ucts capable of modifying the evolution of a disease and even cure it [3]. Vaccines are the 

pharmaceutical products that offer the best cost‐benefit ratio in the prevention or treatment 
of diseases. In that it is a pharmaceutical product, a vaccine development and production are 

costly and it takes years for this to be accomplished. Several approaches have been applied to 
reduce the times and costs of their development, mainly focusing on the selection of appro‐
priate antigens or antigenic structures, carriers, and adjuvants [6]. One of these approaches 

is the incorporation of bioinformatics methods and analyses into vaccine development. 
At present, there are many alternative strategies to design and develop effective and safe 
new‐generation vaccines, based on bioinformatics approaches through reverse vaccinology, 
immunoinformatics, and structural vaccinology [7]. This chapter provides an overview of 

the application of bioinformatics strategies in vaccine design and development, supplying 
some successful examples of vaccines in which bioinformatics has furnished a cutting edge 
in their development.

2. Reverse vaccinology

Reverse vaccinology is a methodology that uses bioinformatics tools for the identification 
of structures from bacteria, virus, parasites, cancer cells, or allergens that could induce an 
immune response capable of protecting against a specific disease [7].

This approach possesses many advantages over traditional vaccinology: it reduces time and 

cost in vaccine development; refines the number of proteins to be studied, facilitating the 
selection process; can identify antigens present in small amounts or expressed only at certain 

stages, which would hinder or prevent their purification; and allows for the study of noncul‐
tivable or risky microorganisms [3]

An important requirement for utilizing this methodology is the availability of genomic informa‐
tion of the pathogen under study and, in some instances, even the human or animal cell genome 

must be known (i.e., DNA vaccines and therapeutic vaccines). Once the genome sequence is 
obtained, it is possible to identify all likely proteins that could be expressed. For this purpose, 
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several software systems and programs identify all open reading frames (ORFs) that constitute 
the sequences expressing the majority of proteins [8–10].

The next step in reverse vaccinology is to determine several antigenic and physicochemi‐
cal properties that have been associated with good antigens. These characteristics must be 
analyzed for each protein in the proteome under study, employing different bioinformatics 
approaches to select the protein(s) with the best properties for testing through in vitro and 

in vivo assays, in order to demonstrate its safety and immunogenicity. With the best vaccine 
candidates, different types of vaccines can be designed and developed, for example: subunit, 
recombinant, and nucleic acid vaccines [11].

The first application of reverse vaccinology was to study Neisseria meningitidis to obtain a 
new subunit vaccine based on the genome study of this microorganism by means of bioin‐
formatics tools [12]. Thereafter, this technology has been used to study pathogenic agents 
including eukaryotic organisms and those involved in diseases transmitted by vectors [13], 

to design and obtain not only vaccines for humans but also for animals [5]. The majority of 

new vaccines against infectious diseases that have been developed with this technology are 
currently found in preclinical or clinical trial. However, it is important to mention that in 

some instances, the vaccine candidate obtained by this technology could fail as a good vaccine 
antigen, because it is identified based solely on computational probabilistic studies, and there 
are other factors that could interfere when this antigen is administered in a complete organ‐
ism. In addition, vaccine candidates identified by this technology are restricted to proteins or 
lipoproteins, in that they are encoded in the genome. By reverse vaccinology, it is impossible 
to identify carbohydrate or lipid antigenic molecules [3, 14].

Some of the important properties to detect good vaccine candidates are described as follows:

2.1. Protein cellular localization

Proteins are localized in different parts of the cell: in the cytoplasm, the cell membrane, or 
they can be secreted out of the cell and become extracellular. Molecules localized on the cell 
membrane or extracellularly are better antigens because they are more exposed to host cells, 
specifically to those related to the immune system; thus, they have a greater probability of 
generating a protective response [15]. In addition to the software that can predict these char‐
acteristics, there are protein databases that generate information about protein subcellular 
localization, such as LOCATE, LocDB, and eSLDB.

2.2. Adhesin properties

In an infectious process, the first contact of the microorganism with the host cells is through 
adhesins. Molecules with adhesin properties are vaccine candidates [16]. The probability of 
identifying an adhesin is calculated based on the frequency of amino acids, dipeptides, or 
homopolymers present in the protein, and the physicochemical characteristics of each amino 

acid that constitutes a protein: acidic, basic, neutral, hydrophilic, or hydrophobic. There are 
programs that analyze all of these characteristics, comparing them with those of adhesins that 
have been previously proven experimentally [17].
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2.3. Antigenicity

There are known sequences of antigens with good in vivo and in vitro immunologic inductions 

that are compared with each sequence of the proteome under study in order to search for sim‐
ilarities. In this case, it is probable that two proteins with similar sequences have comparable 
antigenic effects. Moreover, predictions of independent antigenicity alignment exist based on 
the physicochemical properties of amino acids [18].

2.4. Similarity

It is important to study the similarity between the sequences under study with molecules 
from the host that will receive the vaccine, as well as between the related etiological agents. 
Molecules with a high degree of similarity could generate two different effects: the first is 
undesirable because the antigen could cause autoimmune reactions; on the other hand, if the 
molecules are similar between other etiological agents, the vaccine could induce cross‐protection 
[19]. In the case of a vaccine against cancer, it is important to select molecules present in can‐
cer cells but absent in healthy cells. The similarity analysis can also be utilized to search for 
molecules with the same function, providing an idea of antigenicity and virulence [20]. It is 

important to predict these values because the main characteristic of a vaccine must be innocu‐
ous; in this way, if it is inferred that a protein can be antigenic but also toxic, the better course 
is not to use it.

2.5. Transmembrane helix

A transmembrane helix is a protein segment of 17–25 amino acids that conforms an 
α‐helix structure that spans through the membrane cell. Most of the time, vaccine candi‐
dates are expressed in biological systems that are different from the original source; in 
that case, the three‐dimensional (3D) structure of the protein could be changed or difficult 
to purify if it has a transmembrane helix, due to differences in membrane structure [21]. 

The low transmembrane helix number is a major characteristic for the selection of a vac‐
cine candidate.

According to the etiology of the disease under study, protein cellular localization, adhesin 
properties, antigenicity, lack of homology with human proteins to avoid the induction of a 

potential autoimmune response, and low or null transmembrane helix structures are the main 
properties that should be identified. This can be addressed by utilizing several computer pro‐
grams to analyze each of these properties and by bioinformatics tools for the screening and 
selection of vaccine candidates, according to their top feature values.

There are Websites and downloadable software that can be useful for a particular reverse 
vaccinology analysis, for example, NERVE, Vaxign, Jenner‐predict server, and Vacceed. In 
some cases, the proteome‐of‐interest can be uploaded, and in others the organism in a spe‐
cific database needed to be chosen; for this analysis, some characteristics about the agent and 
the host are required. In addition, there are databases with vaccine candidates already iden‐
tified or with complete information about vaccines, for example VIOLIN and MycobacRV 
(Table 1).
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Characteristic Description Software

Protein cellular localization • Psortb

• CELLO

• TargetP

• Cell‐PLoc

• LocDB

• LocTree 2/3

• MultiLoc2

Adhesin properties • SPAAN

• FungalRV

• MAAP

Antigenicity • VaxiJen

• Protegen

• EpiToolKit

• SVMTriP

Similarity • BLAST

Transmembrane helix • TMHMM

• TMpred

• THGS

• Sidekick

• HMMTOP

• SPLIT

• DAS

• Phobius

• CCTOP

• TMPad

Table 1. Main characteristics considered for vaccine candidate selection by reverse vaccinology.
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3. Immunoinformatics

The immunological system can be classified as cellular or humoral and, depending on the 
disease, it can be induced the expected immune response. If a vaccine that induces a cellu‐
lar response is needed, for example a tuberculosis vaccine [22] or a parasite vaccine against 

leishmaniasis [23], the software must search for antigens that can be recognized by the major 
histocompatibility complex (MHC) molecules present in T lymphocytes [4]. Software for this 

purpose include TEpredict, CTLPred, nHLAPred, ProPred‐I, MAPPP, SVMHC, GPS‐MBA, 
PREDIVAC, NetMHC, NetCTL, MHC2 Pred, IEDB, BIMAS, SVMHC, POPI, Epitopemap, 
iVAX, FRED2, Rankpep, BIMAS, PickPocket, KISS, and MHC2MIL. At their Websites, there 
are several options for search for MHC molecules as follows: for a specific species; type I 
or II, or even the allele(s) that will be employed for the prediction. The latter use different 
algorithms and some of these analyze the genome of the organism‐under‐study in order to 
identify new, probable MHC molecules.

On the other hand, if a humoral response is required, the software needs to identify antigens 
for B cells, for example, in the case of influenza virus or HIV [24, 25]. There is software that 

specifically searches for sequential epitopes for B cells, including BCPREDS, BepiPred, BEpro 
or PEPITO, ABCpred, Bcepred, IgPred, and BCEP. In addition, there are also Websites that, 
utilizing the 3D structure of a protein, can predict conformational epitopes for B cells, includ‐
ing the CEP, SEPPA, and DiscoTope Websites.

These software packages are based on computer training with the epitopes and nonepitopes 
previously identified, in order to provide values for new proteins and to predict whether or 
not it is an epitope. There are different techniques for this machine learning: position‐specific 
scoring matrices (PSSMs), support vector machines (SVMs), hidden Markov models (HMMs), 
or artificial neural networks (ANNs). Each technique possesses different advantages and 
accuracy levels [26].

To achieve an analysis, the “immunome” of an organism is required; this includes all of the 
genes and proteins of cells that take part in its immune response. The study of all of the reac‐
tions that take part in the immune response is known as “immunomics” and it is specific 
for each organism; therefore, it is important to perform the study with information of the 

recipient organism. There have been many advances in the knowledge of immunomics using 
molecular biology and other throughput techniques, in order to understand the mechanisms 
of the immune system [27].

When immunomics and bioinformatics merged, a new science‐denominated immunoinfor‐
matics was created, with the purpose of analyzing all of the information of an organism’s 
immunomics and of making predictions of immune responses against specific molecules [28]. 

Websites already exist that present databases with antigens, with their epitopes identified 
in several organisms, and other immunological information, for example, IEDB, SIFPEITHI, 
IMGT, MHCBN, AntiJen, Dana‐Farber Repository, and AgAbDb.

Once an antigen with the expected response has been identified, immunoinformatics can pre‐
dict whether a region of an antigen, which usually is a protein, can generate a best stimulus 
by itself. If a protein has one epitope, this can be employed in a subunit vaccine and can be 
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combined with other epitopes of different organisms in order to generate a polyvalent vaccine, 
reducing the cost of the formulation. The epitopes can be synthesized artificially or obtained 
with molecular biology tools. This renders a vaccine safer, not only in its formulation but also 
in its production process, because there is no risk of the presence of infectious organisms [29].

With the purpose of determining epitopes, the proteins are analyzed to identify hydrophilic 
regions. The tertiary structure of a protein is based on the interactions between the amino 
acids and the medium, that is, the region with hydrophilic amino acids is exposed to the 

exterior. In the opposite case, the hydrophobic amino acids are located in the center of the 
structure. If this protein interacts with immune cells, it is more probable that contact will be 
generated with the hydrophilic region, a place localized in the epitope [28].

An additional step can be added, that is the prediction of the stability of peptide binding to 
MHC, because some epitopes can be attached with greater force and affinity, making activa‐
tion of the immune system more probable. For this purpose, software has been created such 
as NetMHCStab, which utilizes artificial networks for the analysis [30].

In the case of cancer vaccines, antigens present in B cell have been developed that can help in 
the cancer cell elimination process. Additionally, antibodies against regulatory T‐cells have 
been found with aid in the regression process of the tumor [9, 31]. The latter opens the way in 
the search for epitopes that could be used in vaccines, allowing better and faster elimination 
of the disease. For an allergy vaccine, other predictors, such as Allermatch and AlgPred, can 
be employed with the purpose of identifying proteins with potential allergenicity.

Other software developers have addressed the analysis of the complete immune response 

against specific antigens, such as C‐ImmSim. In this case, the software uses different algo‐
rithms for each step; at the end, a series of graphic representations of each cell type can supply 

an idea of whether the response is sufficient to protect against a disease [32]. However, the 

general panorama is limited because this analysis implies the interaction of many cells and 
molecules and, in many cases, we do not yet know how these can interact with each other in 

a specific disease.

4. Structural vaccinology

Structural vaccinology focuses on the conformational features of macromolecules, mainly pro‐
teins that make them good candidate antigens. This approach to vaccine design has been used 
mainly to select or design peptide‐based vaccines or cross‐reactive antigens with the capabil‐
ity of generating immunity against different antigenically divergent pathogens. The initial 
stage in bioinformatics analyses involves linear epitope prediction, taking hydrophilicity as 
the major characteristic for locating epitopes. However, considering these predictions as the 

sole factor in determining the potential of a sequence to be immunogenic is risky. For example, 
the predicted epitopes could be sterically hindered by nearby amino acids, or if a peptide vac‐
cine is being developed, the resulting peptide could adopt a conformation that differs from the 
peptide within the context of a whole protein, resulting in different conformational epitopes. 
In fact, available structures from nonoclonal antibodies (Mab) complexed to proteins have 
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demonstrated that, in the majority of cases, Mab recognize conformational rather than linear 
epitopes [33].

Many epitope‐based vaccines attempt to elicit an antibody‐mediated immune response that 
could neutralize the activity of toxins or pathogen receptors. Currently, there are many bio‐
informatics programs that predict protein epitopes. However, the majority of these programs 

rely only on the hydrophobicity or the hydrophilicity of amino acids. The main drawbacks 
in this are that many predicted epitopes are buried within the protein; thus, they would not 
be detected by the antibodies. In addition, the predicted epitopes are linear, leaving out con‐
formational epitopes. In these cases, structural information can be helpful for selecting the 
epitopes that are exposed to the solvent and that are proximal to functional sites of the tar‐
get protein, such as catalytic pockets or receptor binding pockets, or for detecting confor‐
mational epitopes on the surface of the target protein. Structural information is utilized to 
map antigenic epitopes to detect conformational features that could affect immunogenicity, 
such as the structural stability of proteins or the solvent exposure of candidate peptides, and 
to select antigenic regions shared by proteins of different pathogens that otherwise (i.e., by 
multiple alignments or epitope mapping) could not be evident. The approach that has been 
employed to develop vaccines is to perform several bioinformatics analyses at both at the 
sequence and structure level. For example, Cornick et al. [34] developed universal vaccine 

candidates against serotype 1 Streptococcus pneumoniae considering epitope prediction and 

structure modeling.

Protein flexibility can lead to vaccine failure due to high conformational variations that can 
avoid recognition by cell receptors or antibodies; for example, the failure of vaccines aimed at 
the HIV has been attributed to high flexibility of the globular head of gp120 [33, 35]. This is a 

concern, especially with peptides, which are usually more flexible and disordered than when 
they are found in a complete protein context. Bioinformatics predictions of flexibility can be 
attained from amino acid sequences (through structural alphabets) or from a 3D structure. 
High‐performance bioinformatics tools such as molecular dynamics (MD) simulations can be 
employed to predict the stability of proteins or peptides [36]. This tool can be used to select 
the appropriate size of a peptide in order to render its stability and to introduce stabilizing 
mutations or chemical modifications that minimize flexibility, hence yielding better vaccine 
candidates than simple peptides.

Molecular docking is another bioinformatics tool that can be utilized in the selection and 
design of target antigens. It consists of complexing two molecules (protein‐protein or pro‐
tein‐ligand) with best shape complementarity and minimal binding energy. In the field of 
structural vaccinology, molecular docking can be employed to predict the binding of epitopes 
to antibodies or to MHC receptors. Candidate antigens can be evaluated through the binding 
energy of the complex, and even mutations can be introduced to improve binding, but main‐
taining the specificity of the immune response [37].

Alam et al. [38], in a preliminary report, designed peptides as vaccine candidates against the 

Zika virus. They predicted MHC‐I restricted epitopes, and then performed docking of these 
peptides with human leukocyte antigen (HLA) receptors to confirm their predictions. Toxicity 
analyses included allergenicity prediction. Another study proposed a multivalent vaccine 
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with fused peptides against Staphylococcus aureus. Again, epitope prediction was followed by 
peptide structure prediction, docking with TLR2, molecular dynamics simulations to assess 
the stability of the complexes, and finally, allergenicity prediction [39].

Care should be taken while designing peptide‐based vaccines because the resulting peptide 
could be toxic or allergenic. Several bioinformatics studies perform toxicity or allergenicity 
prediction on peptide candidates to rule out adverse effects in the resulting candidate vaccine 
[38, 39].

Bioinformatics analyses have been performed to improve the functionality of antibodies. One 
study modified the Fc portion of antibodies to increase binding of proteins to the antibodies’ 
Fc. This approach is relevant to improve the functionality of designed antibodies, to study 
immune response evasion by some pathogens, and in biotechnology to purify antibodies or 
proteins [37].

One premise of bioinformatics is to detect epitopes that can be recognized by antibodies, but 
modeling antibody‐antigen complexes has been difficult because of the mobility of protein 
loops in the Fab region of antibodies [40]. One way to avoid this drawback is the strategy pre‐
sented by Koivuniemi et al., which involved homology modeling to deduce the structure of 
the antigen and the antibody, docking, and molecular dynamics simulations [41] (Figure 1).

Genome

Transcriptome

Proteome

Tridimensional structure

Epitope

Interac�on with an�bodies/receptors

Stability of interac�on

Conserva�on

Strain/species coverage

Databases

Data mining

Bioinforma�cs tools

Figure 1. Path to antigen selection and validation. Databanks are created with experimental data from pathogens that 
can originate in the lab or be gathered through databases. Protein or nucleic acid sequences can be aligned to detect 
conservation and strain or species coverage. Three‐dimensional (3D) structure information can be obtained from 
databases or inferred from bioinformatics analysis. Several predictions can be mapped into the structure, such as epitope 
prediction or amino acid conservation. Molecular docking tools can be used to establish interaction between two or 
more molecules (antibodies and cell receptors). Finally, the stability of these interactions can be assessed through energy 
calculations or molecular dynamics simulations.
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5. Special cases: vaccines against infectious and noninfectious diseases

5.1. Vaccines against infectious diseases

5.1.1. Tuberculosis

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which is the most 

virulent and transmissible bacterium of the genus; however, it is a microorganism that is dif‐
ficult to study because of its requirements and slow growth. The number of new cases world‐
wide rose to 10.4 million [42]; this high incidence rate is based on several factors, and one of 
the most important factors is the ineffectiveness of the vaccine used at present: the BCG. Thus, 
why many working groups are investigating new vaccines that can improve the level of pro‐
tection against this disease, and one of the tools utilized is reverse vaccinology [10].

One strategy applied for vaccine design is to identify the structures present only in M. tuberculosis  

and absent in Mycobacterium bovis BCG [43]. In addition, the vaccine candidates studied pre‐
sented the characteristics described previously, such as nonhuman homology, adhesins [44], 

secreted or membrane structures [45, 46] with low transmembrane helix, and in addition, 
the proteins expressed in the latent or active state of the microorganism [47]. The immunity 

sought is a protective response that is cellular. Therefore, immunoinformatics is based on the 
study of T‐cell epitopes [22, 48–50].

Several candidates and epitopes have been found with different software. Some of these have 
been expressed and proven in vitro and in vivo, demonstrating their immunogenicity and pro‐
tective effect. Among these are highlighted the ESAT‐6, PE and PPE protein family group [51], 

and the Ag85 protein family, which obtained better immune response than the BCG vaccine 
in an animal model [43].

5.1.2. Influenza

The design of influenza vaccines is challenging due to the influenza virus’s antigenic plas‐
ticity. Influenza viruses evade the immune response through antigenic drift and antigenic 
shift [52], rendering a long‐lasting immune response very difficult. Current influenza vaccines 
contain hemagglutinin (HA) and neuraminidase (NA) as main antigenic components, usually 
having one type‐B strain, and one H1 and one H3 subtype strain [53, 54]. Predicting the com‐
position of next‐year’s vaccines relies on epidemiological data, although evolutionary models 
can aid in predicting antigenic drift, improving vaccine design [55].

Influenza HA recognizes cell receptors and mediates membrane fusion between the virus 
and the target cell. The globular head of HA contains the receptor binding site and the major‐
ity of the antigenic sites; consequently, this region is also the most variable. The stem region 
contains the fusion peptide and, although it previously was not considered a target for vac‐
cine development, the discovery of neutralizing antibodies aimed at this region revealed its 
potential in vaccine design [52, 56]. Several conserved regions have been described in the 
stem region of HA [57], which make a universal vaccine a possibility. It has been found that 
neutralizing antibodies can bind to intact trimers, confirming the possibility of a universal 
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vaccine aimed at the HA stem. In fact, engineered HA stem antigens have been shown to elicit 
immune responses against heterosubtypic challenge models and serve as a proof‐of‐concept 
that these vaccines work [58].

Given the high cooperation, hence availability, of influenza viral protein sequences, there are 
open databases such as OpenFluDB [59] or the Influenza Research Database [60] that help in 

the designing of influenza vaccines. EpiCombFlu is a database that aids in defining conserved 
epitopes across influenza strains that can be combined to maximize strain coverage. Analysis 
of these sequences has led to the identification of conserved motifs among influenza strains 
that can be targets in vaccine or inhibitor design [61].

5.1.3. Chikungunya fever

For CHIKungunya Virus (CHIKV), there are some vaccine candidates in clinical trials, but 
there is no licensed vaccine to date. Efforts include the development of vaccines of inactivated 
virus, live attenuated virus (LAV), and virus‐like particles (VLPs). In preclinical studies, LAV 
and VLP vaccines have been promising, but during clinical trials, they have shown inad‐
equate immunogenicity and residual virulence, for example, the risk of production of chronic 
rheumatism seen for LAV [62]. However, vaccines should be able to induce high levels of 
neutralizing antibodies, ideally with only one dose, LAV remain good candidates for which 
attenuation strategies are of central importance.

Because the CHIKV E2 glycoprotein is thought to interact with cellular receptors and has 
demonstrated to elicit neutralizing antibodies, generating protection against lethal challenge 
in mice [63], it has been extensively studied. Kam et al. [64] mapped its epitope‐containing 
sequences using experimentally infected macaque antibodies. Their results revealed that one 
of four recognized regions mapped onto the surface of E2, that the majority of the epitopes 
clustered in the middle of the protein, and that antibody recognition of E2 changes through‐
out the disease course in experimentally infected macaques may be due to the spatial posi‐
tions of the B‐cell epitopes on the native form of the E1/E2 glycoprotein complex. As part of 
the study, these authors included computational modeling utilizing the structural data of the 
E2 retrieved from PDB and visualizing the results using UCSF CHIMERA software.

In the design of an LAV for CHIKV, Gardner et al. [65] considered three known facts: that 

the substitution for positively charged residues in E2 that confer enhanced, Heparan sulfate 
(HS)‐dependent infectivity in vitro is a common phenomenon among cell culture‐passaged 
strains of some CHIKV‐related viruses; that these mutations can be selected from within only 
a few serial passages in vitro, and that viruses whose in vitro infectivity is enhanced by artifi‐
cial HS attachment/entry are typically attenuated/avirulent in vivo. In the case of CHIKV, an 
LAV candidate, attenuated by serial passages in MRC‐5 fibroblasts, the authors predicted an 
amino acid substitution at E2 position 82, which was highly dependent upon ionic interaction 
with HS for infectivity. Afterward, this mutation demonstrated the attenuation two strains of 
CHIKV in vivo. Based on this fact [59], E2 mutations were selected that confer HS dependence 
on infectivity by serial passage of wild‐type CHIKV‐LR on different cell types in vitro. Then 

they introduced these mutations individually into CHIKV and identified a panel of E2 muta‐
tions that confer reduced virulence in a murine model. In this work, computational modeling 
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played an important role because it helped to explain the effect of the single amino acid muta‐
tions on altering the electrostatic profile of the E2 glycoprotein and increasing net positive 
charge in two exposed regions.

5.1.4. Zika virus disease

Zika virus, a positive single‐stranded RNA virus transmitted by mosquito bites, is currently 
spreading worldwide and there is no available commercial vaccine. Several candidates are 
undergoing preclinical and clinical studies, and some platforms being investigated include 
inactivated, subunit/peptide, DNA‐based, live‐attenuated, and vectored vaccines. For a vac‐
cine against this pathogen, multiple bioinformatics strategies are being exploited as an essen‐
tial tool; the majority of studies involve in silico predictions to find the best epitopes. Dikhit 
et al. [66] found nine promiscuous highly conserved class I restricted epitopes among capsid 

1, the envelope, and NS2A, NS4B, and NS5 viral proteins. Then, the tertiary structure of the 
selected epitopes was modeled using PEPstr and finally there was docking to HLA calculation 
with PatchDock.

Dar et al. [67] utilized ProPred1 to predict antigenic epitopes for HLA class I, as well as 
48 antigenic epitopes for HLA class II employing ProPred immunoinformatics algorithms. 
These authors found 21% of MHC class I binding epitopes among NS5 viral proteins, fol‐
lowed by the envelope (17%). For MHC class II, NS5 contained 19% of predicted epitopes, 
and 17% were in the envelope, 17% in NS1, and 17% in NS2. Additionally, they obtained 
the antigenicity score for each predicted epitope using the VaxiJen 2.0 tool. Ashfaq and 
Ahmed are other researchers who used ProPred1 and ProPred, but focused in the enve‐
lope protein, finding two highly antigenic candidates among T‐cell epitopes. They also 
performed a molecular docking to study the interactions of B‐cell epitopes with HLA‐B7 
[68].

Another bioinformatics‐based study is that of Mirza et al. [69], in which the authors pre‐
dicted antigenic B‐cell (IEDB) and CTL epitopes (NetCTL.1.2 server). They determined, by 
in silico studies, surface accessibility, surface flexibility, hydrophilicity, homology modeling 
(MODELLER ver. 9.12, CHARMM, WhatIF, PROCHECK, Verify 3D), and structure‐based 
epitope prediction for E protein, NS3, and NS5. They performed molecular docking of the 
ZIKV‐E protein with HLA‐A0201, of the ZIKV‐NS3 protein with HLA‐B2705, and of the 
ZIKV‐NS5 protein with HLA‐C0801 (PatchDock rigid‐body docking server, FireDock server). 
Finally, these authors investigated the stability of the docked peptide‐MHC I protein com‐
plexes by performing Molecular Dynamics (MD) simulations (AMBER 12 simulation pack‐
age) [69].

An important aspect in the design of a vaccine is the study of the virus’s molecular biology, 
its proteome, and the genotypes. Sun et al. reported such data, to our knowledge for the first 
time, using new computational methods for annotation of mature peptide proteins, geno‐
types, and recombination events for all ZIKV genomes [70]. In an effort to aid in the develop‐
ment of vaccines and therapeutic drugs, an integrative multi‐omics platform, ZikaVR (http://
bioinfo.imtech.res.in/manojk/zikavr/) was created by Gupta el at.. This platform contains 
genomic, proteomic, and therapeutic information about the Zika virus [71].
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5.2. Vaccines against noninfectious diseases

5.2.1. Vaccines to treat addictions

In the search for a vaccine to fight drug abuse, cocaine, nicotine, and methamphetamines are 
some of the main targets; however, to date there are, to our knowledge, no US: Federal Drug 
Administration (FDA)‐approved vaccines. The development of such products has been hin‐
dered by the need of a carrier protein and an adjuvant to combine with haptens of the drugs 
to elicit the necessary antibody levels expected to interfere with the transport of the drug to 
the Central Nervous System (CNS), thus with the expected effect [72].

Kimishima et al. have explored tetanus toxoid (TT), the bacterial flagellin FliC, alum, and 
CpG (cytosine‐phosphate‐guanine oligodeoxynucleotide) in the development of an antico‐
caine vaccine. TT is used as a carrier; FliC acts as a carrier protein, and additionally it has 
been demonstrated that it stimulates toll‐like receptor 5 (TLR5), therefore inducing myeloid 
differentiation factor 88 (MyD88), which renders a TH2 response to predominant production 
of IgG1 and no cytotoxic T lymphocytes (CTL). CpG (a B‐class OligoDeoxyNucleotide [ODN]) 
motifs can be used as activators of TLR9 to promote a TH1‐type immune response, stimulat‐
ing B‐cell immune responses to generate IgG2a and CTL [73].

Lockner et al., in a first attempt, conjugated GNE (a cocaine hapten) with a recombinant FliC, 
utilized in silico modeling and computational analysis of the recombinant protein to ensure 
its structural integrity and conservation of the binding to TLR5; by Modeler, they studied the 
homology of the recombinant flagellin, as well as the number of lysines per domain and rela‐
tive solvent accessibility with and without GNE cocaine haptens present. Their computational 
results agreed with those used for experimentation since then in a TLR5 reporter assay: the 
modified flagellin protein still activated TLR5 when the hapten density was <10 GNE per FliC. 
Finally, the authors showed that cocaine‐flagellin conjugates induced, in a dose‐dependent 
model, the production of anticocaine antibodies in mice, improving the response with the 
adjuvant alum [73, 74].

On the other hand, as they observed in prior experiments in which they conjugated 
GNE (a cocaine hapten) with FliC, TLR5 activation was attenuated at higher hap‐
ten densities (i.e., above ∼10 GNE per flagellin). Consequently, they induced a muta‐
tion in the flagellin gene (mFliC), which could protect the TLR5 binding interface against 
covalent modification with the bulky GNE hapten, thus potentially preserving the ability of 
the modified flagellin to activate TLR5 independently of hapten densities. mFliC consisted 

of a mutation of the 10 lysine residues within the D0 and D1 domains of wild‐type FliC (as 
well as one additional lysine residue previously introduced through cloning) to arginine 
residues [73]. Again, bioinformatics was necessary to assess the secondary structure and 
MHC‐II binding predictions for FliC and mFliC, employing the PSIPRED (http://bioinf.
cs.ucl.ac.uk/psipred/) method and the external software from IEDB (http://www.immuno‐
epitope.org/), respectively [74].

The computational results for MHC‐II binding and hapten presentation revealed that the FliC 
conjugate was better than mFliC; these results indirectly correlated with those conducted by 
enzyme‐linked immunosorbent assays (ELISA) and radioimmunoassays (RIA). However, 
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because FliC and mFliC exhibited poor efficacy as carrier proteins when comparing two for‐
mulations, GNE‐FliC + CpG and GNE‐TT + CpG, through a hyperlocomotion test and analy‐
sis of cocaine in blood, where GNE‐TT + CpG had best efficacy, the authors proposed the 
investigation of monomers of FliC instead of the polymeric form utilized [74].

5.2.1.1. Allergies

Allergies comprise another area where vaccine (specific immunotherapy (SIT)) investigation 
is conferred due to the association of allergy with asthma and anaphylaxis. Some common 

allergies are caused by cat, peanut, and cockroach allergens, with the specific immunother‐
apy (SIT) effective, but sometimes associated with IgE‐dependent adverse events. In allergies, 
computational approaches have been applied to find T‐cell epitopes to target allergen‐specific 
T cells, thus improving the safety of the immunotherapy.

In 2011, Worm et al. performed a clinical study administering the ToleroMune cat vaccine 
(short synthetic peptide sequences from the major cat allergen Fel d 1) to 66 subjects with 
cat allergy. The authors identified each peptide‐MHC interaction by using physical binding 
assays and analyzed these in silico with the immune epitope database (www.immuneepitope.
org/); in vitro, the individual peptides and the vaccine were at least 1000‐fold less able to 
induce basophil histamine release associated with adverse effects than the native allergen. 
The vaccine administered intradermally (i.d.) or subcutaneously (s.c.) showed no serious 
adverse events (SAEs) during the study and no subject withdrew from the latter due to an 
adverse event. Thus, the vaccine was safe and well tolerated [75].

Another example of research to improve safety comprises the work of Pascal et al. for the 
treatment of peanut allergy, which presents symptoms ranging from mild oropharyngeal 

pruritus to life‐threatening anaphylaxis, considerably compromising the patient’s quality of 
life. Ara h 1, Ara h 2, and Ara h 3 include the three major peanut allergens, although IgE 
antibodies to Ara h 2 correlate most closely with clinical reactivity, and in vitro Ara h 2 and 
its homologue, Ara h 6, are more potent inducers of basophil degranulation than Ara h 1 
and Ara h 3. Because conventional s.c. immunotherapy with crude peanut extract entertains 
a high risk of anaphylaxis and since peptides have been successful in the desensitization of 
patients to cat‐allergy and bee venom‐allergy, an alternative is the use of peptide fragments 
that retain immunogenicity, but that are of insufficient length to cross‐link allergen‐specific 
IgE on mast cells and basophils. In addition to proliferation assays utilizing peripheral blood 
mononuclear cells (PBMCs) from peanut‐allergic children and Ara h 2 peptides, Pascal and 
colleagues predicted, to our knowledge for the first‐time, epitopes in a food‐allergy through 
the artificial neural network‐based alignment (NN‐align) method NetMHCIIpan‐2.0. Their 
objective was to analyze additional theoretical peptides that are not included in the prolif‐
eration assays, finding that both strategies, in vitro and in silico, rendered consistent results; 

therefore, they were able to select peptide candidates for the development of a peanut allergy 
vaccine [76].

Regarding allergy to cockroaches, there are some research studies that have followed the 

in silico prediction of B‐cell, T‐cell, and IgE‐binding epitopes in a first stage to propose a  vaccine 
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formulation. Chen et al., Yang et al., and Tong et al. are members of a workgroup that studied 
this allergy by means of in vitro and in silico approaches. The allergens analyzed were Per a 6 
and Bla g (found in Periplaneta americana and Blattella germanica, respectively) [77–79].

Chen et al. employed three immunoinformatics tools: the Protean™ system (DNAStar, Inc., 
Madison, WI, USA); the bioinformatics predicted antigenic peptides (BPAP) system (http://
imed.med.ucm.es/Tools/antigenic.pl), and the BepiPred 1.0 server (http://www.cbs.dtu.
dk/services/BepiPred/), which utilizes four properties, including hydrophilicity, flexibil‐
ity, accessibility, and antigenicity as parameters for the prediction of B‐cell epitopes. After 
a consensus of the three bioinformatics tools, these authors selected the final potential 
epitope regions (regions whose consensus epitope result was 67 or 100%) to develop a vac‐
cine. Additionally, through the NN‐align method NetMHCIIpan‐2.0 (http://www.cbs.dtu.
dk/services/NetMHCIIpan/) for HLA‐DR alleles and NetMHCII‐2.2 (http://www.cbs.dtu.
dk/services/NetMHCII/) for HLA‐DQ alleles, they found strong and weak binders [77]. In 

2016, Yang et al. and Tong et al. predicted, using the same strategy, B‐ and T‐cell peptides 
belonging to Per a 9 and Per a 10 (two major allergens as assessed by enzyme‐linked immu‐
nosorbent assays (ELISA) but, in order to obtain substantial quantities of these allergens 
for use in functional studies, they cloned and expressed them in an Escherichia coli system 

[78, 79]

5.2.1.2. Cancer

Since T cells educated in the thymus do not recognize mutated antigens expressed in cancer 
cells, there is no negative selection, and these neoantigens are ideal targets for therapeutic 

vaccination; furthermore, they are not present in healthy tissue. On the other hand, advances 

in next‐generation sequencing (NGS) permit the sequencing of genomes, exomes, or tran‐
scriptomes within hours. Therefore, they investigated the mutanome (the tens‐to‐hundreds of 
somatic nonsynonymous mutations) in order to select the specific targets for the recognition 
by cytotoxic and helper T cells with antitumor activity. The complexity of some experimental 
tools such as mass spectrometry hampers its usefulness in the selection of targets in a clinical 

setting where personalized therapy is needed. In this context, because it is not possible to ana‐
lyze all of the mutations, bioinformatics addresses this problem and has become important in 
the selection of targets and in their prioritization [80].

An example of the success of in silico predicted mutations is the study of Castle et al., where 
the authors, applying thresholds for MHC class II binding prediction and mRNA expres‐
sion levels, without further validation by immunogenicity testing, were able to enrich immu‐
nogenic MHC class II‐restricted epitopes. They obtained efficient and sustained control of 
advanced tumors in mice [81].

Although there are successful in vitro and preclinical studies that initiated by utilizing com‐
putational approaches, the majority of algorithms predict the affinity of peptide binding to 
MHC molecules, which may not correlate well with their immunogenicity or may not predict 
peptides that are not generated and presented. Moreover, some immunogenic ligands may 
escape detection. Additionally, in general in silico prediction of ligands for MHC II is less 
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accurate than for MHC molecules. Because the immunogenicity of predicted peptides has 
been reported to correlate better with peptide‐MHC complex stability, the use has been pro‐
posed of biochemical methods to reduce the number of in silico predicted MHC ligands and 
to generate data that helps in the training of prediction algorithms to validate peptide bind‐
ing predictions. Some biochemical methods include peptide rebinding (referred to as iTopia), 
peptide‐rescuing, and refolding for MHC I peptide binding validation, and peptide‐driven 
refolding for MHC II [82].

Another approach to circumvent the limitations of the binding prediction for MHC mol‐
ecules is molecular docking, a structure‐based method that has been tested on both pep‐
tide‐MHC class I and II complexes. This method can be applied to previously predicted 
peptides and is expected to improve prediction accuracy in order to identify the best MHC 
class I and II binders. Following this strategy, in a research for vaccine candidates against 
breast cancer, predicted discontinuous B‐cell epitope peptides using PEPOP for the first 
time, then the 3D structure of epitope‐based peptides by PEP‐FOLD server, and their 
theoretical physicochemical properties utilizing the Prot Param algorithm, and finally, 
with.pdb files of two class I and seven class II MHC‐peptide complexes from the protein 
data bank, perform molecular docking through the genetic optimization for ligand dock‐
ing (GOLD) 5.4. After virtual screening, they confirmed a predicted peptide agreement 
between their docked results and previous experimental results (i.e., the immunogenicity 
of this peptide was confirmed in vivo studies), thus proposing molecular docking as an 
additional technique to improve the selection of peptide candidates for cancer vaccines 
[83].
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