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Abstract

In spite of developments of neonatal intensive care medicine, it is still difficult or impos‐
sible to treat several inherited genetic disorders using conventional pharmacological 
methods. Gene therapy is a promising alternate approach for treating a variety of genetic 
disorders. By the time the patient reaches adulthood, however, it is often too late for effec‐
tive treatment. But in several of these cases, neonatal gene therapy appears potentially 
useful against inherited disorders that are not obviously treatable through any other 
methods. This chapter describes the strategy for neonatal gene therapy for inherited 
disorders and presents preclinical neonatal gene therapy data for two inherited disor‐
ders, metachromatic leukodystrophy and hypophosphatasia. We also discuss the utility, 
advantages, problems and potential of neonatal gene therapy for inherited disorders.

Keywords: neonatal gene therapy, AAV vectors, metachromatic leukodystrophy, 

hypophosphatasia

1. Introduction

Although there have been significant advances in neonatal intensive care medicine, several 
neonatal disorders remain major causes of mortality and morbidity. Consequently, there is an 
urgent need for development of new safe and effective therapies to improve the outcomes of 
these intractable and devastating neonatal disorders. Gene therapy is an exciting and promis‐

ing approach to treat many diseases for which there are still no effective therapies. To date, 
more than 2400 clinical trials of gene therapy protocols have been attempted in effort to treat 
various genetic diseases as well as many types of cancers and infectious diseases (http://www.
abedia.com/wiley/continents.php). The results of preclinical studies suggest that neonatal 
gene therapies represent potentially effective treatments for currently intractable neonatal 
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disorders [1–6]. However, although neonatal gene therapies have several advantages over 
similar therapies used in adult patients, there is as yet no clinical protocol for use of gene 
therapy in newborn infants. This chapter describes a strategy for the use of neonatal gene 
therapy in the treatment of inherited disorders and presents preclinical neonatal gene therapy 

data for two inherited disorders, metachromatic leukodystrophy (MLD) and hypophosphata‐

sia (HPP). We also discuss the utility, advantages, problems and the potential of neonatal gene 
therapeutic approaches for the treatment of inherited disorders.

2. Adeno‐associated virus‐mediated gene transfer to neonate

Among the numerous viral and nonviral vectors that have been developed to deliver genes of 
interest into target cells, adeno‐associated virus (AAV) vector has emerged as a particularly prom‐

ising tool for gene delivery, thanks to its safety (AAV is not pathogenic) and its ability to transduce 
nondividing cells [7–9]. We are now using several AAV vector serotypes (mainly 1–12), depend‐

ing on the target [10–13]. Figure 1 shows the results after intravenous injection into  neonatal 

Figure 1. Systemic intravenous injection of AAV vectors into neonatal mice. (A) Approximately 5.0 × 1011 vector genomes 

(vg) of recombinant AAV vectors encoding the luciferase gene (AAV/Luc) (serotype 1, 8, 9) were injected into the external 
jugular vein of neonatal mice using a syringe with a 29‐G needle. Bioluminescent images of mice were obtained using a 
Xenogen IVIS imaging system 3 days and 2, 4, 8, 12 and 16 weeks after administration. Color scale bar indicates radiant 
efficiency (photons s−1 cm−2 steradian−1 per µW cm−2). (B) Radiant efficiency of serotype 1 (blue), 8 (red), and 9 (green) 
AAV vectors injected mice was quantified. (C) Approximately 5.0 × 1011 vg of AAV vectors encoding green fluorescent 
protein (serotype 1, 8, 9) were injected into the external jugular vein of neonatal mice. Sixteen weeks after injection, liver, 
heart and muscle were stained with anti‐GFP antibody.
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mice of AAV vector serotypes 1, 8 and 9, harboring the luciferase gene. Expression of luciferase 
was detected within 3 days and continued for more than 16 weeks with no decrease in expres‐

sion. Serotype 9 mediated the highest expression during the observation period (Figure 1A, B). 
In addition, using an AAV vector encoding green fluorescent protein (GFP), we determined that 
the organs most efficiently transduced are the liver, heart and muscle (Figure 1C). Moreover, 
although transduction efficiency was not as high, the central nervous system (CNS) was also 
transduced after intravenous injection of AAV vector, which apparently passes through the 
blood‐brain barrier (BBB) [14] in neonatal mice [15]. Thus, a systemically administered AAV vec‐

tor was able to transduce several important target organs in neonatal mice, including the CNS, 
and mediate expression of a gene of interest for a prolonged period of time.

3. Advantages of neonatal gene therapy

Systemic gene transfer to neonates has several advantages over treatment of the adults 
(Table 1). First, as mentioned above, neonatal gene therapy has the potential to overcome the 
limitation imposed by the BBB on treating genetic disorders of the CNS. Because the BBB is 
developmentally immature during the perinatal period, AAV‐mediated neonatal gene therapy 
is a highly promising strategy for treating genetic neurological diseases. Second, because the 
immune system is immature, neonates are immunologically tolerant of the transgene and/or  
viral vector [16–18]. Immune rejection of the transgene product by neutralizing antibodies 
is a severe problem for gene therapy in adults. Third, treatment administered soon after 
birth may enable prevention of early‐onset genetic disease. Finally, neonates can be effec‐

tively treated with a smaller amount of viral vector than adults. Using smaller amounts of 
viral vector is superior with respect to both safety and cost. Taken together, these advan‐

tages make systemic neonatal gene therapy a promising method for treating systemic 
genetic diseases.

4. Application of neonatal gene therapy

4.1. Neonatal gene therapy for metachromatic leukodystrophy

Metachromatic leukodystrophy is an inherited, autosomal recessive lysosomal storage dis‐

ease (LSD) caused by a deficiency in the lysosomal enzyme arylsulfatase A (ASA), which 

• Penetrates the blood‐brain barrier

• Induces immune tolerance

• Prevents early‐onset genetic diseases

• Enables the use of smaller amounts of vector

Table 1. Advantages of neonatal gene therapy.
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catalyzes the degradation of galactosyl‐3‐sulfate ceramide (sulfatide (Sulf)), a major myelin 
sphingolipid [19]. This disease is characterized by myelin degeneration, mainly in the CNS, 
and clinically by progressive motor and mental deterioration that is ultimately lethal. 
Therefore, the major target organ for treatment of this disease is the CNS, and the aim is 
to arrest or reverse the progression of the neurological symptoms. A major obstacle, how‐

ever, is the BBB, which limits delivery of systemically administered therapeutic molecules 
to the brain [14]. It is therefore hoped that systemic administration of an AAV vector harbor‐

ing ASA during the neonatal period would be useful for treating the CNS. We previously 
showed that a single systemic injection of AAV vector encoding human ASA (AAV/hASA) 
into neonatal ASA knockout (MLD) mice results in the wide distribution of ASA in the brain 
and correction of the biochemical and neurological phenotypes [20]. Figure 2A shows that a 
single systemic injection of AAV/hASA enables transduction of the CNS in neonates but not 

Figure 2. hASA expression of MLD mice following neonatal systemic administration of AAV/hASA vectors. (A) Fifty‐two 
weeks after AAV/hASA injection, hASA concentration in the brain was determined by an indirect sandwich enzyme‐
linked immunosorbent assay (ELISA) (left panel). DNA from the brain was extracted and analyzed using PCR with 
hASA‐specific primers (right panel). (B) hASA expression in plasma of AAV/hASA‐injected mice. hASA concentration in 
plasma was determined by ELISA. Sustained expression was observed after neonatal injection of AAV/hASA.
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in adults. Efficient hASA expression was detected in the brain of AAV/hASA treated at the 
neonatal period of MLD mice. PCR analysis confirmed that AAV vector genome was observed 
only in neonatal‐treated MLD mice. Moreover, sustained expression of hASA in plasma was 
detected for at least 30 weeks after intravenous injection into neonatal MLD mice, while only 
transient increase in plasma hASA was obtained when injected into either adult MLD mice 
or wild‐type C57Bl/6 mice (Figure 2B). Vector injection into adult NOD‐SCID mice led to 
sustained secretion of hASA into the circulation, suggesting that immune responses to hASA 
are a major hurdle for successful gene therapy in immunocompetent adult MLD mice. It thus 
appears that the systemic injection of AAV vector during the neonatal period is a potentially 
useful means of treating neurological disorders.

4.2. Neonatal gene therapy for hypophosphatasia

Hypophosphatasia is an inherited disease caused by a deficiency of tissue‐nonspecific alkaline 
phosphatase (TNALP) [21, 22]. The major symptom of human HPP is hypomineralization, 

Figure 3. X‐ray images of the whole bodies of TNALP knockout mice. Radiographic images were obtained on lFX1000 
film (Fujifilm Corp., Tokyo, Japan) using a setup for analysis of small animals. The energy level was 25 kV, and the 
exposure time was 90 s for 10‐day‐old untreated TNALP knockout (A), normal wild‐type (B) and AAV/TNALP‐D10‐
treated TNALP knockout mice (C).
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rickets or osteomalacia, although the clinical severity is highly variable. Patients with infantile 
HPP may appear normal at birth but gradually develop rickets before reaching 6 months of 
age. Neonatal gene therapy is a promising strategy for treating infantile HPP by preventing 
early onset. We have shown that the phenotype of TNALP knockout mice [23–25], which mim‐

ics the severe infantile form of HPP, can be prevented by a single neonatal injection of AAV 
vector encoding bone‐targeted TNALP in which a deca‐aspartate tail is linked to the C‐termi‐
nus of soluble TNALP (AAV/TNALP‐D10). Sustained expression of TNALP and phenotypic 
correction of TNALP knockout mice were observed following the neonatal gene therapy [26]. 

X‐ray analysis showed that treated TNALP knockout mice grow as well as normal wild‐type 
mice (Figure 3).

5. Problems of neonatal gene therapy

There are several problems that must be overcome before neonatal gene therapies can be used 
in humans. First, safety concern must be addressed, as there is the possibility of tumor devel‐
opment and of germ‐line transmission. It was reported that liver and lung cancers appeared 
in some mice treated using AAV‐mediated neonatal gene therapy [27, 28]. In addition, differ‐

ences in developmental stages of organs in mice and humans may be another problem. The 
immune system in mice is less mature at birth than that in larger animals, and the human BBB 
is functionally mature before birth. It is therefore not clear whether the same beneficial effect 
of neonatal gene therapy seen in mice would be achieved in human infants. These problems 
must be overcome before there can be clinical trials of neonatal gene therapy.

6. Summary and future developments

We have shown that AAV‐mediated gene transfer in neonatal mice has characteristics that 
could potentially overcome the problems encountered with current gene therapy protocols. 
However, before applying neonatal gene transfer to humans, several important issues must 
be addressed. In particular, the safety of neonatal gene transfer must be carefully evaluated 
using large animal models, including nonhuman primates. Nonetheless, because of its advan‐

tages over gene therapies used to treat genetic disorders in adults, safe and effective neonatal 
gene therapy has the potential to be an invaluable method for treating genetic diseases.
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